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Abstract
Microbial biotechnology employes techniques that rely based on the natural interactions that occur in ecosystems. Bacteria, 
including rhizobacteria, play an important role in plant growth, providing agricultural crops with an alternative that can 
mitigate the negative effects of abiotic stress, such as those caused by saline environments. In this study, bacterial isolates 
were obtained from soil and roots of Prosopis limensis Bentham from the department of Lambayeque, Peru. This region has 
high salinity levels, therefore, the collected samples were used to isolate plant growth-promoting rhizobacteria (PGPR), which 
were identified through morphological, and physical-biochemical characteristics. These salt tolerant bacteria were screened 
phosphate solubilization, indole acetic acid, deaminase activity and molecular characterization by 16S rDNA sequenc-
ing. Eighteen samples from saline soils of the Prosopis limensis plants in the northern coastal desert of San Jose district, 
Lambayeque, Peru. The bacterial isolates were screened for salt tolerance ranging from 2 to 10%, a total of 78 isolates were 
found. Isolates 03, 13 and 31 showed maximum salt tolerance at 10%, in vitro ACC production, phosphate solubilization 
and IAA production. The three isolates were identified by sequencing the amplified 16S rRNA gene and were found to be 
Pseudomonas sp. 03 (MW604823), Pseudomonas sp. 13 (MW604824) and Bordetella sp. 31 (MW604826). These micro-
organisms promoted the germination of radish plants and increased the germination rates for treatments T2, T3 and T4  by 
129, 124 and 118% respectively. The beneficial effects of salt tolerant PGPR isolates isolated from saline environments can 
be new species, used to overcome the detrimental effects of salt stress on plants. The biochemical response and inoculation 
of the three isolates prove the potential of using these strains as a source of products that can be employed for the develop-
ment of new compounds proving their potential as biofertilizers for saline environments.

Introduction

The salinity in desert soils is a problem reported since pre-
Columbian times, representing a limiting factor for agricul-
tural activities in the region of the northern coast of Peru 
[1]. Approximately 23% of cultivated land in the world 
is affected by salinity, and 37% is considered sodic soils, 
considered as anunproductive agricultural land [2], which 
affects the global productive area [3].

Research points out that the productive bioclimatic zones 
will change [4], as the abiotic factors will cause a process 
of desertification and increased salinity rates due to varia-
tions in precipitation, dry periods, temperatures, evaporation 
and light intensity [2]. This is the result of climate change, 
which is a reality, proved by evidence of the rise of global 
temperature, and by altered water and rainfall regimes that 
have been observed and evaluated in recent decades around 
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the world. The climate change threatens our ability to ensure 
global food security, according to the Food and Agriculture 
Organization of the United Nations (2023).

This fact, correlated with the physicochemical fluxes of 
the soil, triggers stress on plants, as high concentrations of 
salt in the soil decrese the total water potential, caused by 
ionic and osmotic stress, in which plants induce photosyn-
thesis suppression, delaying the development of the plant, 
as well as the proliferation of new tissues [5, 6].

Root systems have been reported as key sites of salinity 
tolerance due to their potential to enhance water and nutrient 
uptake, as well as limit salt absorption [7].

Plant growth-promoting rhizobacteria (PGPR) can 
potentially be utilized as a promising alternative and envi-
ronmentally friendly approach to promote growth and toler-
ance to salinity stress in plants [8]. The interaction between 
plants and salt-tolerant PGPR modulates the expression 
of genes to alleviate the adverse effects of soil salinity on 
nonsalt-tolerant plants, inducing physiological changes as 
defence mechanisms [9]. One of these mechanisms involves 
increased activity of 1-aminocyclopropane-1-carboxylic acid 
(ACC) deaminase, an enzyme related to the reduction of 
ethylene concentration and the availability of ammonium in 
the rhizosphere [10]. Another mechanism is indole-3-acetic 
acid (IAA) production, which acts upon growth and many 
other plant physiological responses [11]. Moreover, salin-
ity may lead to nutrient imbalance due to the competition 
between Na+ and nutrients such as K+ , Ca2+ and Mg2+ or 
Cl− and NO3- [12]. Usually, salinity-induced phosphorus 
(P) deficiency in crops is compensated by the addition of 
P fertilizers; however, 75–90% of P is naturally fixed in the 
soil [13].

The application of P-solubilizing rhizobacteria contrib-
ute to plant growth by increasing the availability of soluble 
phosphate. There are also other mechanisms that benefits 
from this strategy: when employing microorganisms to 
induce plant tolerance to salinity, there is also an alteration 
of hormones such as jasmonic acid (JA), gibberellic acid 
(GA), abscisic acid (ABA) and cytokinins (CKs), which also 
influence plants tolerance to saline environments [14, 15].

Most of these microorganisms are native and help the 
development of their host plants under stress conditions. The 
genus Prosopis is widely distributed on the Peruvian coast. 
Prosopis pallida (carob), a leguminous tree adapted to arid 
areas, is an autochthonous species of the dry forests of the 
northern coasts of Peru and is widely distributed in saline 
areas. Due to its relevance in the rural economy, most of the 
previous studies on carob have focused on food applications 
[16].

Several studies reported that PGPR isolated from Pros-
opis laevigata, such as Alcaligenes, Bacillus, Curtobac-
terium and Microbacterium, significantly improved seed 
germination and root growth [17]. IAA biosynthesis of 

Pseudomonas strains was further stimulated under salinity 
conditions, considerably alleviating salt-induced dormancy 
of wheat seeds [18]. Nitrogen-fixing bacteria are also found 
in root nodules on Prosopis alba [19]. Arthrobacter kore-
ensis, identified through 16S rDNA analysis, was found in 
Prosopis strombulifera and is strongly promissory in the 
synthesis of abscisic acid (ABA), auxins (IAA), gibberellins 
(GA1, GA3), and jasmonic acid (JA) under adverse environ-
mental conditions such as salt stress [20]. The plant model 
Radish (Raphanus sativus) is an essential root vegetable of 
the Brassicaceae family grown worldwide, and its consump-
tion is due to its nutritional value and because it is easy and 
fast-growing, it has been applied in microbial biotechnology 
as a natural, sustainable and economic productive strategy 
and Brassica is widely utilized as an oil and vegetable crop 
and is harshly affected by abiotic stresses. Therefore, the use 
of PGPRs along with proper mineral nutrients management 
can be a strategy to manage the abiotic stresses by improv-
ing the biochemical, physiological and growth attributes 
[21]. And in the case of rhizobacteria, its use in the form 
of bioproducts has already been shown to be effective [22]. 
Studies have employed this plant as a model to examine the 
influence of various priming treatments in order to evalu-
ate the physiological performance (germination, growth, 
lipid peroxidation, primary and secondary metabolism) and 
antioxidant activity of radish seedlings, due to its ability 
to easily accumulate large amounts of nitrate from the soil 
[23]. Thus, this study aimed to identify PGPR from Prosopis 
limensis by molecular methods and evaluate their effect on 
the growth of R. sativus under salt stress.

Materials and Methods

Collection of Soil Samples and Bacterial Isolation

The bacterial strains were retrieved from rhizospheric 
soil samples of Prosopis limensis “carob” trees, located 
in a forest of San Jose, Lambayeque, Peru (06°45′35.65″ 
S, 79°57′41.35″ W). P. limensis trees of similar pheno-
types (height of 5.25–6.10 m) were selected in an ≈ 700 
m2 forest,.From each tree, three samples of rhizospheric 
soil were collected. For sampling, a circle was delimited 
at 0.45 m from the base of the stem, in which three central 
points were marked. Then, the soil was removed to a depth 
of approximately 0.60 m, which was enough to reach the 
lateral roots, then, 100 g of sample was obtained. Samples 
were transported under refrigeration and sequentially stored 
at 10 ± 1 °C in the Biotechnology of Center for Research 
and Innovation in Multidisciplinary Active Sciences (CII-
CAM Research Center), Peru. Bacteria with phenotypic 
differences were isolated by serial dilution and cultured in 
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nutrient agar plates with 5% NaCl at 30 °C for up to two 
days. Then, the isolates were preserved in the collection of 
extreme microorganisms at the CIICAM Research Center.

Molecular Identification of the Selected Bacterial 
Isolates by 16S rRNA Analysis

An isolated colony was used for genomic DNA extraction, 
following the method described by Pospiech et al.[24], with 
some modifications. The amplification of the 16S rRNA 
gene was performed through polymerase chain reaction 
(PCR). The products were analyzed and visualized by aga-
rose gel electrophoresis and purified with mini columns 
(GFX PCR DNA & gel band purification kit, GE Healthcare) 
in an ABI3500XL Series automatic sequencer (Applied Bio-
systems) according to the manufacturer’s specifications. The 
detailed protocol conditions used in this section can be found 
in Flores-Clavo [25].

Partial sequences of the 16S rRNA gene obtained from 
each isolate were assembled into a contig and then compared 
with the sequences of organisms represented in the EZBio-
Cloud 16S Database (https://​www.​ezbio​cloud.​net) using the 
“Identify” service [26]. Species assignments were based on 
closest hits [27]. 16S rRNA gene sequences retrieved from 
the database and related to the unknown organism gene 
were selected for alignment in the Clustal X program [28]. 
Phylogenetic analyses were performed using the Mega ver-
sion 11.0 program [29], and the phylogenetic tree was con-
structed from the evolutionary distances calculated by the 
neighbour-joining method, with bootstrap values from 1000 
resamples.

PGP Trait Characterization and Salinity Tolerance

IAA Production

9 × 108 cfu mL−1 of bacterial cells were obtained from cul-
tures in 5 mL Dworking & Foster (DF) minimum medium 
with 0.85 M NaCl at 30 °C for 24 h. Bacterial cultures (5%; 
0.25 mL) of each isolate were prepared in trypticase soy 
broth (TSB) supplemented with 0.01 gL−1 L-tryptophan 
5 mM. After incubation in the dark at 30 °C and shaking at 
150 rpm for 72 h, each culture was centrifuged at 3000 rpm 
for 5 min and evaluated by colorimetric assay [30]. Then, 
0.4 mL of each supernatant was mixed with 1.6 mL of 
Salkowski reagent for 30 min in the dark. The reaction was 
considered positive for indole-3-acetic acid (IAA) produc-
tion when the solution turned pink. IAA concentrations were 
determined through spectrophotometry at 530 nm and using 
a standard curve obtained from serial dilutions of 100 ppm 
of IAA [31].

Phosphate Solubilization

The phosphate solubilization capacity was determined 
through the molybdenum blue colorimetric method [32]. 
Each isolate (5%; 0.25 mL) were inoculated in 5 mL of 
National Botanical Research Institute’s Phosphate Broth 
(NBRIP) with 0.85 M NaCl and incubated at 30 °C under 
150  rpm for five days. The cultures was centrifuged at 
3000 rpm for 5 min; then, and an aliquot of the superna-
tant was evaluated by employing the Barton’s reagent. The 
reaction was considered positive for phosphate solubiliza-
tion capacity when a blue phosphomolybdate complex was 
formed. P concentrations were measured through spectro-
photometry at 690 nm using a standard curve obtained from 
serial dilutions of 10 ppm of P.

Additionally, we determined the phosphate solubilization 
index (PSI) in NBRIP solid medium. Isolates were inocu-
lated in trypticase soy agar (TSA) for 24 h. Then, 10 µL 
of each broth was inoculated into NBRIP medium supple-
mented with 1 g L−1 tricalcium phosphate and 0.85 M NaCl. 
The plates were incubated at 30 °C for 96 h, and then, PSI 
was calculated as the ratio between the halo diameter and 
the colony diameter (cm) [33].

ACC Deaminase Activity

ACC deaminase activity was quantified following the 
method used [34]. The quantity of α-ketobutyrate produced 
by hydrolysis of ACC was used to estimate ACC deami-
nase. A standard curve of α-ketobutyrate ranging between 
0.1 and 1.0 nmol at 540 nm and compared with the absorb-
ance of the stock solution of 100 mmol L−1 α-ketobutyrate 
(Sigma–Aldrich Co.) was prepared in 0.1 M Tris–HCl (pH 
8.5) and stored at 4 °C.

Salinity Tolerance

To evaluate tolerance to salt stress, the strains were tested 
by growing on modified mineral-based nutrient agar plates 
(peptone 1 g, K2PO4 0.2 g, MgSO4, 7H2O 0.2 g, Ca SO4 
0.1 g, agar 15 g, 1 L distilled water) supplemented with 
increasing concentrations of NaCl (0–30%, w/v, at intervals 
of 1%) and incubated at 28 °C. NaCl tolerance was qualita-
tively verified by turbidity of growth of the isolates [35]. The 
trials were conducted on soils without and with salinity, each 
with four treatments, corresponding to a control without bac-
terial inoculation (T1) and two cultures of three strains (T2 
to T4). Three replicates were carried out in each treatment, 
with a total of 12 experimental units per trial.

https://www.ezbiocloud.net
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Effects of PGPR Bacterial Inoculation on R. sativus

For the germination of Raphanus sativus L. var. Champion, 
the seeds were inoculated with the three new bacterial spe-
cies obtained in the present study -two strains belonging to 
the genus Pseudomonas spp. and one Bordetella spp. which 
were applied in the germination trials. First, strains with 
ACC deaminase activity were selected in order to study their 
effects on seed germination under salt stress. Seeds were 
surface sterilized with 75% ethanol for 30 s, then 0.1% HgCl 
for 7 min, and finally washed with distilled water. Then, 40 
seeds were placed on Petri plates containing Dworking & 
Foster (DF) with 0.85 M NaCl for 1 min; all plates were set 
with filtered paper containing a solution of distilled water 
(control) and a solution of 80 mM NaCl (CE = 6.94 dSm−1). 
The seeds were previously sterilized with 3% sodium 
hypochlorite for 1 min and washed five times with sterilized 
distilled water [36].

Then, the PGPR strain suspensions in sterile distilled 
water (1.0–2.0 × 108 cfu mL−1) were used for seed inocula-
tion; control seeds were treated with sterile distilled water 
only. Seeds were soaked at room temperature for 10 h in 
bacterial suspensions (1 mL) and placed into MS medium 
(with 0, 100, 200, 250, 300, and 500 mM NaCl). Each plate 
contained 50 seeds, and each treatment was performed in 
triplicate [35]. Another control group, in which seeds were 
not inoculated with the PGPR isolates, was considered for 
germination assays. Finally, the plates were covered in alu-
minium foil and kept at 30 °C, and the germination of the 
plants was assessed 12 days after inoculation.

Two independent trials were used to evaluate the effect 
of inoculants on radish emergence and development. The 

experiment contained four treatments: control without 
microorganisms (T1) and three treatments with microbial 
inoculants (Pseudomonas spp.—T2 and T3 and Bordetella 
spp.—T4) with and without salt stress. All treatments were 
replicated in triplicate.

The soil used for the greenhouse trials consisted of: 36 kg 
of non-saline soil (EC = 2.42 dSm-1) collected from an agri-
cultural field in the Lamadrid sector and 36 kg of saline soil 
(EC = 6.89 dSm-1) collected from an agricultural rice field 
located on the Panamericana Norte road to Morrope. The 
salt concentration (EC) was determined in the Analytical 
Chemistry laboratory of the Faculty of Chemical Engineer-
ing and Food Industries. Soils were mixed with compost 
(4:1) and distributed into 4 kg clay pots at a rate of 3 kg per 
pot. At the base of each pot, 0.5 kg of gravel was placed 
internally to facilitate drainage.

The inocula was obtained from the three cultures of inter-
est that were previously induced to produce ACC deaminase 
[10]. The bacteria were grown in trypticase soy broth with 
0.85 M NaCl (~ 5%) at 30 °C with daily manual shaking at 
6, 12, 18, and 24 h. The bacterial cultures were centrifuged 
(3000 rpm) for 5 min, the supernatant was discarded, and the 
biomass was grown in 5 mL of minimal DF medium with 
0.85 M NaCl (~ 5%) and 3 mM ACC and incubated at 30 °C 
for 24 h. The biomass was concentrated by centrifugation 
and washed with 0.03 M MgSO4 solution, resuspended in 
the same solution and the concentration was standardized to 
1.5 × 108 cel mL−1 by turbidimetry with Mc Farland neph-
elometer [10].

Radish seeds were inoculated by immersion for 3 h in 
7.5 mL of the corresponding bacterial inoculum. In the con-
trol, seeds were immersed in distilled water (7.5 mL). The 
inoculated seeds (eight per pot) were sown in two furrows 
(four in each), at a distance of 1 cm between seeds and a 
depth of 2 cm. The conditioned pots with the experimental 
soil were kept under greenhouse conditions, with the neces-
sary irrigation with previously dechlorinated water (24 h). 
The trial was conducted from November 1 to November 
30, 2019, recording the maximum (20–25 °C, minimum 
(15–18 °C) and average (18–22 °C) temperatures, values 
obtained by the Meteorological Station of the National Uni-
versity Pedro Ruiz Gallo, located on the farm “El Cienago” 
in Lambayeque.

10 days after planting, the emerged seedlings were counted 
and every 5 days. 15 days after planting, the height of the 
plants was measured. 30 days alfter planting, the height, the 
number of leaves, the number of roots, and the weight of 
aerial and root biomass were determined, and the indices of 
effectiveness (IE) were calculated in percentage [37]:

Analysis of ANOVA, Shapiro–Wilk normality test and 
Tukey post hoc tests at a 5% confidence level (p < 0.05) were 
performed on germination rates and biometric evaluations 
of the plant using R software [38].

Results

Isolation, Molecular Identification, and Phylogenetic 
Analysis of Selected Isolates

From a total of 78 obtained pure cultures isolated from P. 
limensis rhizospheric soils (Table S1), we selected three iso-
lates to carry on this study: 03, 13 and 31, which displayed 

IEI (%) =
Treatment with inoculation − Control without inoculation × 100

Control without inoculation
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different colony morphologies (Fig. S1). These isolates were 
selected for molecular identification (Table 1). Through 
16S gene analysis, we identified isolates 03 and 13 as Pseu-
domonas spp. and isolate 31 as Bordetella sp., which were 
deposited in the GenBank database (GenBank nih.gov) from 
the National Center for Biotechnology Information (NCBI) 
and identified with the accession numbers MW604823, 
MW604824 and MW604826, respectively (Tables S2 e S3).

The 16S rRNA sequences of the three PGPR strains were 
analyzed in this study: Pseudomonas sp. 03 [Accession num-
ber (MW604823)], Pseudomonas sp. 13 (MW604824) and 
Bordetella sp. 31 (MW604826) were obtained and compared 
by MEGA11.0 software. The phylogenetic tree generated 
from the three strains was mainly divided into three char-
acteristic branches. The samples were constructed against 
14 top-hit proximal strain valid names only, according to 
EZBioCloud, and are presented in Fig. 1.

The sequence of Pseudomonas sp. 03 (accession 
number: MW604823) showed a size of 1466 bp and was 
blasted with with 100% gene sequence similarity to the 
type strain Pseudomonas putida AP013070T (accession 
number NBRC 14164), related similarity (98,48%) and 
the phylogenetic tree bootstrap value 96%. Pseudomonas 
sp. 13 (accession number: MW604824) revealed a size of 
1494 bp, that was blasted showing a gene sequence simi-
larity of 93.4% to the type strains Pseudomonas monteilii 
NBRC 103158T (accession number BBIS01000080 with 
98,97%), Pseudomonas plecoglossicida NBRC 103162T 
(accession number BBIV01000080) and Pseudomonas 
asiatica RYU5T (accession number MH517510); 98,96% 
with Pseudomonas taiwanensis BCRC 17751T (acces-
sion number EU103629) and 98,76% with Pseudomonas 
entomophila L48T (accession number CT573326); the 
phylogenetic tree bootstrap value was 97%. Bordetella 
sp. 31 (MW604826) sequence showes a size of 1449 bp 
and was blasted with 98.5% gene sequence identity 
similarity and were phylogenetically related to the type 
strain Bordetella muralis T6220-3-2b (accession number 
LC053647); 97,76% similarity and the type strain Borde-
tella tumbae T6713-1-3b (accession number LC053656) 
(Fig. 1). Most strains were separated by clustering under 
each subdivided species, generating indications that they 
may be new species. These phylogenetically character-
ized lineages have a broad PGPR potential.

Tolerance to Salt Stress, ACC Deaminase Activity, 
IAA Production and Phosphate Solubilization

The three possible new species—Pseudomonas sp. 03 
(MW604823), Pseudomonas sp. 13 (MW604824), and Bor-
detella sp. 31 (MW604826), developed on nutrient medium 
supplemented with 5, 7.5, and 10% NaCl, therefore, the iso-
lates were considered tolerant to salt stress. After all, the Ta
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isolates showed differential turbidity compared with the 
control (Figure S2). All isolates showed ACC deaminase 
activity (Figure S3), IAA production and phosphate solubi-
lization ability, as shown in Table 2 (Fig. S4 and S5).

Isolate´s Effect on R. sativus Germination

The percentage of germination after 12 days of inoculation 
(Fig. 2) ranged 36% for the control, 84.17%, 82.50% and 
80.00%, for the strain Pseudomonas sp. 03, Pseudomonas 
sp. 13 and Bordetella sp. 31, respectively (Table 3).

In this study, we were able to prove, by analyzind the 
difference in germination rate, that the three possible 
new species can promote the germination of radish plants 
when compared with the control with increased germina-
tion rates for treatments T2, T3 and T4 of 129, 124 and 
118% for the strain Pseudomonas sp. 03, Pseudomonas sp. 
13 and Bordetella sp. 31, (MW604823, MW604824 and 
MW604826) respectively.

Effects of MW604823, MW604824 and MW604826 
on the Growth of R. sativus Under Salt Stress 
and Non‑Salt Stress

After thirty days of inoculation under salt and non-salt stress 
conditions, all three strains (MW604823, MW604824 and 
MW604826) promoted the growth of R. sativus when com-
paring to the control (Fig. S6).

We observed a distinct functional response on the 
morphological parameters of R. sativus inoculated with 
MW604823, MW604824 and MW604826, when planted 
under saline and non-salt stress (Table 4 and Fig. 3).

Our experiment showed that by inoculating MW604823, 
MW604824 and MW604826 in radish can promote plant 
gowth in saline soils, we can conclude that by observing a 
significant development in the number of leaves, roots and 
the total biomass weight (with a higher shoot and root vol-
ume). These results are presented in Table 4, and Fig. 3 and 
Table S4.

However, by analyzing the number of roots and biomass 
weight results of the inoculated plant in non-saline soils, we 
observed thatonly the strains MW604823 and MW604824, 
showed a greater response compared to the control. While 
strain MW604826 caused a unfavorable effect on plants in 
non-saline soil (Table S5).

The rate growth promotion (PGR) of the plant was con-
sidered individually for each treatment in both soils. There-
fore, a linear regression analysis over time was performed 
to determine the degree of slope of the curves as displayed 
in Figs. 4 and 5.

In saline soils, the inoculation of MW604823, MW604824 
and MW604826 promoted a growth rate of 30.69, 35.80 and 
26.34%, respectively. Whereas in non-saline soils the growth 
rate promotion was lower, with a range of 19.46, 28.43 and 
0.22%, respectively. By analyzing the difference between the 
conditions in which the microbial strains were submitted, 
we concluded that the three isolates benefit from the pres-
ence of salt to increase their functional performance. When 

Pseudomonas plecoglossicida NBRC 103162 T (BBIV01000080)

Pseudomonas monteilii NBRC 103158 T (BBIS01000088)

Pseudomonas asiatica RYU5 T (MH517510)

Pseudomonas taiwanensis BCRC T (EU103629)

Pseudomonas entomophila L48 T (CT573326)

Pseudomonas mosselii CIP 105259 T (AF072688)

Pseudomonas soli F-279,208 T (HF930598)

Pseudomonas sp. 13 (MW604824)

Pseudomonas sp. 03 (MW604823)

Pseudomonas putida AP013070 T (NBRC 14164)

Pseudomonas parafulva NBRC 16636 T (BBIU01000051)

Bordetella muralis T6220-3-2b T (LC053647)

Bordetella tumbae T6713-1-3b T (LC053656)

Bordetella sp. 31 (MW604826)

Bordetella hinzii LMG 13501 T (LRUJ01000076)

Bordetella tumulicola T6517-1-4b T (LC053650)

Bordetella petrii DSM 12804 T (AM902716)

Bacillus cereus ATCC 14579 T (AE016877)
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Fig. 1   Optimal tree. The evolutionary history was inferred using the 
neighbor-joining method. The evolutionary distances were computed 
using the Kimura 2-parameter method and are in units of the num-
ber of base substitutions per site. The proportion of sites where at 
least 1 unambiguous base is present in at least 1 sequence for each 
descendent clade is shown next to each internal node in the tree. This 
analysis involved 18 nucleotide sequences with the outgroup Bacillus 
cereus ATCC 14579 T (AE016877). There were a total of 1491 posi-
tions in the final dataset. The evolutionary analyses was conducted in 
MEGA11
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observing the interaction of the isolates with the plants, it 
was made evident by obtaining a deleterious effect on plant 
growth by the strain identified as Bordetella sp.

Discussion

The salt stress is an environmental problem that reduces the 
productivity of agricultural crops due to the effect caused 
by ionic and osmotic disturbances that plants undergo 
when exposed to these environments. The inoculation of 
soybean salt with Bradyrhizobium japonicum USDA 101 

and Pseudomonas putida TSAU1 synergistically improved 
the plant’s tolerance through altering root system structure 
facilitating nitrogen, phosphorus acquisition, and nodule 
formation [39].

The use of PGPR in saline conditions is an biotechnologic 
alternative to improve the crop yields. For this reason, in this 
study, three of the bacteria that exhibited PGPR characteris-
tics (produce IAA, solubilize phosphates and possess ACC 
deaminase activity) from salt-stressed regions were identi-
fied: The strain MW604823 (Pseudomonas sp.) that, accord-
ing to its phylogenetic origin, shared 87% homology with 
Pseudomonas hunanensis LVT (JX545210); the MW604824 
strain (Pseudomonas sp.), that shared 96% phylogenetic 
origin with Pseudomonas LBME_sT (LBME01000002) 
and the strain MW604826 (Bordetella sp.), that shared 41% 
of its phylogenetic origin with Bordetella tumbae T6713-
1-3bT (LC053656) and Bordetella muralis T6220-3-2bT 
(LC053647) (Table 2). All of the three strains grew at differ-
ent salt concentrations (5%, 7.5%, and 10% NaCl) (Fig. S1).

The three isolates belong to the phylum Proteobacte-
rium which is predominant in the rhizosphere of Prosopis 
limensis [40]. In another study, Pseudomonas plecoglossi-
cida RGK was isolated from the rhizospheric soil of the 

Table 2   Tolerance to salt 
stress, ACC deaminase activity, 
indole acetic acid (IAA) and 
phosphate solubilization of the 
rhizobacterial isolates

 + denotes positivity for salt stress tolerance and ACC deaminase activity

Isolate Tolerance to 
NaCl (%)

ACC deami-
nase activity

IAA production
(ppm)

Phosphate solubili-
zation capacity

Solubilized 
phosphorus
(ppm)

PSI

Pseudomonas sp. 03 (MW604823)  +   +  72.91 28.11 3.6
Pseudomonas sp. 13 (MW604824)  +   +  78.02 27.8 3.4
Bordetella sp. 31 (MW604826)  +   +  68.91 28.99 3.9

Table 3   Germination percentage of the inoculated R. sativus seeds

Different letters mean tested treatments and Tukey’s post hoc tests 
with a confidence level of 5% (p < 0.05)

Isolate Germination (%)

Control 36.67 (± 5.77) b
Pseudomonas sp. 03 (MW604823) 84.17 (± 5.20) a
Pseudomonas sp. 13 MW604824 82.50 (± 4.33) a
Bordetella sp. 31 (MW604826) 80.00 (± 4.33) a

Table 4   Responses of 
morphological parameters of 
R. sativus inoculated with the 
strains MW604823, MW604824 
e MW604826 grown in saline 
and non-saline soils

Different letters mean tested treatments and Tukey’s post hoc tests with a confidence level of 5% (p < 0.05)

Isolate Plant height (cm) Leaf number Aerial biomass (g) Root number Root biomass (g)

Saline soils
Control 15.69 ± 1.13 a 5.42 ± 0.14 b 7.56 ± 0.35 b 4.83 ± 0.52 b 10.47 ± 1.25 c
MW604823 20.90 ± 0.90 a 6.27 ± 0.29 ab 10.18 ± 0.31 ab 6.77 ± 0.13 a 19.70 ± 1.62 b
MW604824 20.99 ± 3.21 a 6.37 ± 0.05 a 12.51 ± 2.03 a 6.78 ± 0.38 a 25.40 ± 0.69 a
MW604826 19.96 ± 1.06 a 5.76 ± 0.59 ab 10.29 ± 1.24 ab 6.10 ± 0.22 a 13.34 ± 1.57 c
Non-saline soils
Control 20,42 ± 2,27 ab 6,42 ± 0,38 a 9,65 ± 2,56 bc 5,53 ± 0,32 b 16,45 ± 2,22
MW604823 24,46 ± 1,22 a 7,09 ± 0,08 a 16,59 ± 0,73 a 7,38 ± 0,44 a 24,00 ± 7,36
MW604824 24,83 ± 2,98 a 6,99 ± 0,60 a 13,06 ± 1,05 ab 7,08 ± 0,14 a 22,04 ± 7,52
MW604826 18,40 ± 1,54 b 6,72 ± 0,30 a 8,34 ± 0,62 c 7,03 ± 0,21 a 10,85 ± 3,69
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turmeric plant and was its capacity to solubilize phosphate, 
zinc and potassium was assessed, as well as its potential to 
produce indole acetic acid, siderophores, nitrogen fixation, 
ammonia, hydrogen cyanide (HCN) and exopolysaccharide 
synthesis [41].

Similar studies have been reported showing that PGPR 
with ACC deaminase activity had effects on early nodula-
tion in Medicago sativa [42]. A research group in Indonesia 
performed an in vitro screening, where one isolate (des-
ignated as R2.1) was able to produce siderophores, IAA 
and ACC deaminase which by 16S rRNA sequencing was 
identified as closely related to Bordetella muralis [43]. The 
production of indoles mediated by bacteria isolated from 
plants and different environments promote plant growth by 
increasing IAA synthesis [44] IAA was synthesized at its 
highest levels by strain Pseudomonas fluorescence PGPR-7 
with 123.1 μg mL−1 [45], which may be directly influence 
the growth of R. sativus inoculated with the bacteria in the 
present study, which explains the raised performance in seed 
germination rate, plant growth and development after the 
30 days of production. The result obtained in the present 
work corroborates with previous reports in respect to the fact 
that. IAA promoted the growth of R. sativus when inoculated 
with plant growth promoting bacteria such as Lactobacillus 
sp. And Pseudomonas putida, that were subjected to dif-
ferent concentrations of NaCl and increased radicle length 
compared with non-inoculated seeds [46].

Our work reinforces the advantage inoculating PGPRs in 
plants of saline soils. Also, our group described the poten-
tial of three possible new species of the Proteobacterium 
phylum to solubilize and make available phosphorus, that is 
normally unavailable to the crop.

Our biochemical tests results prove the that employ-
ing the PGPR microorganisms (MW604823, MW604824, 
MW604826) as to promote the development of plants in 
saline soils is beneficial. This technology can be applied 
in the productive management of the culture of R. sativus 

(radish) as natural, economic and viable technique, and can 
be beneficial even for the production of sustainable agribusi-
ness. In the light of our findings, more studies relied on the 
the inoculation of these strains in other agricultural crops 
should be carried on.

The germination is a natural process that occurs in the 
presence of phytohormones such as cytokinin, IAA and 
gibberillin, which represent the main hormones respon-
sible for the germination process of plants [47]. Pseu-
domonas sp. strain MW604823, Pseudomonas sp. strain 
MW604824 and Bordetella sp. strain MW604826 showed 
efficiency in inducing germination of R. sativus seeds 
under saline stress conditions with with increased greater 
than 100% (Table 3). This was a consequence of the ability 
of the three species to produce IAA, that were verified in 
the biochemical tests (Table 2). Thus, the IAA produced 
by strains played an essential role in the cell elongation 
process and promoted plant growth and development.w

The results obtained corroborates with previous reports 
[20, 47, 48], that concluded that PGPR can produce a pro-
tective agent for the plant against environmental stress 
agents, especially saline, where the environment exerts 
the osmotic and water pressure from the plant. Probably, 
the production of phytohormones and exopolysaccharides 
was responsible for the increased germination rate of R. 
sativus in the present work.

The application of microbial biotechnology by the 
PGPR inoculation proved to be efficient in inducing R. 
sativus plants’ tolerance and growth in saline environ-
ments (Fig. 4), as well as promoting plant growth in non-
saline soils (Fig. 5). Our results shows three bacterial iso-
lates that are able to increase the growth promotion rates, 
number of leaves and roots, and total biomass (leaves and 
roots) of R. sativus plants (Table 4). Among the various 
mechanisms by which PGPRs can improve the tolerance 
of plants to salinity, their high antioxidant activity is very 
significant, as previously described for Pseudomonas 

Fig. 2   Germinated seeds of inoculated R. sativus. From left to right: A. Control. B. Inoculated with Pseudomonas sp. 03 (MW604823); C. 
Inoculated with Pseudomonas sp. 13 (MW604824); D. Inoculated with Bordetella sp. 31 (MW604826)
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Fig. 3   Plant height, number of 
leaves, fresh aboveground bio-
mass (g), and fresh root biomass 
(g) in R. sativus seeds inocu-
lated with the strains Pseu-
domonas sp. 03 (MW604823); 
strain Pseudomonas sp. 13 
(MW604824); strain Borde-
tella sp. 31 (MW604826) and 
Control

Strain a a a aControl Bordetella sp. 31 Pseudomonas sp. 3 Pseudomonas sp. 13
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putida strain NTM22 and Pseudomonas cedrine NTCC12, 
that are able to grow when exposed to concentrations of 2, 
4 and 6% NaCl [49].

The literature confirms that the inoculation of Pseu-
domonas spp. in plants under salinity conditions reveal 
the mechanism of production of AIA and ACC deaminase, 
which act together forming a viable strategy to guarantee 
productivity, as they allow greater development in root vol-
ume [39, 50–52]. When comparing the growth of inocu-
lated plants to the control in saline and non-saline soils, we 
can observe that the effective growth occurred mainly in 
saline soils, this performance may be linked to the need/
dependence that these microorganisms have on the saline 
environment.

The increased salinity dependence was evident for the 
Bordetella sp. (MW604826) which had a lower performance 
than the control when subjected to a non-saline environment 
(Table 4 and Fig. 5).

A recent global pandemic and the resulting increase 
of food demand, as well as the decline of agricultural 
productivity, have led to a deficit in food production, 
and soil salinity has been a major part of the problem, 
promoting a decrease in crop yield and quality. The most 
environmentally sustainable methods are the most profit-
able, and the application of PGPR bacteria is a superior 
alternative for the plant growth and protection, as they 
accelerate the seed germination and improve growth. 
Furthermore, as demonstrated in the present study that 
PGPR bacteria are a source of hormones involved in the 
development of agricultural crops subjected to salt stress 
and can can influence and achieve better biochemical 
performance in plants.

Fig. 4   Linear regression and analysis of the growth curve of R. 
sativus plants throughout the 30  days of production in saline soils. 
A. Control; B. R. sativus inoculated with Pseudomonas sp. 03 

(MW604823); C. R. sativus inoculated with Pseudomonas sp. 
13 (MW604824); D. R. sativus inoculated with Bordetella sp. 31 
(MW604826)
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Conclusion

We conclude that among the 78 isolates from P. limensis 
rhizosphere and root, strains 03, 13 and 31 can be considered 
new species. Molecular characterization classified strains 
03, 13 and 31 as two Pseudomonas sp. and a Bordetella sp. 
respectively. The biochemical performance and the inocu-
lation that we applied of the three isolates in plants of  R. 
sativus, prove the potential of using these strains as a source 
of products for the development of new biofertilizer com-
pounds for saline environments.
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