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Abstract
The incidence of antibiotics and transcriptional regulation of ARGs in isolated bacteria from wastewater needs to be explored. 
By HPLC, in samples of untreated wastewater, ampicillin (49.74 ± 5.70 µg/mL), chloramphenicol (0.60 ± 0.03 µg/mL), tylosin 
(72.95 ± 2.03 µg/mL), and oxytetracycline (0.22 ± 0.01 µg/mL) was determined. Through metagenomic analysis identified 58 
bacterial species belonging to 9 phyla and at least 14 species have shown resistance to a variety of antibiotics. Twenty-two 
bacterial isolates were proved to be resistant to fifteen antibiotics of new generation and used in medical research to combat 
infectious diseases. Fourteen strains were shown to harbor plasmids in size ranges of 2–5 Kb, 6–10 Kb and plasmids with 
size greater than 10 Kb. By quantitative PCR it was possible to identify genes sul, qnr, cat1, aadA1, and sat-1 gene were 
shown to be present in gDNA samples from treated and untreated samples of wastewater and by relative expression analysis, 
differential expression of cat1, ermB, act, and tetA genes was demonstrated in strains that showed identity with Escherichia 
coli, Bacteroides fragilis, and Salmonella thyphi, and that were stressed with different concentrations of antibiotics. The 
presence of ARGs in untreated water samples, as well as in bacterial isolates, was indicative that in these habitats there are 
microorganisms that can resist β-lactams, aminoglycosides, tetracyclines, sulfonamides, and quinolones.

Introduction

Bacteria during their evolution have developed genetic 
mechanisms allowing them to resist different antibiot-
ics [1]. This may be intrinsically resistant to one or more 
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antibiotics or acquire resistance via mutations or horizontal 
gene transfer and through cellular mechanisms involving 
efflux proteins [2, 3]. Porins are outer membrane proteins 
associated with the modulation of cellular permeability. The 
OmpF-defective mutant of E. coli was shown to be resistant 
to several antibiotics, suggesting that OmpF functions as the 
main route of outer membrane penetration for many antibiot-
ics [3]. Depending on the pressure of the antibiotic on the 
bacteria, it may use different cellular mechanisms to resist 
them. For example, before the resistance to tetracycline and 
chloramphenicol, they are associated with the presence of 
efflux proteins [4, 5].

Also, the selective pressure on microbial communities 
due to the use of antibiotics led bacteria to improve their 
antibiotic resistance mechanisms to ensure their survival [2, 
6]. Thus, even though various antibiotics have been devel-
oped for their use in medical treatment, new generation anti-
biotic-resistant pathogenic bacteria have evolved becoming 
a public health issue due to longer hospitalization, which 
besides implying a rise in the cost of treatment, might also 
raise the death toll from infection with these adapted patho-
gens [7]; a challenge that requires both research efforts and 
corresponding public health policy development [8].

The rapid evolution of antibiotic-resistant bacteria can 
be influenced by selection driven by the known presence of 
antibiotics in rivers, sewage, and wastewater treatment plants 
(WWTPs) [9, 10]. Chow et al. (2021) [11] reviewed the lit-
erature on antibiotic detection in water and sediment sam-
ples through HPLC. The authors found 40 papers published 
between 1999 and 2018 containing 887 environmental anti-
biotic concentration reports from sites in Europe, Asia, and 
North America, 212 from sediment and 675 from aquatic 
environments. According to the authors, 2% of these reports 
overlap the minimum inhibitory concentration (MIC) ranges 
known for wild-type bacteria, thus creating a strong selec-
tion pressure on antibiotic resistance. In a significant number 
of reports, the antibiotic concentrations reported are above 
the minimum selective concentration (MSC) estimated to 
be between 1/4 and 1/230 of the MIC [12, 13], which could 
affect biological processes like transcription, recombination 
rates, mutation, and horizontal gene transfer.

The need to eliminate or reduce the global emergence 
of antibiotic resistance favored by the presence in the 
environment of antimicrobial pharmaceuticals has gen-
erated current research to address the issue through the 
development of new technologies and strategies. Within 
these developments, the application of recombinant DNA 
technology in wastewater treatment has had little advance 
[14, 15], due to the possible consequences on native and 
non-pathogenic microorganisms present in the environ-
ment. To minimize these negative effects, it is necessary 
to genetically characterize the microorganisms found in 
the water or sediment samples to be treated. The genetic 

characterization of the presence of antibiotic-resistant 
microorganisms and knowledge of the transcription of 
genetic elements responsible for their resistance, for exam-
ple, ARGs (Antibiotic resistance genes), will allow the 
development of innovative technologies aimed at a group 
of microbial communities, thus minimizing the adverse 
effects of recombinant DNA technologies.

In WWTPs are present bacteria of both human and envi-
ronmental origins and antibiotic residues from households, 
hospitals, and small-scale pharmaceutical industries [16, 17]. 
Several studies have suggested a close relationship between 
antibiotic identification, ARGs expression from WWTP 
samples, and the incidence of antibiotic-resistant bacteria 
[18, 19]. It is suggested that the high bacterial density, nutri-
ent availability in conditions of stress a variety of antibiotics 
present in wastewater, provides suitable conditions to facili-
tate a high rate of horizontal gene transfer among environ-
mental bacteria and human pathogens [20]. Liu et al. (2019) 
[18], using metagenomic and metatranscriptomic identified 
diversity, abundance, 360 ARGs associated with 24 classes 
of antibiotics in activated sludge (AS) from three conven-
tional WWTPs Taiwan. Metatranscriptome analysis showed 
65.8% of the identified ARGs were being expressed and 110 
ARGs were annotated as plasmid-associate.

Also, Xu et al. (2020) [21] using transcriptional analy-
sis, demonstrated that 202 ARGs transcripts were detected 
from samples of sewage sludge from wastewater. ARGs 
transcripts more relevant were qacEdelta1-02, sul2, qacE-
delta1-01, aadA2-03, and tetX. Differences in the regulation 
of these ARGs was demonstrated, depending on the year's 
season, where there were lower abundances in summer and 
winter, demonstrating that bacterial communities with anti-
biotic resistance can change the ARGs transcription accord-
ing to abiotic factors.

Therefore, if research is carried out aimed at understand-
ing the genomics and transcriptomics of ARGs present 
in antibiotic-resistant bacteria isolated from WWTP and 
through advances in genetic engineering, it is possible to 
innovate a strategy aimed at eliminating antibiotic resistance 
in bacteria present in wastewater [17].

So due to the importance of the presence of antibiotics 
and antibiotic-resistant microorganisms in WWTPs, in this 
research we identified antibiotic-resistant bacteria present 
in samples from the WWTP through metagenomic analysis, 
identifying a total of 58 bacteria from untreated waters. At 
least 22 strains were isolated that proved multidrug-resistant, 
differentially expressing ARGs related to resistance to ampi-
cillin, tylosin, chloramphenicol, and oxytetracycline and har-
bor plasmids ranging in size from 2 to 10 kb were identified.

Future genetic characterization of these plasmids could 
help us innovate new recombinant DNA strategies that 
allow deleting the resistance cassettes in bacteria present 
in WWTPs and thus help the treatment of untreated water.
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Materials and Methods

Sample Collection and Analysis of Physicochemical 
Parameters

Water samples were taken at the inlet and outlet of the 
Saltillo wastewater treatment plant located at Dámaso Rod-
ríguez González 750, Nuevo Centro Metropolitano, Saltillo, 
Coahuila. Sampling areas with homogeneous-looking water 
where chosen and 100 mL of water were collected in three 
points in triplicate.

Total alkalinity  (CaCO3 mg/L), total hardness  (CaCO3 
mg/L), chlorides (mg/L), dissolved oxygen (mg/L), and 
biochemical oxygen demand (BOD mg/L) were evaluated 
according to the methods in the Official Mexican Stand-
ards NMX-AA-036-SCFI-2001, NMX-AA-072-SCFI-2001, 
NMX-AA-073-SCFI-2001, NMX-AA-028-SCFI-2001, and 
NMX- AA-028-SCFI-2001, respectively.

Determination of Ampicillin, Chloramphenicol, 
Oxytetracycline, and Tylosin in Water Samples

A Thermo HPLC instrument coupled with a UV detector 
(P1500 pump, UV2000 detector, AS3000 autosampler) was 
employed to determine ampicillin, chloramphenicol, oxy-
tetracycline, and tylosin using a C-18 column. The system 
used to detect the compounds consisted of a mobile phase 
of 70:30 CH3OH:H2O at a 0.3 mL  min−1 flow rate, and 
a detection wavelength of 254 nm, 271 nm, 280 nm, and 
351 nm for ampicillin, chloramphenicol, tylosin, and oxy-
tetracycline. Commercial products (chloramphenicol and 
ampicillin from AMSA laboratories and oxytetracycline and 
tylosin from veterinary pharmaceutical suppliers), derived 
from the fact that these are used in veterinary and human 
medicine were used, and there is a high probability of find-
ing them in urban wastewater. The inlet and outlet water 
samples from the treatment water network were analyzed in 
triplicate and the mean value was plotted and subjected to a 
Tukey test (α = 0.05).

Metagenomic Analysis of Samples

gDNA was extracted with the Plant/Fungi DNA Isola-
tion kit (Norgen Biotek Corp.). The purity and integrity 
of the gDNA was verified by electrophoresis in 1% aga-
rose gel and measured in a NanoDrop 2000 microvolume 
spectrophotometer.

Samples were analyzed by 16S rDNA sequencing using 
the ABI PRISM model 377 automatic sequencer (Perki-
nElmer Inc., USA). The sequencing was performed using 
200 ng of the gDNA used in the PCR reaction in a Sequenase 

v.2 Kit thermocycler (Amersham, U.S. Biochemicals). The 
reaction mix consisted of 4 µL of 5X Big dye Buffer v3.1, 10 
µL Sterile milliQ water, 1 µL of 5 mM FW or RV initiator, 
4 µL of Big Dye v3.1 ready mix, in a final volume of 20 µL. 
Subsequently, it was amplified by PCR under the appropriate 
conditions for each gene under study. Subsequently, 10 µL 
of the PCR product was purified, 10 µL of X-terminator, and 
45 µl of SAM were added. The mixture was left to incubate 
for 30 min at 37 °C with shaking at 13,000 rpm. Subse-
quently, it was centrifuged for 2 min at 13,000 rpm. The 
supernatant was transferred to another tube and 20 µL was 
taken for sequencing. The obtained readings were identi-
fied online by Nucleotide BLAST (https:// blast. ncbi. nlm. 
nih. gov/ Blast. cgi) and by scanning the SILVA high-quality 
ribosomal RNA databases (http:// www. arb- silva. de), the 
Michigan State University Ribosomal Database Project 
(RDP; https:// rdp. cme. msu. edu/ index. jsp), the EzTaxon 
sequence collection (http:// www. ezbio cloud. net/ eztax on), 
and the NCBI non-redundant database (http:// www. ncbi. 
nlm. nih. gov/ guide/ all/# datab ases) containing sequence col-
lections from GenBank, the European Bioinformatics Insti-
tute (EMBL-EBI), the DNA Data Bank of Japan (DDBJ), 
the Data Bank of Proteins (PDB), and reference sequences 
(RefSeq) of NCBI. Once the identity of the identified bacte-
rial species was assigned, the 80 best 16S rDNA sequences 
were selected and phylogenetic analyses made. Conserved 
aligned regions (> 90%) were selected in all sequences and 
phylogenetic analysis was performed in the software MEGA 
version 6.0. Bacterial abundance data was analyzed and plot-
ted with the ORIGIN software.

Isolation of Antibiotic‑Resistant Bacteria 
and Characterization of Native Plasmids

Strain isolation was performed by plating concentrated sam-
ples and 10X, 100X, and 1000X serial dilutions. The sowing 
was carried out by plate extension in nutrient agar medium 
(pluripeptone 5 g, meat extract 3 g, sodium chloride 8 g, 
and agar 15 g, per liter, at a pH of 7.3) and LB agar medium 
(casein peptone, yeast extract, and sodium chloride), sup-
plemented with the following antibiotics: ampicillin (25 mg/
mL), tylosin (125 µg/mL), oxytetracycline (64 mg/mL), and 
chloramphenicol (5 µg/mL). The cultures were grown at 
37 °C for 16 h. Subsequently, the grown colonies were cul-
tured in 4 mL of liquid LB supplemented with the respective 
antibiotics. The cultures were incubated at 37 °C for 16 h.

DNA plasmid was extracted by the alkaline lysis 
method. The electrophoretic profile of the isoforms of 
these plasmids was performed on 1% agarose gels. The 
determination of the molecular weight of the plasmids 
was based on the comparison of the isoforms of the 
native plasmids with the electrophoretic profile of the 
supercoiled DNA Ladder (#N0472, NEW ENGLANDS 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.arb-silva.de
https://rdp.cme.msu.edu/index.jsp
http://www.ezbiocloud.net/eztaxon
http://www.ncbi.nlm.nih.gov/guide/all/#databases
http://www.ncbi.nlm.nih.gov/guide/all/#databases


 G. Díaz-Palafox et al.

1 3

338 Page 4 of 15

BioLabs). This marker contains 9 supercoiled plasmids, 
ranging in size from 2 to 10 kb. The 5 kb plasmid has 
increased intensity and served as a reference to estimate 
plasmid sizes.

Morphological Characterization and Resistance 
or Susceptibility Profile of the Isolated Strains 
Against Antibiotics

Gram stains were realized to determine the bacterial 
morphology of the strains and the strains were seeded on 
MacConkey agar to determine their Lac + and Lac- physi-
ology. The determination of the  MIC90 was carried out 
through microdilution in a plate. Sterile, covered, 96-well 
plastic plates with a U-shaped bottom were used. The 
culture medium used was Müeller-Hinton broth. 50uL of 
the culture medium were placed in each well. Then 50 
µL of the stock antibiotic solution were placed. The plate 
was incubated at 37 °C for 16 h. Subsequently, a series of 
dilutions of the inoculum was made and plated in medium 
for antibiotic No. 2. It was incubated at 37 °C for 16 h. 
The following day, the CFU (colony forming units) were 
counted and multiplied by the dilution obtaining CFU/
mL values. Ten consecutive dilutions were worked from 
a mother solution of each antibiotic. The concentrations 
of each antibiotic used are described in Table S1.

Two methodologies were used to determine suscepti-
bility or bacterial resistance. Initially, it was determined 
by the agar diffusion technique-Bauer & Kirby Tech-
nique. The bacterial inoculum was adjusted to a standard 
concentration of 0.5 McFarlane and seeded on the surface 
of a dry Müeller-Hinton agar plate. After a few minutes, 
we placed filter paper disc No. 2, with different concen-
trations of antibiotics (Fig. S1). The plate was incubated 
at 35 °C in ambient air for a period of 16 h. Each plate 
was observed in direct light and each inhibition zone was 
measured using a graduated ruler. The diameters around 
each disc were measured and their interpretation is based 
on Table S2.

On the other hand, to determine bacterial susceptibil-
ity or resistance, the BD Phoenix system was used. The 
antibiotics evaluated were Cefriaxone (CRO), Cefepime 
(FEP), Tetracycline (TE), Piperacillin/tazobactam (TZP), 
Imipenem (IPM), Gentamicin (GM), Amikacin (AN), 
Sulbactam/Ampicillin (SAM), Amoxicillin Clavulanic 
Acid (AMC), Ertapenem (ETP), Meropenem (MEM), 
Cefotaxime (CTX), Ceftotaxime/Amoxicillin Clavu-
lanic Acid (CTX/CLAV), Ceftazidime (CAZ), Ceftazi-
dime/ Amoxicillin Clavulanic Acid (CAZ/CLAV) and the 
points the cut-off values used to calculate susceptibil-
ity or resistance are those described for Gram-negative 
bacilli (Table S3).

Identification of Bacterial Strains for 16S rDNA 
Sequencing

The gDNA extraction of each strain was carried out with 
the Plant/Fungi DNA Isolation kit (Norgen Biotek Corp.) 
following the manufacturer's recommendations. Amplifi-
cation of the 16S rDNA region was carried out using the 
16S-fw5'AGA GTT TGA TCC TGG CTC AG3' and 16S-rev 
5'CGG GAA CGT ATT CACCG3' oligonucleotides. The reac-
tion mixture consisted of 2.5 µL of 10X Buffer, 1.5 µL of 
50 mM  MgCl2, 1µL of each primer (forward and reverse) 
at a concentration of 5 uM, 0.25 µL of 10 mM DNTP, 0.20 
µL of Taq polymerase (5U/µL), and 50 ng of gDNA. The 
reaction mixture was brought to a final volume of 25 µL. 
The reaction conditions were: 1 cycle of 94 °C for 1 min, 
followed by 35 cycles of 60 °C for 1 min, 72 °C for 1 min, 
and 72 °C for 5 min. The amplified fragments were verified 
and identified by electrophoresis in 1% agarose gels. The 
sequencing and sequence analysis was the same as reported 
in the metagenomic analysis section.

Determination of Relative Expression of ARGs Genes 
in Strains Isolated

Conditions of Induction of the Expression of ARGs

Strains were cultured in 4 mL of liquid LB and incubated 
at 37 °C for 16 h at 100 rpm. Bacterial cells were adjusted 
to 1 ×  109 cells/mL and inoculated into 25 mL of liquid LB 
supplemented with antibiotics ranges ampicillin (50 mg/
mL and 100 mg/mL), tylosin (150 µg/mL and 200 µg/mL), 
oxytetracycline (150 mg/mL and 200 mg/mL), and chloram-
phenicol (25 µg/mL and 50 µg/mL). Cultures were incubated 
at 37 °C for 24 h, at 100 rpm. Samples were taken at 1, 9, 
17, and 24 h.

Relative Expression of ARGs

RNA isolation and cDNA synthesis were conducted accord-
ing to Tamayo-Ordóñez et al. (2016) [22]. The amplification 
of act gene (ampicillin resistance gene), tetA (oxytetracy-
cline resistance gene), cat1 (chloramphenicol resistance 
gene), ermB (macrolide resistance gene), were determined 
by real-time PCR (qPCR). The characteristics of the used 
oligonucleotides are described in Table S4. The melt curve 
analysis and negative controls for the reference and target 
genes were always included in the experiments to eliminate 
gDNA contamination.

The relative expression of each gene was determined by 
the ∆∆Cq method between the target and reference (16S 
rDNA) genes. The transcript abundance ratio of target gene 
to reference gene was determined by the following equation: 
Relative Expression =  (Eref)Ctref/(Etarget)Ctarget, where  Eref and 
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 Etarget are the efficiencies of the primers for the reference and 
target genes, respectively, and Ct ref and Ct target are the mean 
CT value of the reference and target genes, respectively.

Identification of Genetic Elements in gDNA 
from Wastewater Samples

The identification of genetic elements such as sul (sulfona-
mide resistance gene) and qnr (quinolone resistance genes), 
cat1 (chloramphenicol resistance gene), aadA1 (spectino-
mycin-streptomycin resistance gene), and sat-1 (kanamy-
cin resistance gene) were determined by real-time PCR 
(qPCR). The characteristics of the used oligonucleotides 
are described in supplementary Table S4.

To determine the copy numbers of the genes of interest 
(absolute RT-qPCR), we construct calibration curves (Ct vs 
copy total numbers) to interpolate the Ct values obtained 
from our samples. The data were analyzed in triplicate and 
the mean value was plotted and subjected to a Tukey test 
(α = 0.05). For a detailed description of the methods used 
to estimate the number of copies is provided in the sup-
plementary file.

Results

Presence of Antibiotics, Genetic Elements, 
and Bacterial Abundance in Wastewater

The physicochemical characterization of the treated and 
untreated wastewater samples indicated that the BOD was 
higher in untreated (573 ± 13 mg/L) than in treated wastewa-
ter, in which we observed a 95% decrease in BOD (Table 1).

The determination of antibiotics by HPLC allowed us 
to demonstrate the presence of antibiotics such as ampicil-
lin (49.74 ± 5.70 µg/mL), chloramphenicol (0.60 ± 0.03 µg/
mL), tylosin (72.95 ± 2.03 µg/mL), and oxy-tetracycline 

(0.22 ± 0.01 µg/mL), the concentrations of which decreased 
between 49 and 99% in treated relative to untreated waste-
water (Table 1 and Fig. S2A). Indicating that antibiotic 
removal techniques could favor eliminating antibiotics in 
treated water. Residual concentrations of antibiotics present 
in untreated wastewater could be sufficient to favor the pres-
ence of bacteria that have demonstrated antibiotic resistance.

Using qPCR, we identified the presence of genes that con-
fer resistance to sulfonamides (sul), quinolones (qnr) chlo-
ramphenicol (cat1), spectinomycin, streptomycin (aadA1), 
and kanamycin (sat-1), which were present in higher copy 
numbers in gDNA samples of untreated than in treated 
wastewater (Fig. S2B). The number of copies of antibiotic 
resistance genes present in a sample relates to the abundance 
of microorganisms that contain these genetic elements, 
which agrees with the higher BOD values we recorded in 
the untreated water samples (Table 1). This result indicated 
that in the untreated water samples, bacteria with antibiotic 
resistance could be found.

If we compare the percentage decrease in the gene 
copy number present in the treated wastewater samples, it 
is observed that the number of copies of cat1 and aadA1 
was 93% less than in untreated wastewater. The detection 
of chloramphenicol concentrations in treated water samples 
indicated a reduction of 96.66% relative to untreated water 
(Table 1), suggesting that the wastewater treatment plant 
apparently reduces the presence of chloramphenicol, and 
possible microorganisms with resistance to this antibiotic, 
by over 90%.

The number of copies of the sat-1 gene was 83% lower 
in the samples from treated than from untreated wastewa-
ter, while that for the genes conferring resistance to sul-
fonamides and quinolones decreased 48% and 68%, respec-
tively (Fig. S2B). These reductions in gene copy number we 
observed in samples of treated wastewater suggest that the 
inadequate disposal of antibiotics contributes to the presence 
of emerging pollutants in water.

Table 1  Physicochemical characterization and determination of antibiotics in treated and untreated wastewater

Parameters analyzed Untreated wastewater Treated waste water Reduced percentage between untreated 
wastewater and in treated wastewater

Total alkalinity (CaCO3)
(mg/L)

706.00 ± 5.00 161.00 ± 3.40 77.19

Total hardness (CaCO3)
(mg/L)

338.00 ± 3.00 256.00 ± 4.00 24.26

Chlorides (mg/L) 33.70 ± 2.00 26.40 ± 3.00 22.84
Dissolved oxygen (mg/L) 7.10 ± 5.00 4.70 ± 3.00 33.80
Biochemical Oxygen Demand (mg/L) 573.00 ± 13.00 28.00 ± 4.00 95.11
Ampicillin (µg/mL) 49.74 ± 5.70 25.55 ± 3.02 49.66
Chloramphenicol (µg/mL) 0.60 ± 0.03 0.02 ± 0 96.66
Tylosin (µg/mL) 72.95 ± 2.03 29.96 ± 3.02 58.93
Oxytetracycline (µg/mL) 0.22 ± 0.01 0.08 ± 0.020 63.63
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The 1330 sequences of 16S rDNA analysis allowed us to 
identify the abundance of bacteria present in the untreated 
wastewater samples we analyzed. The percentages of 
sequence identity were from 99 to 100% (Table S5). We 
found a total of 58 genera representing nine phyla (Fig. 1a). 
The most abundant phylum was Proteobacteria (68%), fol-
lowed by Firmicutes (14.3%), and Bacteroidetes (6.8%). 

Our analysis identified 83 species in 58 genera representing 
the nine phyla (Fig. 1a and Table S5). To know how these 
bacterial species group phylogenetically, we constructed a 
dendrogram that included 71 bacterial species (Fig. 1b). Of 
the 46 bacterial species belonging to the phylum Proteo-
bacteria, at least 25 (> 50%) have demonstrated antibiotic 
resistance (Table S6). We also obtained two distant groups 

Fig. 1  Percentage of bacterial 
phyla and cluster including 
species identified in untreated 
water by metagenomic analysis. 
untreated water samples. a The 
identification of the bacte-
rial species belonging to each 
phylum was determined by 
metagenomics and 16S rDNA 
sequencing, the identity analysis 
was performed by BlastN. The 
results cover a total of 1330 
sequences analyzed. the model 
used was from Minima Evolu-
tion. b The dendrogram mod-
eling was carried out with the 
MEGA v.6.0 program, using the 
method of minimal evolution to 
boopstrap of 1000 repetitions
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of species belonging to the phylum Proteobacteria. The gen-
era Methylobacter, Pseudomonas, Moraxella, Acinetobacter, 
Gallionella, Neisseria, Burkholderia, Fusobacterium, She-
wanella, Vibrio, Enterobacter, Klebsiella, and Aeromonas 
proved to be closer to representatives of the phylum Firmi-
cutes. The most phylogenetically distant group of proteobac-
teria included bacterial species in the genera Terasakiella, 
Nesiotobacter, Leisingera, Agrobacterium, Neorhizobium, 
Stenotrophomonas, Marinobacter, Escherichia, and Kluy-
vera (Fig. 1b). We found species in the genera Pseudomonas, 
Acinetobacter, and Vibrio in both groups of Proteobacte-
ria, indicating possible genetic variability between these 
accessions.

Of the 10 accessions belonging to the phylum Firmicutes, 
the presence of antibiotic-resistant species of Paenibacillus, 
Staphylococcus, and Streptococcus stands out. Apparently, 
our metagenomic analysis indicates that untreated waste-
water samples might contain at least 36 bacterial species 
resistant to a wide range of antibiotics (Table S6).

Isolation of Multidrug‑Resistant Strains and Genetic 
Characterization of Native Plasmids

A total of twenty-two Gram-negative strains were identified, 
with morphologies of bacilli in short chains and in pairs and 
Bacilli that grow in the form of fibers (Fig. S3 and Table S7). 
The phenotype present in most of the isolates was Lac + , 
except for strain-22, which proved to be Lac-. Plate growth 
demonstrated phenotypic morphologies of rough, smooth, 
and mucoid colonies (Fig. S4 and Table S7). The respective 
 MIC90 of these strains against ampicillin, chloramphenicol, 
tylosin, and oxytetracycline were 100 mg/mL, 50 µg/mL, 
200 µg/mL, and 200 mg/mL, respectively. Values higher 
than determined in the residual water by HPLC suggest that 
these bacteria inhabit a suitable environment.

16S rDNA sequencing indicated that most isolates 
belonged to the E. coli (identity ≥ 90%). Strains-15, -16, 
-18, and -20 indicated that they belong to the Bacteroides 
fragilis (identity ≥ 95%), and strain-22 indicated to belong 
to Salmonella typhi (identity ≥ 98%) (Table S8).

The antimicrobial resistance or susceptibility profile 
against 15 compounds indicated that the strains are multid-
rug-resistant (Fig. 2a). 100% of the strains indicated sensi-
tivity against ETP, MEM, and IPM. 92% of the strains show 
sensitivity to AN. 64% of the strains showed resistance to 
TE and 50% to GM. Furthermore, 10 to 25% of the strains 
showed resistance against CRO, FEP, TZP, CTX, and CAZ. 
In the case of AN and AMC it was indicated that 7.7% of the 
strains are resistant to these compounds (Fig. 3a). Evaluat-
ing antibiotics in combination, it was shown that more than 
19% of the strains are resistant to CTX/CLAV and CAZ/
CLAV (Fig. 2b).

In the least 14 strains, it was possible to isolate plasmids 
(Fig. 3). It is estimated that at least 64% of these 14 strains 
harbor small plasmids with sizes between 2 and 5 Kb and 
the other 35% of strains harbor plasmids with sizes between 
6 and 10 Kb (Fig. 3a and b). In ten isolated strains, bands 
larger than 10 Kb were observed that could correspond to 
large plasmids or megaplasmids (Fig. 3a). Future studies 
of genetic characterization of plasmids in bacterial isolated 
are needed to know the incompatibility types, plasmid sizes, 
transconjugant frequencies, and antibiotic resistance genes 
they contain each plasmid.

Differential Expression of ARGs, in Bacterial Isolates 
Under Stress with Antibiotics

Various studies point to the relationship between environ-
mental factors and the expression of ARGs [23–25]. In this 
research, we decided to find out the transcriptional behavior 
of the cat1, tetA, ErmB, and AmpC genes under pressure of 
chloramphenicol, oxytetracycline, tylosin, and ampicillin, 
respectively.

Relative Expression of Cat1 Gene

The expression of the cat1 gene is translated into the enzyme 
CAT (Chloramphenicol acetyl transferase [26]. This enzyme 
acetylates the molecule of the antibiotic chloramphenicol, 
which causes it to lose its effect. Analysis of the relative 
expression of the cat1 gene, in the species Escherichia coli-1 
Escherichia coli-8, Escherichia coli-13, Bacteroides fragil-
lis-14, Bacteroides fragillis-15, Bacteroides fragillis-17, 
Salmonella thyphi-22¸ was carried out by analyzing two 
concentrations of chloramphenicol (25 µg/mL and 50 µg/
mL), for 1, 9, 17, and 24 h under exposure to the antibiotic 
(Fig. 4). E. coli presents the highest relative expression of 
the cat1 gene at 9 h in exposure with the antibiotic (25 µg/
mL) (Fig. 4a). B. fragilis strains shows to express 10 times 
less expression of this gene compared to E. coli strains, 
demonstrating its maximum expression at 9 h (Bacteroides 
fragillis-14, Bacteroides fragillis-15) and 24 h (Bacteroides 
fragillis-17). Salmonella thyphi-22, demonstrated to express 
5 times less expression of the cat1 gene compared to E. coli 
isolates, reaching its maximum expression at 17 h (Fig. 4a).

The behavior of expression in E. coli strains, when the 
concentration of chloramphenicol (50 µg/mL) was increased, 
showed that after 24 h of exposure to the antibiotic (Fig. 4b), 
there was an eightfold reduction compared to treatments 
with chloramphenicol at 25 µg/mL. In the B. fragilis isolates, 
the increase in the concentration of chloramphenicol did not 
cause a significant change in the expression of the cat1 gene. 
In Salmonella thyphi-22, a sixfold increase in expression 
was demonstrated at 9 h compared to low concentrations of 
chloramphenicol (25 µg/mL).
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Relative Expression of tetA Gene

The tetA gene confers resistance to oxytetracycline [27], 
this gene encodes specific efflux pumps for this antibiotic. 
The relative expression of this gene under a concentration 
of 150 mg/mL of oxytetracycline had a similar behavior 
among the E. coli isolates, showing lower expression at 1 h 
of exposure to the antibiotic and raising its expression eight-
een times more at 9 h under the presence of oxytetracycline, 
maintaining constant expression during the 24 h evaluated. 
In the case of B. fragillis, it showed behaviors similar to 
isolated E. coli, indicating its lower expression of tetA at 
one hour and an increase at 9 and 17 h. B. Fragilis demon-
strated a tenfold increase in its expression at 24 h compared 
to 17 h. S. thyphi-22 had a lower expression (20 times less) 
in relation to the higher levels of expression of E. coli and 
B. Fragilis (Fig. 4c).

The relative expression of the tetA gene with a medium 
supplemented with 200 mg/mL oxytetracycline (Fig. 4d), 
was similar to that of the culture medium supplemented with 
150 mg/mL oxytetracycline, one of the most relevant differ-
ences in both concentrations was that the relative expression 
of the gene in S. thyphi-22 was higher than 200 mg/mL, 
having a higher expression at 24 and 9 h, reaching relative 
expressions 20 times more compared to lower concentrations 
of oxytetracycline (150 mg/mL) (Fig. 4c).

Relative Expression of Act Gene

Β-lactamase activity is related to antibiotic resistance, 
mostly in gram-negative bacteria. In E. coli, at least 10 
β-lactamase genes have been reported, among them the act 
gene belongs to AmpC β-lactamases (ABL) [28]. The strains 
analyzed in this research mostly demonstrated resistance to 

Fig. 2  Profile of antimicrobial 
resistance against pure and 
combined antibiotics. a For 
the analysis, the strains were 
exposed to various antibiotics: 
Cefriaxone (CRO), Cefepime 
(FEP), Tetracycline (TE), 
Piperacillin/tazobactam (TZP), 
Imipenem (IPM), Gentamicin 
(GM), Amikacin (AN), Sulbac-
tam/ Ampicillin (SAM), Amoxi-
cillin Clavulanic Acid (AMC), 
Ertapenem (ETP), Meropenem 
(MEM), Cefotaxime (CTX), 
Ceftotaxime/ Amoxicil-
lin Clavulanic Acid (CTX/
CLAV), Ceftazidime (CAZ), 
Ceftazidime/ Amoxicillin 
Clavulanic Acid (CAZ /KEY). 
The percentage of sensitive 
bacteria is indicated in a pink 
bar. The percentage of resistant 
bacteria is indicated in a green 
bar. b Resistance or sensitivity 
analysis against Ceftotaxime/
amoxicillin clavulanic acid 
(CTX/CLAV), and Ceftazi-
dime/Amoxicillin clavulanic 
acid (CAZ/CLAV). The blue 
bar indicates the percentage of 
resistant strains, and the pink 
bar indicates the percentage of 
sensitive strains
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beta-lactams (Fig. 2), therefore in this research we included 
the transcriptional analysis of the act gene, in the presence 
of ampicillin at two concentrations (50 mg/mL and 100 mg/
mL), during 24 h of culture.

The relative expression in representative strains of the 
Escherichia, Bacteroides, and Salmonella genera showed 
that the act gene increases its expression during 24 h in 
the presence of ampicillin in both concentrations analyzed 
(Fig. 5a). S. thyphi-22 indicated the highest expression levels 
at 24 h compared to E. coli and B. fragilis isolates.

The expression level of the act gene does not show sig-
nificant differences that indicate a considerable increase 
between treatments with ampicillin (50 mg/mL or 100 mg/
mL), in the species evaluated, except for E. coli-13, which 
demonstrated to increase its relative expression of the act 
gene 28 times more in comparison when this strain was eval-
uated with treatment with lower concentrations of ampicillin 
(50 mg/mL) (Fig. 5b).

Relative Expression of ermB Gene

Macrolide antibiotics bind to the ribosome and then acti-
vate the expression of the antibiotic resistance genes ermC 

or ermB [29, 30]. We evaluated the expression of the ermB 
gene in bacterial cultures with concentrations of 100 µg/
mL and 200 µg/mL of tylosin, for 24 h (Fig. 5c and d). 
Similar transcriptional expression of the ermB gene was 
observed in E. coli and B. fragilis, exposed to both tylosin 
concentrations (100 µg/mL and 200 µg/mL). In cultures 
with tylosin concentrations of 100 µg/mL both isolates 
show high expression values at 1 h of culture, later this 
expression decreases during the 24 consecutive hours, a 
tenfold decrease in the relative expression of the ermB 
gene is observed in E. coli and 20 times less in B. fragi-
lis. In addition, B. Fragilis expressed 5 times more of the 
ermB gene at 1 h of culture than E. coli. On the other hand, 
S. thyphi-22 showed a constant expression during the 24 h 
of culture (Fig. 5c).

In cultures with concentrations of 200 µg/mL of tylosin, 
it was observed that the three species analyzed showed 
constant expression values during the 24  h evaluated 
(Fig. 5d). Expression levels were similar to those obtained 
when isolates were grown at (100 µg/mL).

Fig. 3  Electrophoretic profile of plasmids extracted from isolated 
strains. a Electrophoresis was performed on 0.8% agarose gels at 
75 V for 16 h. As a comparison marker, the Supercoiled DNA Lad-

der was used. b Estimation of the size of the plasmid, comparing the 
isoform profile with the isoform profile contained in the supercoiled 
DNA Ladder
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Discussion

Analyzing the occurrence of the antibiotics detected, such 
as ampicillin (49.74 ± 5.70  µg/mL), chloramphenicol 
(0.60 ± 0.03 µg/mL), tylosin (72.95 ± 2.03 µg/mL), and oxy-
tetracycline (0.22 ± 0.01 µg/mL) with the identification by 
metagenomic of bacterial species in wastewater samples, 
we can highlight resistance to ampicillin with  MIC90 within 
a range from 56 to 256 µg/mL in Enterobacter cloacae, 
E. coli, Pseudomonas sp, Bacillus coreaensis, Moraxella 
osloensis, Methylobacter sp., Paenibacillus sp., Aeromonas 
sp., Caulobacter sp., and Vibrio sp. (Table S6), have been 
reported.

Among the species we found, some have been reported to 
be resistant to chloramphenicol with  MIC90 in ranges from 
256 µg/mL to 4 mg/mL like Pseudomonas sp., Bacillus core-
ansis, Methylobacter sp., Streptococcus pyogenes, E. coli, 
and Aeromonas salmonicida. Resistance to tylosin has been 

reported for E. coli with  MIC90 of 15 μg/L. Resistance to 
oxy-tetracycline is known to occur in Bacillus coreaensis 
(80%), Sphingobacterium sp. (MIC of 128 mg/mL), and 
Magnetobacterium sp. (Table S6).

The concentration of ampicillin (49.74 ± 5.70 µg/mL) we 
observed in wastewater (Table 1) is within the  MIC90 value 
reported for some bacterial species (Table S6). Depending 
on the type of bacteria analyzed, it can resist different con-
centrations of antibiotics. According to Li et al. (2019) [18] 
some bacterial strains of E. coli exposed to antibiotics for 
prolonged periods tend to accumulate SNPs, which allows 
them to increase their range of antibiotic resistance.

Furthermore, the adaptation of bacteria to high con-
centrations of antibiotics in their habitat will be favored 
in bacterial strains with genetic elements such as plasmids 
and integrons that allow them to survive in these condi-
tions. A recent study where it was predicted how gene-
by-gene by-environment (G × G × E) interactions affect the 

Fig. 4  Relative expression of the cat and tetA gene, under culture 
conditions supplemented with chloramphenicol and oxytetracycline. 
Samples were taken at 1, 9, 17, and 24 h after exposure to the anti-
biotic. As a negative control, the strains cultivated without the pres-

ence of the antibiotic were included. a Cloramphenicol at 25 µg/mL, 
b Cloramphenicol at 50 µg/mL, c Oxytetracycline at 150 mg/mL, and 
d Oxytetracycline at 200 mg/mL
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evolution of E. coli against pressure at various concentra-
tions of antibiotics, it was shown that G × G interactions 
and rugged fitness landscapes in the absence of antibiot-
ics, but as antibiotic concentration increased, the fitness 
effects of ABR genotypes quickly overshadowed those of 
gene knock-outs, and the landscapes became smoother 
[31], suggesting that the evolution of resistant bacteria 
to antibiotics is facilitated by extreme habitats (with the 
presence of antibiotics) [32].

According to our results and what has been described 
in the literature, at least 14 species identified by metagen-
omic analysis (Enterobacter cloacae, E. coli, Pseudomonas 
sp,, Bacillus coreaensis, Moraxella osloensis, Methylobac-
ter sp., Paenibacillus sp., Aeromonas sp., Caulobacter sp., 
Vibrio sp., Streptococcus pyogenes, Aeromonas salmonicida, 
Sphingobacterium sp., and Magnetobacterium sp.) have 
shown resistance to the antibiotics we detected by HPLC 
(chloramphenicol, oxy-tetracycline, tylosin, and ampicillin), 
suggesting that the presence of these antibiotics in wastewa-
ter may favor the adaptation of these bacterial genera and 
favor processes such as plasmid conjugation and horizontal 
gene transfer between the bacterial community.

On the other hand, the identification of genetic elements 
present in wastewater samples is important to highlight that 
among the bacteria we identified by metagenomic analysis, 
the occurrence of genes that confer resistance to sulfona-
mides such as sul1, sul2, and sul3, were identified in Fuso-
bacterium sp. by Xiong et al. (2014) [33], Acinetobacter 
baumannii by Girija et al. (2019) [34], Aeromonas sp. by 
Piotrowska and Popowska (2014) [35], and Klebsiella pneu-
moniae by Shahid et al. (2012) [36]. Genes conferring resist-
ance to quinolone (qnr) were reported by Saga et al. (2005) 
[37] to be present in Vibrio parahaemolyticus, Salah et al. 
(2019) [38] found them in E. coli, Touati et al. (2008) [39] in 
Acinetobacter baumannii, and Sivaraman et al. (2020) [40] 
in Klebsiella pneumoniae. The cat gene that confers resist-
ance to chloramphenicol was identified by Piotrowska and 
Popowska (2014) [35] in Aeromonas salmonicida, A. vero-
nii, and A. caviae. The gene conferring resistance to spectin-
omycin and streptomycin (aadA1) was found to be present 
in Acinetobacter baumannii by Huang et al. (2015) [41], 
Aeromonas veronii and Aeromonas caviae by Piotrowska 
and Popowska, 2014 [35], and Klebsiella pneumoniae by 
Sivaraman et al. (2020) [40]. In the case of the sat-1 gene 

Fig. 5  Relative expression of the act and ermB gene, under cul-
ture conditions supplemented with ampicillin and tylosin. Samples 
were taken at 1, 9, 17, and 24 h after exposure to the antibiotic. As 

a negative control, the strains cultivated without the presence of the 
antibiotic were included. a Ampicillin at 50 mg/mL, b Ampicillin at 
100 mg/mL, c tylosin at 100 µg/mL, and d tylosin at 200 µg/mL
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associated with resistance to kanamycin, it was identified 
in E. coli by Peerayeh et al. (2019) [42]. The occurrence of 
these bacteria in our samples of wastewater correlates to 
the detection of these genes conferring antibiotics resistance 
(Fig. 1B), suggesting that early detection of genetic elements 
(ARGs) in water samples could be used as a preliminary 
method that indicates the possible presence of bacterial gen-
era with resistance to a variety of antibiotics [43].

Most of our isolates show a high identity with Escheri-
chia coli, bacteria that is known to resist a wide range of 
antibiotics, as Williams et al. (2019) [44] demonstrated 
for chloramphenicol (MIC range of 64–512 mg/L), and as 
reported for ampicillin (MIC > 256 µg/mL) and tetracycline 
(256 µg/mL).

In addition to resistance against tylosin, ampicillin, chlo-
ramphenicol, and oxytetracycline, the strains also proved to 
be multidrug resistant against eleven of the compounds eval-
uated (Fig. 2). This suggests that the bacterial isolates can 
resist to β-lactams, aminoglycosides, tetracyclines, sulfona-
mides, and quinolones. In bacteria, the genes responsible for 
resistance against macrolide antibiotics have been reported 
in small plasmids (< 15 kb in size) [45]. In E. coli, the genes 
responsible for resistance to ampicillin, chloramphenicol, 
and tetracycline have been shown to be on large conjuga-
tive plasmids, pIS46, pIS66, and pIS102 [46]. In highly 
pathogenic bacteria such as Salmonella and Pseudomonas 
it has been described that resistance genes to a wide range of 
antibiotics are in megaplasmids (280 Kb and 423 Kb) [47]. 
This research suggests that the plasmids isolated from each 
strain could contain the identified ARGs, which could play 
an important role in the resistance of the isolates against the 
antibiotics analyzed.

Unfortunately, there are few studies that evaluate the tran-
scriptional behavior of ARGs against antibiotics. Most of 
the studies carried out consist of identifying the presence 
of these ARGs or evaluating them globally and not punctu-
ally [48]. This makes our interpretation of results difficult, 
however we can highlight that the results obtained from the 
relative expression of the act, tetA, cat1, and ermB gene, 
showed that the expression behavior depends on the type of 
antibiotic to which the strain is exposed, the mechanism of 
action of each antibiotic and the genetic background of each 
species analyzed to deal with this stress condition against 
antibiotic.

The resistance of bacteria against chloramphenicol and 
oxytetracycline is related to the action of efflux pumps [49, 
50]. At least three gene and their variants (cat-1, -2, -3, floR, 
and cmlA) responsible for resistance against chlorampheni-
col and for resistance to oxytetracycline have been identi-
fied. More than 40 genes encoding tetracycline resistance 
(tet-genes) have been characterized and they are divided 
into 11 classes, with a majority of classes (60%) encoding 
membrane-associated efflux proteins [51]. In Burkholderia 

ubonensis tetA and tetR were shown to be significantly 
induced 16–22 times when this bacterium was exposed 
to tetracycline and doxycycline [51]. Similar patterns of 
expression of the tetA and tetR genes were reported in E. 
coli, when cultured against [52]. Our data indicate similar 
patterns of tetA expression at 9 h vulture, showing a 10–20-
fold increase in expression depending on the strain stud-
ied and compared to the control (Fig. 4). It is important 
to point out that the genes related to bacterial resistance 
through efflux proteins (cat and tet) showed a higher level of 
expression in comparison to genes related to other resistance 
mechanisms (act and erm) (Figs. 4, 5).

For this part, the β-lactam antibiotics; their mode of 
action interferes with the synthesis of the cell wall during 
cell replication. Bacteria have shown the ability to tolerate 
ampicillin ranges from 56 to 256 µg/mL (Table S6), and to 
date it has been shown that they can accumulate SNPs, and 
present plasmids and transposons that facilitate the evolution 
of bacteria for the formation of new genes and/or gene vari-
ants [18]. In E. coli at least 10 β-lactamase genes have been 
reported, suggesting that a strong genetic background allows 
it to cope successfully with β-lactam antibiotics.

Tylosin belongs to Macrolide antibiotics binding to the 
ribosome and then activate the expression of the antibiotic 
resistance genes ermC or ermB. A study carried out on 
Mycobacterium abscessus showed that minimal concentra-
tions of macrolides allowed better expression of the erm 
gene [53]. Another study by Yao et al. (2019) [54] indicated 
that the expression of ermA, ermB, and ermC was evaluated 
in strains with different phenotypes (iMLSB and cMLSB) a 
differential expression. This suggests that between different 
isolates, it is possible that the behavior in the regulation of 
genes related to resistance to antibiotics is differential, for 
which the importance of carrying out these specific studies 
is highlighted, which allows us to know how each species or 
bacterial isolate behaves.

In literature, the determination of antibiotic susceptibility 
or resistance in isolated or cultured bacteria against tylosin 
has not been extensively explored. This research showed that 
our isolates present  MIC90 of 200 µg/mL, and the relative 
expression of the erm gene indicated that the activity of its 
encoded protein is possibly involved in resistance. Future 
studies that allow us to know what the expression of the 
ermA, ermB, ermC genes is like against this tylosin, would 
allow us to innovate a biotechnological strategy that allows 
us to deal with bacterial infections using this antibiotic, 
minimizing the negative consequences for health.

Finally, we can emphasize that even though we evalu-
ated the expression of genes related to resistance to antibi-
otics most commonly used in veterinary medicine, we also 
demonstrated that the isolates could resist new generation 
antibiotics (third and fourth generation) that are widely used 
to combat bacterial infections in the medical area (Fig. 2).
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Future studies of genetic characterization of plasmids 
in bacterial isolated are needed to know the incompatibil-
ity types, transconjugant frequencies, antibiotic resistance 
genes they contain, and if plasmid-mediated horizontal 
gene transfer between bacteria is a significant source of 
antibiotic resistance in the bacteria present in wastewater 
treatment plant. The information generated will allow us to 
build an innovative strategy (conjugative vector) that can 
facilitate the selection of resistance cassettes in bacteria 
that inhabit bodies of water.

Conclusion

In this Project, the incidence of antibiotic residues in 
wastewater and the presence of bacteria resistant to a 
variety of antibiotics (including the antibiotics detected 
in WWTP) were demonstrated. ARGs and plasmids that 
allow them to resist a wide variety of antibiotics were 
identified in the isolates. The human population is at risk 
of contact from this wastewater and the bacteria present in 
it. Many of the genera identified by metagenomic analyzes 
have been reported to cause disease, so this is already a 
public health risk. Investigations such as the one supported 
in this article are important to know the impact that the 
incidence of antibiotic-resistant bacteria in human contact 
waters can have and how this can be a public health risk.
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