Skip to main content
Log in

Mechanisms of Epichloë bromicola to Promote Plant Growth and Its Potential Application for Coix lacryma-jobi L. Cultivation

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Endophytic fungi play important roles in regulating plant growth and development and usually used as a promising strategy to enhance the biosynthesis of host valuable secondary metabolite, but the underlying growth-promoting mechanisms are only partly understood. In this study, the wild-type Arabidopsis thaliana seedlings co-cultured with fungal endophyte Epichloë bromicola showed auxin (IAA)-stimulated phenotypes, and the growth-promoting effects caused by E. bromicola were further verified by the experiments of spatially separated co-culture and fungal extract treatment. IAA was detected and identified in the extract of E. bromicola culture by LC-HRMS/MS, whereas 2,3-butanediol was confirmed to be the predominant volatile active compound in the diethyl ether and ethyl acetate extracts by GC–MS. Further study observed that IAA-related genes including synthesis key enzyme genes (CYP79B2, CYP79B3, NIT1, TAA1 and YUCCA1) and controlling polar transport genes (AUX1, BIG, EIR1, AXR3 and ARF1), were highly expressed at different periods after E. bromicola inoculation. More importantly, the introduction of fungal endophyte E. bromicola could effectively promote the growth and accumulation of coixol in Coix under soil conditions. Our study showed that endophytic fungus E. bromicola might be considered as a potential inoculant for improving medicinal plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The raw data in this article will be accessible by the authors without undue reservation.

Code Availability

Not applicable.

References

  1. Omomowo OI, Babalola OO (2019) Bacterial and fungal endophytes: tiny giants with immense beneficial potential for plant growth and sustainable agricultural productivity. Microorganisms 7:481. https://doi.org/10.3390/microorganisms7110481

    Article  PubMed  PubMed Central  Google Scholar 

  2. Poveda J, Eugui D, Abril-Urías P, Velasco P (2021) Endophytic fungi as direct plant growth promoters for sustainable agricultural production. Symbiosis 85:1–19. https://doi.org/10.1007/s13199-021-00789-x

    Article  CAS  Google Scholar 

  3. Jia M, Chen L, Xin HL, Zheng CJ, Rahman K et al (2016) A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol 7:906. https://doi.org/10.3389/fmicb.2016.00906

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhai X, Luo D, Li X, Han T, Jia M et al (2018) Endophyte Chaetomium globosum D38 promotes bioactive constituents accumulation and root production in Salvia miltiorrhiza. Front Microbiol 8:2694. https://doi.org/10.3389/fmicb.2017.02694

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gupta S, Chaturvedi P, Kulkarni MG, Van Staden J (2020) A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol Adv 39:107462. https://doi.org/10.1016/j.biotechadv.2019.107462

    Article  CAS  PubMed  Google Scholar 

  6. Lu H, Wei T, Lou H, Shu X, Chen Q (2021) A critical review on communication mechanism within plant-endophytic fungi interactions to cope with biotic and abiotic stresses. J Fungi 7:719. https://doi.org/10.3390/jof7090719

    Article  CAS  Google Scholar 

  7. Khalil AMA, Hassan SED, Alsharif SM, Eid AM, Ewais EED et al (2021) Isolation and characterization of fungal endophytes isolated from medicinal plant Ephedra pachyclada as plant growth-promoting. Biomolecules 11:140. https://doi.org/10.3390/biom11020140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang W, Sun K, Shi RH, Yuan J, Wang XJ et al (2018) Auxin signalling of Arachis hypogaea activated by colonization of mutualistic fungus Phomopsis liquidambari enhances nodulation and N2-fixation. Plant Cell Environ 41:2093–2108. https://doi.org/10.1111/pce.13170

    Article  CAS  PubMed  Google Scholar 

  9. Zhang W, Li XG, Sun K, Tang MJ, Xu FJ et al (2020) Mycelial network-mediated rhizobial dispersal enhances legume nodulation. ISME J 14:1015–1029. https://doi.org/10.1038/s41396-020-0587-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu S, Xie X, Yang Y, Zheng C, Han T (2022) Effects of endophytic fungus SH09 on plant growth and accumulation of active components in Salvia miltiorrhiza. J Pharm Pract 40:213–217. https://doi.org/10.12206/j.issn.1006-0111.202108055

    Article  Google Scholar 

  11. Zhou J, Li X, Huang PW, Dai CC (2018) Endophytism or saprophytism: decoding the lifestyle transition of the generalist fungus Phomopsis liquidambari. Microbiol Res 206:99–112. https://doi.org/10.1016/j.micres.2017.10.005

    Article  CAS  PubMed  Google Scholar 

  12. Zhou J, Huang PW, Li X, Vaistij FE, Dai CC (2022) Generalist endophyte Phomopsis liquidambaris colonization of Oryza sativa L. promotes plant growth under nitrogen starvation. Plant Mol Biol. https://doi.org/10.1007/s11103-022-01268-7

    Article  PubMed  Google Scholar 

  13. Song H, Nan Z, Song Q, Xia C, Li X et al (2016) Advances in research on Epichloë endophytes in Chinese native grasses. Front Microbiol 7:1399. https://doi.org/10.3389/fmicb.2016.01399

    Article  PubMed  PubMed Central  Google Scholar 

  14. Song QY, Li F, Nan ZB, Coulter JA, Wei WJ (2020) Do Epichloë endophytes and their grass symbiosis only produce toxic alkaloids to insects and livestock? J Agr Food Chem 68:1169–1185. https://doi.org/10.1021/acs.jafc.9b06614

    Article  CAS  Google Scholar 

  15. Chen T, Li C, White JF, Nan Z (2019) Effect of the fungal endophyte Epichloë bromicola on polyamines in wild barley (Hordeum brevisubulatum) under salt stress. Plant Soil 436:29–48. https://doi.org/10.1007/s11104-018-03913-x

    Article  CAS  Google Scholar 

  16. Wang Z, Li C, White J (2019) Effects of Epichloë endophyte infection on growth, physiological properties and seed germination of wild barley under saline conditions. J Agron Crop Sci 206:43–51. https://doi.org/10.1111/jac.12366

    Article  CAS  Google Scholar 

  17. Zipfel C, Oldroyd GE (2017) Plant signalling in symbiosis and immunity. Nature 543:328–336. https://doi.org/10.1038/nature22009

    Article  CAS  PubMed  Google Scholar 

  18. Kong HG, Shin TS, Kim TH, Ryu CM (2018) Stereoisomers of the bacterial volatile compound 2,3-butanediol differently elicit systemic defense responses of pepper against multiple viruses in the field. Front Plant Sci 9:90. https://doi.org/10.3389/fpls.2018.00090

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rajani P, Rajasekaran C, Vasanthakumari MM, Olsson SB, Ravikanth G et al (2021) Inhibition of plant pathogenic fungi by endophytic Trichoderma spp. through mycoparasitism and volatile organic compounds. Microbiol Res 242:126595. https://doi.org/10.1016/j.micres.2020.126595

    Article  CAS  PubMed  Google Scholar 

  20. Waqas M, Khan AL, Hamayun M, Shahzad R, Kang SM et al (2015) Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J Plant Interact 10:280–287. https://doi.org/10.1080/17429145.2015.1079743

    Article  CAS  Google Scholar 

  21. Aslam MM, Karanja J, Bello SK (2019) Piriformospora indica colonization reprograms plants to improved P-uptake, enhanced crop performance, and biotic/abiotic stress tolerance. Physiol Mol Plant Pathol 106:232–237. https://doi.org/10.1016/j.pmpp.2019.02.010

    Article  CAS  Google Scholar 

  22. Galeano RMS, Franco DG, Chaves PO, Giannesi GC, Masui DC et al (2021) Plant growth promoting potential of endophytic Aspergillus niger 9-p isolated from native forage grass in Pantanal of Nhecolândia region, Brazil. Rhizosphere 18:100332. https://doi.org/10.1016/j.rhisph.2021.100332

    Article  Google Scholar 

  23. Bei S, Xu M, Lyu X, Chen C, Li A et al (2021) Arbuscular mycorrhizal fungi enhanced coix responses to phosphorous forms but not for faba bean in intercropping systems, under controlled environment. Agron J 113:2578–2590. https://doi.org/10.1002/agj2.20643

    Article  CAS  Google Scholar 

  24. Zhang YB, He XH, Liu FZ, Meng QY, Liu R et al (2019) Screening and analysis of germplasm resources of wild Coix lacryma-jobi L. with high content of coixin. Med Plant 10:66–68. https://doi.org/10.19600/j.cnki.issn2152-3924.2019.02.017

    Article  CAS  Google Scholar 

  25. Feng L, Zhao Y, Zhang Z, Zhang S, Zhang H et al (2020) The edible and medicinal value of Coix lacryma-jobi and key cultivation techniques for high and stable yield. Nat Resour 11:569–575. https://doi.org/10.4236/nr.2020.1112034

    Article  Google Scholar 

  26. Patel B, Patel G, Shah S, Parmar S (2017) A review: Coix lacryma jobi L. Res J Pharmacogn Phytochem 9:248–252. https://doi.org/10.5958/0975-4385.2017.00046.2

    Article  Google Scholar 

  27. Wang L, Sui N, Lv H, Tang Q, Shi M et al (2022) Effects of potassium foliage supplementation on Coix lacryma-jobi L. yield formation and source-sink relationship compared with those of soil supplementation. Ind Crop Prod 180:114754. https://doi.org/10.1016/j.indcrop.2022.114754

    Article  CAS  Google Scholar 

  28. Ren WY, Su J, Liu YQ, Hou WQ, Zheng YJ et al (2020) Analysis on diagnosis and treatment scheme of traditional Chinese medicine in treatment of COVID-19 in Chinese provinces and regions. Chin Trad Herb Drugs 24:1139–1146. https://doi.org/10.7501/j.issn.0253-2670.2020.05.007

    Article  Google Scholar 

  29. Diao X (2017) Production and genetic improvement of minor cereals in China. Crop J 5:103–114. https://doi.org/10.1016/j.cj.2016.06.004

    Article  Google Scholar 

  30. Miao G, Qin Y, Guo J, Zhang Q, Bao Y (2021) Transcriptome characterization and expression profile of Coix lacryma-jobi L. in response to drought. PLoS ONE 16:e0256875. https://doi.org/10.1371/journal.pone.0256875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li GR, Cao BH, Liu W, Ren RH, Feng J et al (2020) Isolation and identification of endophytic fungi in kernels of Coix lachrymal-jobi L. cultivars. Curr Microbiol 77:1448–1456. https://doi.org/10.1007/s00284-020-01950-3

    Article  CAS  PubMed  Google Scholar 

  32. Jia M, Ming QL, Zhang QY, Chen Y, Cheng N et al (2014) Gibberella moniliformis AH13 with antitumor activity, an endophytic fungus strain producing triolein isolated from adlay (Coix lacryma-jobi: Poaceae). Curr Microbiol 69:381–387. https://doi.org/10.1007/s00284-014-0590-z

    Article  CAS  PubMed  Google Scholar 

  33. Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S et al (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852. https://doi.org/10.1105/tpc.13.4.843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Han L, Zhou X, Zhao Y, Zhu S, Wu L et al (2020) Colonization of endophyte Acremonium sp. D212 in Panax notoginseng and rice mediated by auxin and jasmonic acid. J Integr Plant Biol 62:1433–1451. https://doi.org/10.1111/jipb.12905

    Article  CAS  PubMed  Google Scholar 

  35. Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX et al (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932. https://doi.org/10.1073/pnas.0730845100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Al-Rashdi FKH, Al-Sadi AM, Al-Riyamy BZ, Maharachchikumbura SS, Al-Sabahi JN et al (2020) Endophytic fungi from the medicinal plant Aloe dhufarensis lavranos exhibit antagonistic potential against phytopathogenic fungi. S Afr J Bot 147:1078–1085. https://doi.org/10.1016/j.sajb.2020.05.022

    Article  CAS  Google Scholar 

  37. Sun H, Zuo X, Zhang Q, Gao J, Kai G (2022) Elicitation of (E)-2-hexenal and 2,3-butanediol on the bioactive compounds in adventitious roots of Astragalus membranaceus var. mongholicus. J Agric Food Chem 70:470–479. https://doi.org/10.1021/acs.jafc.1c05813

    Article  CAS  PubMed  Google Scholar 

  38. Li TY, Ye C, Zhang YJ, Zhang JX, Yang M et al (2022) 2,3-butanediol from the leachates of pine needles induces the resistance of Panax notoginseng to the leaf pathogen Alternaria panax. Plant Divers. https://doi.org/10.1016/j.pld.2022.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  39. Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592. https://doi.org/10.1104/pp.108.130369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Felten J, Kohler A, Morin E, Bhalerao RP, Palme K et al (2009) The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiol 151:1991–2005. https://doi.org/10.1104/pp.109.147231

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sun X, Wang N, Li P, Jiang Z, Liu X et al (2020) Endophytic fungus Falciphora oryzae promotes lateral root growth by producing indole derivatives after sensing plant signals. Plant Cell Environ 43:358–373. https://doi.org/10.1111/pce.13667

    Article  CAS  PubMed  Google Scholar 

  42. Ye B, Wu Y, Zhai X, Zhang R, Wu J et al (2020) Beneficial effects of endophytic fungi from the Anoectochilus and Ludisia species on the growth and secondary metabolism of Anoectochilus roxburghii. ACS Omega 5:3487–3497. https://doi.org/10.1021/acsomega.9b03789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are deeply grateful to the anonymous reviewers and editorial staff for their valuable time and attention.

Funding

This work was financially supported by the National Natural Science Foundation of China (Nos. 82174091 and 81872953), the Basic Medical Research Project of Naval Medical University (No. 2022MS004), and the Undergraduate Innovation Incubation Base Project of Naval Medical University (No. FR2021112).

Author information

Authors and Affiliations

Authors

Contributions

LPQ, TH and CJZ conceived and designed the research; XGX and WLL performed the research, and wrote and revised manuscript; KMF and YY performed part of the experiments; MJ, YSW and YZS analyzed the data; all authors have read and approved the final manuscript. XGX and WLL contributed equally to this work and share first authorship.

Corresponding authors

Correspondence to Cheng-Jian Zheng, Ting Han or Lu-Ping Qin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 474 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, XG., Lu, WL., Feng, KM. et al. Mechanisms of Epichloë bromicola to Promote Plant Growth and Its Potential Application for Coix lacryma-jobi L. Cultivation. Curr Microbiol 80, 306 (2023). https://doi.org/10.1007/s00284-023-03411-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03411-z

Navigation