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Abstract
India was severely affected by several waves of SARS-CoV-2 infection that occurred during April–June 2021 (second wave) 
and December 2021–January 2022 (third wave) and thereafter, resulting in >10 million new infections and a significant 
number of deaths. Global Initiative on Sharing Avian Influenza Data database was used to collect the sequence information 
of ~10,000 SARS-CoV-2 patients from India and our sequence analysis identified three variants B.1.1.7 (alpha, α), B1.617.2 
(delta, Δ), B.1.1.529 (Omicron, Oo) and one Omicron sub-variant BA.2.75 as the primary drivers for SARS-CoV-2 waves 
in India. Structural visualization and analysis of important mutations of alpha, delta, Omicron and its sub-variants of SARS-
CoV-2 Receptor-Binding Domain (RBD) was performed and our analysis clearly shows that mutations occur throughout the 
RBD, including the RBD surface responsible for human angiotensin-converting enzyme 2 (hACE-2) receptor-binding. A 
comparison between alpha, delta and omicron variants/sub-variants reveals many omicron mutations in the hACE-2 binding 
site and several other mutations within 5 Å of this binding region. Further, computational analysis highlights the importance 
of electrostatic interactions in stabilizing RBD-hACE-2-binding, especially in the omicron variant. Our analysis explores 
the likely role of key alpha, delta and omicron mutations on binding with hACE-2. Taken together, our study provides novel 
structural insights into the implications of RBD mutations in alpha, delta and omicron and its sub-variants that were respon-
sible for India’s SARS-CoV-2 surge.

Introduction

So far the SARS-CoV-2 global pandemic has caused >0.5 
billion infections and >5 million deaths worldwide (www.​
world​omete​rs.​info/​coron​avirus). SARS-CoV-2 vaccines have 

proven to be effective but the threat of a rapidly evolving 
new virus variants and sub-variants that acquires multi-
ple sets of new mutations requires continuous monitoring 
[1–4]. India underwent a surge of SARS-CoV-2 infections 
in early 2021 (second wave) and December 2021–January 
2022 (third wave) and its threat still looms in India due to 
emergence of several sub-variants of omicron including the 
highly infectious BA.2.75 [5, 6]. The presence of emerging 
variants/sub-variants was speculated to be the primary driver 
of the infection burden.

A total of seven coronaviruses are known to infect 
humans [7]. While most are found to circulate and cause 
mild common cold-like symptoms, SARS-CoV and MERS-
CoV were the only two coronaviruses of concern before 
SARS-CoV-2 was recognized [8, 9]. In SARS-CoV-2, 
membrane (M) and the Envelope (E) protein are involved in 
virus budding, the spike glycoprotein (S) is responsible for 
successful ingress of the virus [10–12]. The spike protein 
is a multi-domain protein that comprises of two subunits. 
The subunit S1 domain is mainly involved in the binding of 
the virus to the peptidase domain of the host surface recep-
tor angiotensin-converting enzyme 2 (hACE-2), whereas 
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subunit S2 is involved in viral attachment and entry [13–15]. 
On the mature virus, the spike protein exists as a trimer, with 
three receptor-binding domains (RBD) coming together that 
form the primary point of contact with hACE-2 and are the 
most dominant antigenic site [13, 14]. Thus, a large pro-
portion of neutralizing antibody, vaccine, and therapeutic 
strategies target the RBD region [11, 16]. RBD is a hotspot 
of mutation as these mutations provide a fitness advantage to 
the virus either via direct impact on the binding interaction 
with hACE-2 receptor thus increasing infectivity or alter-
ing other aspects of virus biology such as pathogenicity or 
transmissibility [17]. Based on the site of mutation occur-
ring in spike protein, SARS-CoV-2 is classified into several 
genomic variants [nomenclature is based on pango lineages 
(www.​cov-​linea​ges.​org)]. Five variants of SARS-CoV-2 are 
major variants of concerns [(α), (β), (γ), (Δ) and (Oo)] as 
they are either highly transmissible, or more infective, or 
cause more severe disease than the original Wuhan-Hu-1 
virus isolates [18].

Since RBD is a critical determinant of SARS-CoV-2 
virus and host hACE-2 interaction, it is important to under-
stand whether mutations in the RBD alter binding affinity 
to hACE-2. Such analysis will directly impact our under-
standing of the adaptive advantage towards virus infectiv-
ity, transmissibility, and viral immune evasion. Thus, this 
work aimed to analyse the available SARS-CoV-2 sequences 
from the second wave, third wave and afterwards in India 
and decipher the virus variant(s) sub-variants responsible 
for SARS-CoV-2 escalation in India. Our sequence analysis 
shows that SARS-CoV-2 alpha, delta and omicron variants 
were accountable for a vast majority of cases during the 
second and third wave in India [19]. We also found that dif-
ferent sub-variants of omicron including BA.2.75 emerged 
after third wave. We then structurally mapped key mutations 
onto the three-dimensional structures of RBD to compre-
hend their structural positions and assess their impact on 
RBD and hACE-2 interaction. We found several mutations 
throughout the RBD with many clustered together in patches 
of electrostatic-to-hydrophobic and/or hydrophobic to elec-
trostatic. As a high number of RBD mutations are observed 
in the omicron and delta variants in and around the hACE-
2-binding site, these may affect binding. Taken together, our 
analysis showcases several structural insights into the muta-
tions within SARS-CoV-2 RBD of alpha, delta and omicron 
and their sub-variants in India.

Material and Methods

Data Collection

Full-length nucleotide sequences (total ~10,000 isolates) 
of SARS-CoV-2 deposited from India were collected 

from Global Initiative on Sharing All Influenza Database 
(GISAID) database (www.​gisaid.​org) between 31 May to 
June 15, 2021, December 2021 to January 2022 and May 
2022 to August 2022. We set the selection criteria of viral 
genomes which exclusively infect human hosts and excluded 
those that carry low coverage and incomplete sequences [20, 
21].

Sequence Alignment and Analysis

Emboss transeq (www.​ebi.​ac.​uk/​Tools/​st/​emboss_​trans​eq/) 
was used to convert nucleotide sequence to protein [22]. 
Protein domains of SARS-CoV-2 was identified using Pfam 
(www.​pfam.​xfam.​org), InterPro (www.​ebi.​ac.​uk/​inter​pro/), 
and SMART (www.​smart.​embl-​heide​lberg.​de/) protein 
domain annotation server. Mutations present in different 
variants were identified by the aligning sequence of interests 
to the reference spike glycoprotein sequence (Wuhan-Hu-1, 
China uniprot ID: P0DTC2; GISAID ID: EPI_ISL_402124). 
ClustalW (www.​genome.​jp/​tools-​bin/​clust​alw) and Mafft 
(www.​ebi.​ac.​uk/​Tools/​msa/​mafft/) was used for multiple 
sequence alignments [22].

Structural Mapping

The three-dimensional structure of spike glycoprotein and 
hACE-2-RBD complex were accessed from Protein Data 
Bank (PDB IDs: 6LZG; www.​rcsb.​org) [23]. Interacting res-
idues of hACE-2 and spike RBD were identified using PISA 
(www.​ebi.​ac.​uk/​pdbe/​pisa/) and PDBsum (www.​ebi.​ac.​uk/​
thorn​ton-​srv/​datab​ases/​cgi-​bin/​pdbsum/​GetPa​ge.​pl?​pdbco​
de=​index.​html). Variable regions of hACE-2 were identified 
using Consurf (https://​consu​rf.​tau.​ac.​il/). Non-synonymous 
mutations of hACE-2 were collected from dbSNP (www.​
ncbi.​nlm.​nih.​gov/​snp/) and these were processed using 
Ensembl (www.​asia.​ensem​bl.​org/​index.​html). Charge and 
other physic chemical parameters were calculated using 
ProtParam (www.​expasy.​org/​resou​rces/​protp​aram). Struc-
ture visualization, superimposition, and neighbouring resi-
due identification were done using Pymol.

Computational Analysis of Variants

Computational calculations of solvent accessible surface 
area (SASA), thermal-stability and hydrophobicity (solubil-
ity) were done using modelled mutant structures of alpha, 
delta and omicron due to the unavailability of experimental 
three-dimensional structures. Modelling was done using 
Pymol followed by refinement using GalaxyWEB (https://​
galaxy.​seokl​ab.​org/) and Chiron (https://​dokhl​ab.​med.​psu.​
edu/​chiron/​login.​php). SASA was calculated using GetArea 
(http://​curie.​utmb.​edu/​getar​ea.​html), thermo-stability was 
calculated using Scoop (http://​babyl​one.​ulb.​ac.​be) and 
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hydrophobicity was calculated using SoDoPe (https://​tisig​
ner.​com/​sodope). HDOCK server (http://​hdock.​phys.​hust.​
edu.​cn/) was used for docking analysis between the RBD and 
hACE2 [23]. Binding affinity (ΔG) (kcal/mol) and dissocia-
tion constant (KD) (M) at 25 °C between RBD and receptor 
was determined using Prodigy website (https://​wenmr.​scien​
ce.​uu.​nl/​prodi​gy/). Infectivity is predicted based on Varsite 
(https://​ebi.​ac.​uk/​thorn​ton-​srv/​datab​ases/​VarSi​te) analysis.

Results

Alpha (α), Delta (Δ) and Omicron (Oo) Variants 
were Found in Second and Third SARS‑CoV‑2 Wave 
in India

We collected the SARS-CoV-2 data from ~10,000 sequences 
from the GISAID database from 16 states and union terri-
tories of India. The state of Maharashtra accounted for the 
highest number of isolates (~30% of total samples) as the 
state has continued to report a high number of SARS-CoV-2 

infections. Our sequence analysis detected more than 30 var-
iants of SARS-CoV-2 across India; however, two variants 
(alpha variant) and (delta variant) were found in the major-
ity of isolates especially after February 2021 (Fig. 1). The 
alpha variant was first acknowledged in the United King-
dom in late 2020 and carries more than 15 mutations in its 
spike protein. The delta variant, detected in India in October 
2020 typically shows ~20 mutations in its spike protein [24]. 
SARS-CoV-2 data from across India revealed that the month 
of January had no sequences that corresponded to the delta 
variant, and 1% of cases in February corresponded to the 
delta variant (Fig. 1). Similarly, alpha variant cases were 
also low in these two months with only 5% in January. How-
ever, this number increased to 11% of the total sequences 
in February and other variants like B1.36; B1.1.216; B1.1 
were also found dominant in the majority of the isolates 
(Fig. 1). Then, in March 2021 alpha variant was found in 
22% sequenced samples followed by the delta variant (11%). 
However, we observed that this trend completely shifted in 
April 2021 and sequences from the delta variant dominated 
at 62% and by May, 94% of sequences were of the delta 

Fig. 1   Trends of SARS-CoV-2 variants during the second and third 
outbreak of COVID-19 (January–May 2021 and December 2021–Jan-
uary 2022) in India and Delhi region. All sequence-related data was 

collected from GISAID (https://​www.​gisaid.​org). The SARS-CoV-2 
predominant variants found are B 1.1.7 (alpha), B1.617.2 (delta) and 
B.1.1.529 (omicron)

https://tisigner.com/sodope
https://tisigner.com/sodope
http://hdock.phys.hust.edu.cn/
http://hdock.phys.hust.edu.cn/
https://wenmr.science.uu.nl/prodigy/
https://wenmr.science.uu.nl/prodigy/
https://ebi.ac.uk/thornton-srv/databases/VarSite
https://www.gisaid.org


	 S. Chakraborti et al.

1 3

1  Page 4 of 12

variant. On the other hand, sequences assigned to the alpha 
variant decreased to 11% in April and further to a minuscule 
1% by May 2021 (Fig. 1). A similar trend was observed in 
Delhi with the alpha variant found in almost 41% of samples 
sequenced in February while the delta variant was virtu-
ally missing (Fig. 1). By March, while alpha variant cases 
were still observed at ~67%, cases attributed to delta variant 
exponentially increased with 64% of all sequences being of 
the delta variant by April and this continued to dominate 
(59%) in May (Fig. 1). Interestingly, during the third wave 
in India from December 2021 to January 2022, though 80% 
isolates sequences are of delta, however, 20% of isolates are 
of omicron (B.1.1529) and around 15–30 mutations are in 
the RBD in most of the isolates sequenced (Fig. 1). Accord-
ing to our sequence analysis of May up till August 2022, 
different sub-variants of the Omicron emerged all over the 
country, including Delhi. Among the different sub-variants 
of Omicron, most notable is B.A.2.75, which was found 
more than 50% of the sequenced sample in August 2022. 
BA.2.75 was first detected in the month of May 2022 and 
from June ends it had started to rise [25].

Unique Mutations are Present in the Variants

The full size of the SARS-CoV-2 genome is ~30 kb and spike 
protein is approximately ~3.9 kb (1273 aa) spanning ~10% 
of the total viral genome [26, 27]. The alpha and delta vari-
ants are characterized by few unique RBD mutations, e.g., 
the alpha variant is known for its characteristic N501Y and 
E484K, whereas L452R and T478K are the characteristic 
mutations associated with delta variant (Fig. 2A–B). These 
four RBD mutations are of interest as studies show a direct 
link between these mutations and SARS-CoV-2 infectivity, 
severity, and immune escape [28–30]. In contrast, the omi-
cron variant exhibits a higher number of mutations in the 
RBD and around 15 mutations are predominately found in 
sequenced isolates (G339D, S371L, S373P, S375F, D405N, 
K417N, N440K, G446S, S477N, T478K, E484A, Q493R, 
G496S, Q498R, N501Y, Y505H) (Fig. 2A–B) [31]. The 
major difference between original Omicron and its sub-var-
iants BA.2.75 lies in three main mutations D339H, N460K, 
and R493Q in the RBD domain (Fig. S2). According to 
clinical data BA.2.75 is twenty to thirty percent more infec-
tious compared to the base Omicron variant [32]. Interest-
ingly, BA.2.75 emerged from BA.5 sub-variant of Omicron 
and in-general carries more mutations in the spike protein 
compared to the other sub-variants. Further, structural map-
ping revealed that E484K and N501Y in RBD of the alpha 
variant were located on the surface of a hairpin loop (E484) 
and in a loop region before the helix H7 (N501), respectively 
(Fig. 2A–B; Fig. S1). Another key mutant L452R reported 
in the delta variant was also found surface exposed and lay 
in a beta sheet (E) (Fig. 2B). Remarkably, many key omicron 

variant mutations mostly lie in the loop regions that con-
stitute the hACE-2-binding site (G446S, S477N, T478K, 
E484A, G496S, Q498R, N501Y, and Y505H). However, 
few mutations are located in the core region in loops or 
beta sheet in the omicron variant. Previous investigation 
identifies immune escaping nature of G446S and Q493R 
mutation, and high abundance of both these mutation within 
BA.2.75 sub-variants probably provides an edge in bypass-
ing immune checkpoints. Specifically, N460K and R493Q 
of this sub-variant are polar-to-charged and charged-to-polar 
mutations leading to likely change in electrostatic surface.

Mutation Profile of RBD Domain

Structurally, RBD domain is composed of loop regions 
(more than 50%), and the core structure of RBD is formed by 
an antiparallel β sheet (twisted) which has small connecting 
helices and flexible loops (Fig. S1) [33]. The loop regions 
of the RBD are dynamic which imparts flexibility to resi-
dues particularly at the hACE-2 receptor-binding interface. 
Our analysis revealed that from beginning of the SARS-
CoV-2 up to this point there was a continuous increase in 
the number of mutations occurring in the RBD domain, with 
G446S, N440K found common in alpha, delta, omicron and 
their sub-variants. This shows that such positions are highly 
flexible for mutation (Table S1). Furthermore, the continu-
ous stretch of residues between 439 and 446 is found to be 
highly flexible accommodating several different types of 
mutations in the variants. Moreover, the region consisting 
of residues 450–500 is highly prone to mutation in alpha, 
delta and omicron variants (Table 1). Interestingly, in the 
omicron variant, both the N and C-termini of the RBD bear 
mutations (G339D, A520E, G526K, P527K) not seen before 
in alpha or delta variants in India. Interestingly, all these 
mutations are associated with altering charge of wild type 
RBD. Also, several mutations between residues 339–379 
(S371L, S373P, S375F, T376A and C379R) are seen for the 
first time in India in the omicron variant (Table 1). These 
new mutations in the omicron variant are accompanied with 
either increase in hydrophobicity or positive surface charge. 
Also, between 400 and 450 residues, D405S mutation is seen 
in the omicron which accompanies charged-to-polar change 
on the surface.

Structural mapping of RBD mutations from alpha and 
delta variants (Table 1) revealed 8 non-conservative muta-
tions (C488F, Q506K, P507L, S4771I, Y451H, G446V, 
T478K, E471G) that lie within 5  Å of hACE-2-bind-
ing residues in the delta variant (Fig. 3C–D). Of these, 
Q506K, T478K and Y451H are likely to affect the charge 
in the binding region. Also, Y451H mutation that lies in 
the proximity of L452R is likely to enhance the positively 
charged surface in this region. In contrast, in the alpha vari-
ant, only two mutations V445A (conserved hydrophobic) 
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and G446V was seen in the proximity of hACE-2-binding 
region (Fig. 3A–B). Additionally, in the delta variant, 11 
other mutations which were found to be distant from the 
hACE-2-binding site might play an additional role in the 
interaction (Fig. 3C–D). Of these, R346G, Q414R, G413V, 
A348S and A352S are located at the core central region 
of the RBD and are likely responsible for change in sur-
face area and surface properties of the domain which may 

increase or restrict binding with hACE-2 receptor (Fig. 3D). 
Interestingly, the alpha variant had only one mutation in the 
core region (Fig. 3B). Finally, we identified three stretches 
on the delta variant where there is a possibility of several 
mutations clustering (Fig. S3). The first stretch is at the core 
of the RBD, the second stretch is around the notable muta-
tion L452R and third stretch is around the second notable 
mutation T478K of the delta variant. Further, mutations 

Fig. 2   Key mutations in Spike Receptor Binding Domain (RBD) 
of B.1.1.7 (alpha variant), B.1.617.2 (delta variant) and B.1.1.529 
(omicron) A Domain diagram of SARS-CoV-2 spike protein. RBD 
is coloured magenta and all domains other domains are coloured 
brown. The key RBD mutations in alpha, delta and omicron variants 

are listed in green B Structural mapping of key RBD mutations cor-
responding to the alpha, delta and omicron variants of SARS-CoV-2 
(PDB ID: 7A98). RBD is coloured magenta and shown as surface. 
Mutant residues are represented as green spheres and marked (Color 
figure online)
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G446V and A520S are seen in both alpha and delta vari-
ants. Our analysis revealed many other mutations apart from 
E484K, N501Y, L452R, and T478K (Table 1) which could 
be of possible significance especially when a large change 
in electrostatic surface is involved (Table S1, Fig. 3, Fig. 
S4). In contrast to alpha and delta, majority of mutations 
in omicron variant lie in the hACE-2-binding site (Fig. 3E, 
F). Further, 12 neutral residues mutate to charged residues 
and of these, 4 lie in the hACE-2-binding region (N417K, 
Q493R, Q498R, Y505H) having the ability to alter interac-
tion with hACE-2 [34, 35]. Our analysis further shows 1% 
change in the surface area of hAC2-binding region due to 
mutations in the omicron variant (Table 2). Also, mutations 
E484A/Q, S477N and T478K are present within 5 Å of the 
main binding site of omicron variants of SARS-CoV-2 and 
these residues are found mutated in alpha and delta variants 
(Fig. 3).

The Effects of RBD Mutations of Alpha, Delta 
and Omicron Variants on hACE‑2 Binding

A total of 19 residues of RBD interact with hACE-2 in 
wild type structure of spike (Fig. S5). According to PDB-
Sum analysis, the interaction between RBD and hACE-2 
is formed by 11 h-bonds, 1 salt bridge and more than 100 
non-bonding interactions. It is seen that the majority of the 
hACE-2-interacting residues are located in flexible loop 
regions of RBD. Our analysis shows that among the hACE-
2-binding residues (K417, G446, Q493, G496, Q498, N501 

and Y505), Q493 and Q498 mutate to arginine in the omi-
cron variant not seen in the case of alpha and delta. This 
might facilitate stronger binding to negatively charged 
hACE-2 interface in the omicron variant [35]. Our hydro-
phobicity analysis of hACE-2 interface residues did not 
reveal any significant change in the solubility at the interface 
(Table 2). Further, the hACE-2 binding surface of RBD can 
be broadly divided into two patches [36, 37]. According to 
our analysis, patch 1 (Table 2, Fig. S6) is less conserved 
compared to patch 2, which is also smaller in size. Further, 
three out of four key RBD mutant residues are involved in 
direct interaction with hACE-2 in delta variant (Fig. S5). 
On the other hand, most of the mutations of the omicron are 
interestingly in patch 2 which was earlier mostly seen to be 
conserved (Fig. S6).

It is seen that wild type RBD N501 was associated with 
Y41 of hACE-2 via a non-bonding interaction; however, 
once this residue was mutated to tyrosine, this interaction 
increased several folds due to aromatic stacking (Fig. S7) 
[38]. The N501Y mutation is seen in both alpha and omi-
cron variants. Mutations Y41R and Y41A in hACE-2 have 
been shown to increase binding affinity or abolish interac-
tion, respectively. [39, 40] Another mutant residue E484 lies 
within 5 Å of hACE-2 K31 in most structures and the muta-
tion E484K, seen in the alpha variant could stabilize charge 
at the binding surface forming an ion pair with hACE-2 E35 
(Fig. S8). Further, hACE-2 mutations K31Y/D are shown 
in earlier studies to increase affinity or abolish interaction, 
respectively [40]. Interestingly, in comparison to alpha and 

Table 1   List of tentative RBD mutations (month-wise Pan-India) found in GISAID database from January–May 2021 of alpha and delta variant, 
from December 2021–January 2022 of omicron variant and May 2022–Aug 2022 Omicron sub-variant

Mutations occur between Jan–May, 2021 have selective presence in alpha and delta variants in individual samples

Month and Year No. of 
sequences 
deposited

Mutations in the RBD domain

January (2021) 633 No mutation
February (2021) 1209 V367F (alpha), E484K (alpha), N501Y (alpha)
March (2021) 2257 T333R (delta), F338L (alpha), P384S (alpha), G413R (delta), V445A(alpha), G446V(alpha), L452R 

(Delta), T478K (Delta), V483F(delta), E484K(alpha), N501Y(alpha) and A520S(alpha)
April (2021) 2782 S349Q (delta), S375A (delta), Q414R (delta), A435T (delta), G446S (delta), L452R (Delta), T470S 

(delta), E471G (delta), S477I (delta), T478K (Delta), V483L (delta), E484K(alpha), C488F (delta), 
Y495M (delta), N501Y(alpha), Q506K (delta), P507L (delta), E516Q (delta) and A520S (delta)

May (2021) 818 R346G (delta), A348S (delta), A352S (delta), G381A (delta), G413V (delta), G446V (delta) Y451H 
(delta), G476S (delta), S477I (delta) and F490L (delta)

Dec 2021-Jan 2022 435 G339D, R346K, V367A, S371L, S373P, F374V, S375F, T376A, C379R, D405N, R408S, Q414K, K417N, 
N440K, G446S, L452R, S477N, T478K, E484A/Q, Q493R, G496S, Q498R, N501Y, Y505H, A520E, 
G526K, P527K

May 2022-Aug 2022 1856 D339H, R346K, V367A, S371L, S371F, S373P, F374V, S375F, T376A, C379R, D405N, R408S, Q414K, 
K417N, N440K, G446S, L452R, N460K, S477N, T478K, E484A/Q, R493Q, G496S, Q498R, N501Y, 
Y505H, A520E, G526K, P527K
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delta, E484 mutates to either alanine or glutamine residue in 
the omicron variant which is likely to facilitate the binding 
by increasing hydrophobicity. Mutant residue L452, seen 
in both delta and omicron variants is the most intriguing as 
it does not directly interact with hACE-2, but its mutation 
L452R likely causes change in electrostatic association of 
RBD and hACE-2 (Fig. S9). Also, L452R could impact the 
interaction of neighbouring residues Q493, Y449 and Y453 
with hACE-2 K31, E35, D38, and Q42 (Fig. S5–6). Interest-
ingly, Q493 is found mutated to arginine in the omicron vari-
ant and a reversal happen in sub-variant BA.2.75. K417N 
mutation in the alpha, delta plus and omicron variants leads 
to a change in electrostatic properties and are likely to play a 
role in altered electrostatic interaction on the binding surface 
(Figs. S5, S9). Furthermore, superimposition of the mod-
elled RBD variant structures of alpha, delta and omicron 
(PDB ID: 6LZG) exhibits high structural similarity (r.m.s.d. 
0.3 Å) showing that hACE-2-binding interface of RBD in 
these variants are structurally conserved thereby suggesting 
that upto 15 mutations specifically in the omicron variant 
does not likely present a change in the overall stability of the 
RBD. Further, computational analysis of thermo-stability 
of variant structures verifies that omicron variant is little 
more stable compared to alpha and delta (Table 2). We fur-
ther used docking to understand alpha, delta and omicron 
variants binding to hACE-2. Our docking result shows that 
BA.2.75 sub-variant of Omicron is likely to bind to hACE-2 
with highest affinity (with topmost ΔG and docking score 
value), followed by Omicron, and alpha variant (Table S2). 
Reversion of R493Q is most likely responsible for enhanced 
affinity of the BA.2.75 RBD towards hACE-2 receptor. Also, 
our data clearly point out that the delta variant has a weaker 
affinity towards hACE-2 compared to wild type SARS-
CoV-2; which is also in agreement with published reports. 
[23, 41]

hACE‑2 Conservation and Crucial Residues 
for RBD‑Binding

Structural analysis of hACE-2 has revealed that there are ~20 
residues (mainly from the N-terminal domain of hACE-2) 
that are involved in interaction with RBD (Table 3) (Fig. 
S5). Out of twenty RBD-binding residues five residues are 
negatively charged, three residues are positively charged, 
three residue are hydrophobic and remaining nine residues 
are either aromatic/polar in nature. Due to the presence of 
high number of negative charge residues, hACE-2 bind-
ing interface is primarily negative. Since hACE-2 recep-
tor is found abundant in almost all mammalian species, 
we studied hACE-2 protein conservation by performing a 
multiple sequence analysis (MSA) among several related 
mammalian species including humans, to understand the 
binding site conservation [42]. Our analysis showed that 

the RBD-binding site of hACE-2 was highly conserved 
which was in striking contrast to hACE-2 binding site of 
RBD, which we found to be highly evolved (Fig. S10). Since 
hACE-2 has the potential to affect SARS-CoV-2 infection, 
next we searched for the binding site and its adjacent residue 
mutation (variability) across different human alleles. Non-
synonymous mutations present within different hACE-2 
alleles were identified using established protocol [43]. We 
found several crucial mutations in critical RBD-binding 
residues in the human dbSNP database including T27A, 
E35D/K, E37K, M82I, P84T, and D355N (Table 4). Specifi-
cally, the charge-altering mutations E35K, E37K and D355N 
are found to be most essential in terms of altering electro-
static surface property and possibly decreasing the binding 
affinity with mostly positively charged RBD.

Discussion

Our analysis of SARS-CoV-2 sequences from second wave, 
third wave and afterword in India clearly shows dominance 
of the delta variant at the peak of the second wave (dur-
ing early 2021), the occurrence of omicron variant in the 
third wave (December 2021–January 2022) and emergence 
of BA.2.75 sub-variant of Omicron in the current scenario. 
We observed that the mutational propensity of RBD alters 
with these variants with highest mutations observed for 
the omicron sub-variant BA.2.75. Both alpha and delta 
variants are known for their characteristic RBD mutations 
(N501Y and E484K for alpha and L452R and T478K for 
delta) and majority of these mutations were found in close 
proximity to hACE-2 binding interface. In contrast, a high 
number of 11 mutations in the omicron variant lie either 
at the hACE-2-binding site or within 5 Å. Our analysis 
shows that charge-altering mutations, especially positively 
charged, in the variants most likely can influence binding 
with the hACE-2 receptor as electrostatic interactions are 
seen to play a critical role in interaction between RBD and 
hACE-2 since hACE-2 binding surface is highly negative. 
On the other hand, hydrophobicity of the hACE-2 binding 
surface it seen to remain unchanged in the variants. Fur-
ther analysis revealed key mutations in the RBD including 
N501Y seen in alpha and omicron variants and L452R seen 
in delta and omicron variants. N501Y mutation of RBD 
stabilizes hACE-2 binding through increased hydrophobic 
interaction with Y41 of hACE-2. On the contrary, L452R 
does not directly interact with hACE-2. As per our analysis 
leucine 452 mutation to arginine influences neighbouring 
residues (for e.g., Q493, Y453 and Y449). Interestingly, 
Q493R mutation is seen in the omicron variant. Further, the 
variants exhibit low structural variance with marginal higher 
thermo-stability in the omicron variant. Taken together, our 
structural analysis sheds insights into the mutations in alpha, 
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delta, omicron, and its sub-variant BA.2.75 of SARS-CoV-2 
that are responsible for dramatic increase in SARS-CoV-2 
infections in India and their likely role in altering interaction 
with the hACE-2 receptor.

Conclusion

India witnessed a massive number of SARS-CoV-2 infec-
tions and considerable number of deaths during second 
third wave of infection, though the number of SARS-
CoV-2 infection in last few months reduces significantly 
but it’s not completely eradicated from Indian popula-
tion. In the current article, we have explored the status 
of SARS-CoV-2 variants and sub-variants during the 
second/third wave and afterwards in India. Subsequently 
we mapped all important mutations onto the three-dimen-
sional structure of receptor-binding domain (RBD) of 
spike protein to understand the impact of mutation on 
receptor-binding. Furthermore, we found that a substan-
tial number of RBD residues exhibit structural plasticity 
due to mutation, accompanied by a change in surface elec-
trostatic. Our analysis further predicts that electrostatic 

variation of RBD also facilitates extended interaction 
with human-Angiotensin-Converting Enzyme 2 (hACE-
2). According to our knowledge, this is the first compre-
hensive study showcasing structural details of alpha, delta, 
omicron and its sub-variants that emerged during last two 
years of SARS-CoV-2 infection in India.

Fig. 3   Structural mapping of mutations observed in the RBD domain 
of B.1.1.7 (alpha variant), B.1.617.2 (delta variant) and B.1.1.529 
(omicron variant) from India found in the GISAID database from 
January–May 2021 and December 2021–January 2022. A, C, E RBD 
mutations in alpha, delta and omicron variants. RBD is coloured 
violet and hACE-2 is coloured pale cyan. RBD-binding residues of 
hACE-2 are shown as sticks. The mutations which overlap with the 
binding region of hACE-2 are coloured red and shown as sticks. The 
mutations that lie within 5 Å of the hACE-2-binding residues of RBD 
are coloured green and shown as sticks. Other hACE-2-binding resi-
dues are coloured yellow. B, D, F RBD mutations in alpha, delta and 
omicron variants. RBD is coloured violet, hACE-2 is coloured pale 
cyan and rest of Spike is coloured brown and shown as a transparent 
surface. Mutations that exhibit a change in surface charge are shown 
as spheres and coloured blue and red, polar-to-hydrophobic mutations 
are coloured grey, hydrophobic to polar mutations are coloured cyan 
and remaining mutations are coloured orange. The key mutations are 
coloured green (Color figure online)

◂

Table 2   Different 
physicochemical properties of 
receptor-binding domain of 
different SARS-CoV-2 variants

Surface charge was calculated based on difference of surface exposed charge (ASP + GLU) to 
(LYS + ARG) residues

Variant name Number of 
domain resi-
dues

Mol. wt Iso-
electric 
point

SASA Solubility Surface charge Stability 
(Tm) (°C)

wt-RBD 195 21,855.6 8.0 10,018.9 0.2 0 62
Alpha 195 21,903.7 8.6 10,155.3 0.2  + 2 63
Delta 195 21,925.7 8.6 10,207.8 0.2  + 1 62
Omicron 195 22,145.1 8.7 10,379.5 0.2  + 1 65

Table 3   Binding site residues of RBD involved in the interaction with 
hACE-2

The list contains only important interacting partners

Residue Position Patch involved 
in the interac-
tion

Partner residues in 
hACE-2

Lysine (K) 417 Patch 1 D30 (salt bridge, 
H-bond)

Glycine (G) 446 Patch 2 Q42 (H-bond)
Tyrosine (Y) 449 Patch 2 Q42, D38 (H-bond)
Tyrosine (Y) 453 Patch 1 H34
Leucine (L) 455 Patch 1 H34
Phenylalanine (F) 456 Patch 1 T27
Tyrosine (Y) 473 Patch 1 T27
Alanine (A) 475 Patch 1 Q24, S19 (H-bonds)
Glycine (G) 476 Patch 1 Q24, S19
Glutamate (E) 484 Patch 1 K31
Phenylalanine (F) 486 Patch 1 L79, M82, Y83
Asparagine (N) 487 Patch 1 Q24, Y83 (H-bond)
Tyrosine (Y) 489 Patch 1 T27, F28, Y83
Phenylalanine (F) 490 Patch 1 K31
Glutamine (Q) 493 Patch 1 E35, K31
Glycine (G) 496 Patch 2 K353(H-bond)
Glutamine (Q) 498 Patch 2 Y41, Q42
Threonine (T) 500 Patch 2 N330, R357, D355

Y41(H-bond)
Asparagine (N) 501 Patch 2 Y41, K353
Glycine (G) 502 Patch 2 K353(H-bond), G354
Tyrosine (Y) 505 Patch 2 E37, R393, K353, 

G354
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