Skip to main content

Advertisement

Log in

Antifungal and Antibiofilm In Vitro Activities of Ursolic Acid on Cryptococcus neoformans

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Ursolic acid (UA) exists in a variety of medicinal plants. UA exhibits antimicrobial activity against several microorganisms; however, little is known regarding the potential antifungal effect of UA on Cryptococcus neoformans (C. neoformans). The antifungal and antibiofilm activities of UA on C. neoformans H99 were evaluated in this study. Minimum inhibitory concentration (MIC) of UA against C. neoformans H99 was determined by microdilution technique, and its action mode was elucidated by clarifying the variations in cell membrane integrity, capsule, and melanin production. Moreover, the inhibition and dispersal effects of UA on biofilm formation and mature biofilms by C. neoformans H99 were evaluated using crystal violet (CV) assay, optical microscopy, field emission scanning electron microscopy and confocal laser scanning microscopy. The results indicated that the MIC value of UA against C. neoformans H99 was 0.25 mg/mL. UA disrupted the cell membrane integrity, inhibited the capsule and melanin production of C. neoformans H99 in a concentration-dependent manner. Further, UA presented the inhibitory effect on biofilm formation and dispersed mature biofilms, as well as compromised the cell membrane integrity of C. neoformans H99 cells within biofilms. Together, these results indicate that UA might be a potential therapeutic option for the treatment of C. neoformans-related infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TA (2009) Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23:525–530. https://doi.org/10.1097/QAD.0b013e328322ffac

    Article  PubMed  Google Scholar 

  2. Singh N et al (2008) Pulmonary cryptococcosis in solid organ transplant recipients: clinical relevance of serum cryptococcal antigen. Clin Infect Dis 46:e12-18. https://doi.org/10.1086/524738

    Article  PubMed  Google Scholar 

  3. Shorman M, Evans D, Gibson C, Perfect J (2016) Cases of disseminated cryptococcosis in intravenous drug abusers without HIV infection: a new risk factor? Med Mycol Case Rep 14:17–19. https://doi.org/10.1016/j.mmcr.2016.12.003

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bose I, Reese AJ, Ory JJ, Janbon G, Doering TL (2003) A yeast under cover: the capsule of Cryptococcus neoformans. Eukaryot Cell 2:655–663. https://doi.org/10.1128/EC.2.4.655-663.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Santi L et al (2014) Proteomic profile of Cryptococcus neoformans biofilm reveals changes in metabolic processes. J Proteome Res 13:1545–1559. https://doi.org/10.1021/pr401075f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li Y, Xiao P, Wang Y, Hao Y (2020) Mechanisms and control measures of mature biofilm resistance to antimicrobial agents in the clinical context. ACS Omega 5:22684–22690. https://doi.org/10.1021/acsomega.0c02294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Robertson EJ, Casadevall A (2009) Antibody-mediated immobilization of Cryptococcus neoformans promotes biofilm formation. Appl Environ Microbiol 75:2528–2533. https://doi.org/10.1128/AEM.02846-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aslanyan L, Sanchez DA, Valdebenito S, Eugenin EA, Ramos RL, Martinez LR (2017) The crucial role of biofilms in Cryptococcus neoformans survival within macrophages and colonization of the central nervous system. J Fungi 3:10. https://doi.org/10.3390/jof3010010

    Article  CAS  Google Scholar 

  9. Iyer KR, Revie NM, Fu C, Robbins N, Cowen LE (2021) Treatment strategies for cryptococcal infection: challenges, advances and future outlook. Nat Rev Microbiol. https://doi.org/10.1038/s41579-021-00511-0

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zaragoza O (2019) Basic principles of the virulence of Cryptococcus. Virulence 10:490–501. https://doi.org/10.1080/21505594.2019.1614383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. O’Meara TR, Alspaugh JA (2012) The Cryptococcus neoformans capsule: a sword and a shield. Clin Microbiol Rev 25:387–408. https://doi.org/10.1128/Cmr.00001-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garcia-Rubio R, de Oliveira HC, Rivera J, Trevijano-Contador N (2019) The fungal cell wall: Candida, Cryptococcus, and Aspergillus species. Front Microbiol 10:2993. https://doi.org/10.3389/fmicb.2019.02993

    Article  PubMed  Google Scholar 

  13. Eisenman HC et al (2007) Cryptococcus neoformans laccase catalyses melanin synthesis from both D- and L-DOPA. Microbiol-Sgm 153:3954–3962. https://doi.org/10.1099/mic.0.2007/011049-0

    Article  CAS  Google Scholar 

  14. Chayakulkeeree M, Rude TH, Toffaletti DL, Perfect JR (2007) Fatty acid synthesis is essential for survival of Cryptococcus neoformans and a potential fungicidal target. Antimicrob Agents Chemother 51:3537–3545. https://doi.org/10.1128/Aac.00442-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Archibald LK et al (2004) Antifungal susceptibilities of Cryptococcus neoformans. Emerg Infect Dis 10:143–145. https://doi.org/10.3201/eid1001.020779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mourad A, Perfect JR (2018) Present and future therapy of Cryptococcus infections. J Fungi 4:79. https://doi.org/10.3390/jof4030079

    Article  CAS  Google Scholar 

  17. Bermas A, Geddes-McAlister J (2020) Combatting the evolution of antifungal resistance in Cryptococcus neoformans. Mol Microbiol 114:721–734. https://doi.org/10.1111/mmi.14565

    Article  CAS  PubMed  Google Scholar 

  18. Gonzalez-Lamothe R, Mitchell G, Gattuso M, Diarra MS, Malouin F, Bouarab K (2009) Plant antimicrobial agents and their effects on plant and human pathogens. Int J Mol Sci 10:3400–3419. https://doi.org/10.3390/ijms10083400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang X et al (2016) Subinhibitory concentrations of allicin decrease uropathogenic Escherichia coli (UPEC) biofilm formation, adhesion ability, and swimming motility. Int J Mol Sci 17:979. https://doi.org/10.3390/ijms17070979

    Article  CAS  PubMed Central  Google Scholar 

  20. Anyanwu GO, Nisar-ur-Rehman OCE, Rauf K (2015) Medicinal plants of the genus Anthocleista—a review of their ethnobotany, phytochemistry and pharmacology. J Ethnopharmacol 175:648–667. https://doi.org/10.1016/j.jep.2015.09.032

    Article  CAS  PubMed  Google Scholar 

  21. Wozniak L, Skapska S, Marszalek K (2015) Ursolic acid-A pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules 20:20614–20641. https://doi.org/10.3390/molecules201119721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cargnin ST, Gnoatto SB (2017) Ursolic acid from apple pomace and traditional plants: a valuable triterpenoid with functional properties. Food Chem 220:477–489. https://doi.org/10.1016/j.foodchem.2016.10.029

    Article  CAS  PubMed  Google Scholar 

  23. Bergamin LS et al (2017) Interference of ursolic acid treatment with glioma growth: an in vitro and in vivo study. Eur J Pharmacol 811:268–275. https://doi.org/10.1016/j.ejphar.2017.06.030

    Article  CAS  PubMed  Google Scholar 

  24. Lopez-Hortas L, Perez-Larran P, Gonzalez-Munoz MJ, Falque E, Dominguez H (2018) Recent developments on the extraction and application of ursolic acid, A review. Food Res Int 103:130–149. https://doi.org/10.1016/j.foodres.2017.10.028

    Article  CAS  PubMed  Google Scholar 

  25. Krummenauer ME et al (2019) A highly active triterpene derivative capable of biofilm damage to control Cryptococcus spp. Biomolecules 9:831. https://doi.org/10.3390/biom9120831

    Article  CAS  PubMed Central  Google Scholar 

  26. Spivak AY, Khalitova RR, Nedopekina DA, Gubaidullin RR (2020) Antimicrobial properties of amine- and guanidine-functionalized derivatives of betulinic, ursolic and oleanolic acids: synthesis and structure/activity evaluation. Steroids 154:108530. https://doi.org/10.1016/j.steroids.2019.108530

    Article  CAS  PubMed  Google Scholar 

  27. do Nascimento PG et al (2014) Antibacterial and antioxidant activities of ursolic acid and derivatives. Molecules 19:1317–1327. https://doi.org/10.3390/molecules19011317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arikan S, Gur D, Akova M (1997) Comparison of Etest, microdilution and colorimetric dilution with reference broth macrodilution method for antifungal susceptibility testing of clinically significant Candida species isolated from immunocompromised patients. Mycoses 40:291–296. https://doi.org/10.1111/j.1439-0507.1997.tb00234.x

    Article  CAS  PubMed  Google Scholar 

  29. Qian W et al (2020) Antimicrobial activity of eugenol against carbapenem-resistant Klebsiella pneumoniae and its effect on biofilms. Microb Pathog 139:103924. https://doi.org/10.1016/j.micpath.2019.103924

    Article  CAS  PubMed  Google Scholar 

  30. Brilhante RSN et al (2020) Cryptococcus neoformans/Cryptococcus gattii species complex melanized by epinephrine: Increased yeast survival after amphotericin B exposure. Microb Pathog 143:104123. https://doi.org/10.1016/j.micpath.2020.104123

    Article  CAS  PubMed  Google Scholar 

  31. Qian W et al (2021) Equivalent effect of extracellular proteins and polysaccharides on biofilm formation by clinical isolates of Staphylococcus lugdunensis. Biofouling 37:327–340. https://doi.org/10.1080/08927014.2021.1914021

    Article  CAS  PubMed  Google Scholar 

  32. Rai LS et al (2019) The Candida albicans biofilm gene circuit modulated at the chromatin level by a recent molecular histone innovation. PLoS Biol 17:e3000422. https://doi.org/10.1371/journal.pbio.3000422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Williams DL, Costerton JW (2012) Using biofilms as initial inocula in animal models of biofilm-related infections. J Biomed Mater Res B 100:1163–1169. https://doi.org/10.1002/jbm.b.31979

    Article  CAS  Google Scholar 

  34. Abdulkareem AF, Lee HH, Ahmadi M, Martinez LR (2015) Fungal serotype-specific differences in bacterial-yeast interactions. Virulence 6:652–657. https://doi.org/10.1080/21505594.2015.1066962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zgurskaya HI, Lopez CA, Gnanakaran S (2015) Permeability barrier of gram-negative cell envelopes and approaches to bypass it. ACS Infect Dis 1:512–522. https://doi.org/10.1021/acsinfecdis.5b00097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee HH, Del Pozzo J, Salamanca SA, Hernandez H, Martinez LR (2019) Reduced phagocytosis and killing of Cryptococcus neoformans biofilm-derived cells by J774.16 macrophages is associated with fungal capsular production and surface modification. Fungal Genet Biol 132:103258. https://doi.org/10.1016/j.fgb.2019.103258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kong Q et al (2017) Transcriptomic and virulence factors analyses of Cryptococcus neoformans hypoxia response. APMIS 125:236–248. https://doi.org/10.1111/apm.12647

    Article  CAS  PubMed  Google Scholar 

  38. Qian W et al (2020) Anti-microbial and anti-biofilm activities of combined chelerythrine-sanguinarine and mode of action against Candida albicans and Cryptococcus neoformans in vitro. Colloids Surf B 191:111003. https://doi.org/10.1016/j.colsurfb.2020.111003

    Article  CAS  Google Scholar 

  39. Zuo R, Garrison AT, Basak A, Zhang P, Huigens RW 3rd, Ding Y (2016) In vitro antifungal and antibiofilm activities of halogenated quinoline analogues against Candida albicans and Cryptococcus neoformans. Int J Antimicrob Agents 48:208–211. https://doi.org/10.1016/j.ijantimicag.2016.04.019

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported partly by the national natural science foundation (11975177), the science and technology plan project of Xianyang science and technology bureau (2021ZDYF-NY-0007), and the scientific research program funded by Shaanxi provincial education department (22JK0537).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: WDQ; Supervision: WDQ and WJW; Original draft preparation: WJW and CCL; Methodology: WJW; Data curation: YTL and MQL; Investigation: YTF and JK; Data Curation: XCL.

Corresponding author

Correspondence to Wei-Dong Qian.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical Approval

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, WJ., Liu, CC., Li, YT. et al. Antifungal and Antibiofilm In Vitro Activities of Ursolic Acid on Cryptococcus neoformans. Curr Microbiol 79, 293 (2022). https://doi.org/10.1007/s00284-022-02992-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02992-5

Navigation