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Abstract
Aging is an irreversible physiological degradation of living organisms. Accumulated oxidative stress and dysbiosis acceler-
ate aging. Probiotics such as Lactobacillus and Bifidobacterium and their fermented metabolites (postbiotics) have been 
discovered to exhibit antioxidative activities that regulate oxidative stress and protect cells from oxidative damage. We 
screened selected Lactobacillus and Bifidobacterium strains and their postbiotics for potential antioxidative activity by using 
DPPH (2,2-Diphenyl-1-picrylhydrazyl) assay. Strains with their metabolites were selected for mixed formula in experiments 
involving aging mice. The aged groups presented higher oxidative stress in the brain, liver, heart, and kidney than did young 
mice. However, treatment with probiotic strains and their postbiotics elevated antioxidative levels, especially in the high-dose 
probiotics plus postbiotics group. Next-generation sequencing data revealed positive microbiota alterations of Lactobacillus 
and Bifidobacterium and Akkermansia in the gut. Lactobacillus johnsonii and Akkermansia muciniphila exhibited effective 
enlargement of relative abundance. Besides, high-dose probiotics and high-dose probiotics plus postbiotics showed sig-
nificant elevation in serum SCFAs, especially in butyrate. In conclusion, the formula containing Bifidobacterium animalis 
subsp. infantis BLI-02, Bifidobacterium breve Bv889, Bifidobacterium bifidum VDD088, B. animalis subsp. lactis CP-9, 
and Lactobacillus plantarum PL-02 and their metabolites may benefit aged people’s health.

Introduction

Aging is a general, progressive, cumulative, and harmful 
physiological decline. Because of differences between indi-
viduals, aging cannot be described with a single or simple 
model [1]. However, as research progresses, researchers have 
discovered that human aging is closely related to reactive 

oxygen species in the body [2]. Oxidative free radicals can 
cause damage to DNA, proteins, lipids, and other molecules 
of cells, causing the gradual loss of physiological functions 
and diseases including cardiovascular disease and cancer 
[3]. Numerous studies have demonstrated that oxidative free 
radicals are a main factor in aging in internal organs [4]. 
Therefore, research on new antioxidant substances that delay 
aging is the principal focus of antiaging research.

Over  1014 microorganisms inhabit the human gastrointes-
tinal (GI) tract. The number of GI bacterial cells is 10 times 
that of human cells, with microbial genomic content num-
bering over 3 million, whereas the human genome contains 
approximately 23,000 genes [5]. Scientists have discovered 
microbiota changes in older people [6], whose number of 
beneficial gut bacteria, including Lactobacilli and Bifidobac-
teria, are greatly reduced and certain facultative anaerobes 
and gram-negative bacteria (mainly Enterobacteria) multi-
ply. The shift of gut microbiota may lead to small bowel bac-
terial overgrowth followed by symptoms such as diarrhea, 
nutrient malabsorption, and weight loss in aged people [7].

Accumulated findings have demonstrated that probiotic 
strains of Lactobacilli and Bifidobacteria possess antioxi-
dant properties [8]. The metabolites secreted by probiotic 
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strains (postbiotics) may play key roles in promoting anti-
oxidative activity. An animal study confirmed that probiotic 
metabolites improve serum antioxidant activity and upregu-
late hepatic antioxidant enzymes [9]. Moreover, a double-
blind clinical trial revealed that probiotic supplementation in 
patients with Alzheimer disease improved cognitive function 
[10]. Moreover, the food safety of lactic acid bacteria has 
been validated in clinical trials [11]. However, unpredicted 
side effects have been reported in some effective antioxi-
dants, such as resveratrol. For example, in clinical trials, 
taking high doses of resveratrol (2.5–5.0 g/day) led to symp-
toms such as nausea, flatulence, abdominal discomfort, and 
diarrhea [12]. Anticoagulant effects were also revealed, and 
it may interfere with the metabolism of drugs in the liver 
[13].

Probiotic strains together with their fermented products 
can be considered candidate nutritional supplements for 
downregulating the oxidative stress that induces the aging 
process. DPPH (2,2-diphenyl-1-picrylhydrazyl) is an oxida-
tive free radical, which has been widely used to select anti-
oxidative substances or organisms before animal study [14, 
15]. In this study, we screened effective antiaging probiotic 
strains through in vitro antioxidative assay (DPPH assay). 
We then used an animal model to validate the antioxidative 
properties of the probiotic strains with their metabolites. 
Finally, the microbiota shifts caused by taking the probiotic 
products were detected and confirmed using the next genera-
tion sequencing technique (NGS).

Materials and Methods

Probiotic Strains and Culturing of Strains

All the probiotic strains were sourced from human intes-
tinal tract and obtained from Bioflag Biotech Co. (Tainan, 
Taiwan). The strains were preserved in the China Center for 
Type Culture Collection (CCTCC) and the China General 
Microbiological Culture Collection Center (CGMCC). The 
deposit numbers for Bifidobacterium animalis subsp. infan-
tis BLI-02, Bifidobacterium breve Bv889, Bifidobacterium 
bifidum VDD088, B. animalis subsp. lactis CP-9, and Lac-
tobacillus plantarum PL-02 are CGMCC-15212, CGMCC-
16145, CGMCC-15211, CCTCC-M2014588, and CGMCC-
20485, respectively. Lactobacillus lactis L-87, Lactobacillus 
rhamnosus L-13, Enterococcus faecium L-38, Lactobacillus 
gasseri L-2, Lactobacillus paracasei L-134, L. paracasei 
L-30 and Streptococcus thermophilus L-243 were obtained 
from Bioflag Biotech Co. (Tainan, Taiwan).

The probiotic lactic acid bacteria strains were stored 
at − 80 °C with 20% glycerol. MRS broth (Difco, BD™, New 
Jersey, United States) containing 0.05% cysteine was used 
to activate the strains at 37 °C (24 h) twice. The postbiotic 

products were gained from fermentation of the strains. A 
liquid medium of 5%–30% milk and 1%–10% soybean meal 
was used for fermenting the probiotics. The fermentation 
broth was finally purified through centrifugation, filtration, 
and heat sterilization and dried into powder. The powder 
of the fermentation broth was stored at room temperature.

Screening Potential Probiotic Strains Through 
Antioxidative Assay

DPPH (2,2-Diphenyl-1-picrylhydrazyl) is a stable free radi-
cal molecule whose highest absorption value is at a wave-
length of 517 nm in a methanol solution. When DPPH free 
radicals interact with antioxidants, the antioxidants provide 
hydrogen protons to scavenge free radicals, and DPPH free 
radicals lose their blue–violet characteristics and their light 
absorption decreases. The decrease in  OD517 value was used 
to determine the free radical scavenging ability of the tested 
lactic acid bacteria strains.

The method for detecting the free radical scavenging 
ability of the lactic acid bacteria strains or their metabo-
lites was as follows. Common lactic acid bacteria strains 
(approximately 2 ×  109 colony-forming units [CFU], optical 
density [OD] approximately 2) or a strain’s own fermenta-
tion broth were mixed 1:1 with 0.2 mM DPPH in methanol. 
After being mixed, the solution was maintained at room tem-
perature in the dark for 30 min for reaction. After centrifug-
ing (12,000 rpm, 2 min) at 4 °C and transferring 200 μL of 
supernatant to a 96-well plate, the  OD517 value was meas-
ured. The Streptococcus thermophiles SY-66 strain without 
antioxidant activity was used as a negative control (approxi-
mately 2 ×  109 CFU, OD approximately 2) and diluted water 
as a blank control. The calculation formula used for free 
radical scavenging ability is as follows:

where  ODsample is the absorbance value of the tested sample 
and  ODblank is the absorbance value of the blank group. Vita-
min C (10 µg/mL) was used as a positive control.

Mice and Ethics Statement

Animal experiments and protocols were in compliance with 
the National Institute of Health’s Guide for the Care and Use 
of Laboratory Animals. The protocols were approved (the 
Approval Number—IACUC no.NLAC(TN)-108-D-002) 
by animal ethics committee of National Laboratory Animal 
Center (Taipei, Taiwan). C57BL/6 mice (age: 2 months) 
were used for the study. The animals were housed in groups 
of six in sterilized cages fitted with filter cage tops and fed 

Free radical scavenging capacity

= ODblank − ODsample∕ ODblank × 100%
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with sterilized food and water. The housing environment 
was strictly monitored and maintained under 22 ± 2 ℃ 
and 62% ± 5% humidity. Each group was entrusted to the 
National Laboratory Animal Center (Taipei, Taiwan) dur-
ing the experiment, and tube feeding was administered daily 
according to the experimental design.

Animal Experimental Design

The experimental mice naturally developed and were divided 
into nine groups (each group with four mice, two male plus 
two female) as follows: 2-month-old (2 M), 10-month-old 
(10 M), 13-month-old (13 M), and 16-month-old (16 M) 
groups; among the 10-month-old groups were a low-dose 
probiotics group (1.03 ×  109 CFU/kg, per mouse, daily dose), 
a low-dose probiotics and postbiotics group (1.03 ×  109 CFU/
kg plus 20.5 mg/kg of postbiotics, per mouse, daily dose), a 
high-dose probiotics group (4.1 ×  109 CFU/kg, each mouse, 
daily dose), a high-dose probiotics and postbiotics group 
(4.1 ×  109 CFU/kg probiotics plus 20.5 mg/kg of postbiot-
ics, per mouse, daily dose), and a positive control group fed 
general feed plus resveratrol (25 mg/kg mice/day). The 2 M, 
10 M, 13 M, and 16 M groups were fed with general feed 
without extra treatment. The mice were sacrificed for the 
detection of oxidative and antioxidative elements in tissues.

The probiotic-treated groups and the positive control 
group were fed with treatments from the age of 10 months 
to 16 months. The dose of lactic acid bacteria ingested by the 
animals was estimated according to the initial experimental 
method published by the US Food and Drug Administration 
in 2005. The five probiotic strains were mixed at a ratio of 
1:1:1:1:1 for daily feeding, and the postbiotics were mixed 
with the same five strains in the same ratio. After consecu-
tive feedings for 6 months, the tissues of this “aging” group 
were also evaluated (Supplemental Fig. 1).

Evaluating Oxidative and Antioxidative Level 
in Mice

All mice were sacrificed using  CO2; next, the brain, heart, 
liver, and other tissues were removed with surgical instru-
ments and placed in microcentrifuge tubes; 200 μL 0.4 M 
perchloric acid was added, and an ultrasonic homogenizer 
was used for homogenization (all procedures were performed 
on ice). Subsequently, the antioxidative levels in the mouse 
tissues were measured through superoxide dismutase (SOD) 
assay (Cayman Chemical Item No. 706002), glutathione per-
oxidase (GPx) assay (Cayman Chemical Item No. 703102), 
and catalase (CAT) assay (Cayman Chemical Item No. 
707002). The oxidative levels were measured (and the pro-
tocol followed) through TBARS assay (Cayman Chemical 
Item No. 10009055), protein carbonyl colorimetric assay 
(Cayman Chemical Item No. 10005020), and New 8 OHdG 

Check ELISA (Item No. KOG-200SE, JalCA). Mitochondria 
DNA was extracted using a mitochondrial DNA isolation 
kit (Item No. K280-50, BioVision) for measuring 8-oxo-
2'-deoxyguanosine (8 OHdG). All assays were conducted 
in accordance with the experimental standard procedures 
provided with the product. All oxidative and antioxidative 
indicators are consistent with the standard experimental test 
for antiaging health food identified by the Ministry of Health 
of the Republic of China (Taiwan).

Evaluating Gut Microbiota Change Through the NGS 
Method

Mouse feces were collected after 6 months of consecutive 
treatment and immediately placed in a − 80 °C refrigerator. 
Subsequently, Quick-DNATM fungal/bacterial microprepa-
ration reagent (ZYMO Research, USA) was used to extract 
the DNA from the stool samples. Diluent DNA in sterile 
water (5 ng/μL) was used for quality inspection through 1% 
agar gel electrophoresis. Next, we amplified the DNA frag-
ments (16S rRNA, 16S V3-V4) by using polymerase chain 
reaction (PCR) through specific DNA-fragment targeting 
primers (Pusion High-Fidelity PCR Master Mix, New Eng-
land Biolabs, USA). The purifying PCR generated DNA 
products by using AMPure XP beads (Beckman Coulter 
Genomics, USA). Then, an Illumina Nextera XT Index kit 
(Illumina, USA) was used to produce sample libraries, which 
were evaluated using a Qubit@2.0 Fluorometer (Thermo 
Scientific, USA) and sequenced on the Illumina MiSeq 
platform. The Greengenes database (http:// green genes. lbl. 
gov) was used for merging total reads, removing low-qual-
ity sequence, removing chimera sequence and clustering 
the OTU at 97% similarity. The CLC Microbial Genomics 
Module (Qiagen, Germany), basespace (illumine, USA) and 
Graphpad prism 8.1 (Graphpad Software, San Diego, CA, 
USA) were used to analyze all OTU sequences and diver-
sity. The analysis procedure was according to previous study 
[16].

Measurements of Serum Short‑Chain Fatty Acids 
(SCFAs) Levels

Add 0.3 mL of deionized water to 0.03 g of feces samples 
for homogenization.

Centrifuge homogenized feces samples to isolate 150 ul of 
the supernatant. Add 50 ul of 50% sulfuric acid, 10 ul inter-
nal standard and 200 ul ether to feces samples and shake for 
15 min. Centrifuge at 4 °C 9000 rpm for 10 min. The ether 
layer was added with anhydrous sodium sulfate  (Na2SO4) for 
dehydration and then detected by GS/MS (Agilent 7890 gas 
chromatography mass spectrometer equipped with Agilent 
HP-FFAP capillary column, 30 m*250um*0.25um; Santa 
Clara, CA, United States). The GS/MS analysis conditions 

http://greengenes.lbl.gov
http://greengenes.lbl.gov
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were as follows: injection volume 1 uL (Split 5:1), gas flow 
rate (1 mL/min), heating conditions (hold 80 °C for 1 min, 
then raised to 150 °C. Heating rate was 5 °C/min. After rais-
ing temperature to 230 °C, heating rate became 40 °C/min, 
hold on 12 min). Injection temperature was 240 °C. Trans-
mission line temperature was 240 °C. Ion source temperature 
was 230 °C.The temperature of the quadrupole was 150 °C. 
The experimental protocol was followed previous study [17]. 
Serum SCFA level were presented as (%) = averaged SCFAs 
levels in treatment groups/averaged SCFAs levels in 16 M 
mice control.

Statistics

The contents of each group were then analyzed (Graphpad 
Prism 8, Graphpad Software, San Diego, CA, USA).) using 
Brown-Forsythe ANOVA accompanied with Tamhane’s T2 
(post hoc) to compare the differences between the groups. 
For the NGS analysis, heatmap figures were generated using 
Graphpad Prism 8.1. Statistical significance was indicated if 
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

Results

Screening Potential Probiotics Through In Vitro 
Antioxidative Testing

First, we used an in vitro DPPH assay to screen probiotic 
strains potentially possessing antioxidative ability. The 
five strains with superior antioxidative ability were Bv889 
(65.6%), BLI-02 (52.8%), PL-02 (40.2%), CP-9 (21.6%), 
and VDD088 (13.6%). The antioxidative ability of the oth-
ers was less than 10%. Vitamin C (10 µg/mL; 91.84%) was 
used as the positive control for the radical scavenging test 
(Fig. 1a). We further tested the antioxidative ability of the 
postbiotics. The postbiotics exhibited excellent antioxidative 
ability, among which that of Bv889 was 91.2%, CP-9 86.4%, 
Bf-668 81.9%, BLI-02 67.3%, and PL-02 43.6% (Fig. 1b). 
Subsequently, we selected the five trains with the highest 
antioxidative ability and their postbiotics (Bv889, CP-9, 
Bf-668, BLI-02, and PL-02) to treat aging mice.

Confirming the Successful Setting of Naturally 
Aging Mouse Model

We used the murine model to investigate whether oxidative 
stress would be mitigated by probiotic treatment. Research-
ers have defined 2–6-month-old mice as equivalent to young 
human adults (~ 18–30 years), 10–16 months as human mid-
dle age (~ 38–49 years), and 18–24 months as human old 

age (~ 56–69 years) [18, 19]. We measured oxidative stress 
markers in mice from age 2 months to 16 months.

Because the experiment was conducted in a natural aging 
mouse model, observation of the change in oxidative stress 
indicators and antioxidant enzymes in the mice by age was 
necessary to confirm that the establishment of the natural 
aging model was successful. Therefore, prior to the start of 
the formal experiment, mice groups of 2 months, 10 months, 
13 months, and 16 months of age were collected, and their 
brains, hearts, livers, and kidneys were tested for antioxi-
dant enzymes, including SOD, CAT, and GPx, all of which 
gradually decline with age. We also examined a lipid, a pro-
tein, and a nucleic acid under peroxide attack by aging. The 
biological activity indicators included lipid oxide in propyl-
ene glycol (malondialdehyde, MDA), protein carbonyl after 
protein oxidation, and mitochondrial 8OHdG content, levels 
of which increase with age (Fig. 2; Supplemental Figs. 2-5).

Brain, Heart, Liver, Kidney Antioxidative Levels 
Elevated in Middle‑Aged Mice Taking Probiotics

According to the results of previous experiments, we fed 
different formulas of selected probiotic strains with their 
metabolites to 10-month-old mouse groups for 6 months 
(Fig. 2; Supplemental Figs. 2-5). Each group consisted of 
two male and female mice. The feeding groups were as 
described in Materials and Methods. The selected strains 
were mixed probiotics with strong antioxidant capacity 
according to prior in vitro experiments.

Oxidative stress markers MDA significantly decreased 
in brain, heart, liver and kidneyby taking probiotic for-
mulas (Fig. 2a–d). Compared with the 16 months natural 
aging group (4.64 µM), brain MDA levels decreased in all 
the experimental groups, including the resveratrol con-
trol (1.78 µM, **P < 0.01), low-dose probiotics (1.82 µM, 
**P < 0.01), low-dose probiotics plus postbiotics (1.95 µM, 
**P < 0.01), high-dose probiotics (1.46 µM, **P < 0.01), 
and high-dose probiotics plus postbiotics (1.53  µM, 
***P < 0.001) groups (Fig. 2a). Furthermore, high-dose 
treatment with probiotics and high-dose probiotics plus post-
biotics significantly reduced protein C + and mitochondrial 
8OHdG levels in the brain (Supplementary Fig. 2e).

Heart MDA levels decreased in all the experimental 
groups by comparing to 16 M middle-age group (7.79 µM), 
including the resveratrol control (4.08 µM, ***P < 0.001), 
low-dose probiotics (5.59 µM), low-dose probiotics plus 
postbiotics (4.76 µM, **P < 0.01), high-dose probiotics 
(5.03 µM, **P < 0.01), and high-dose probiotics plus post-
biotics (5.11 µM, **P < 0.01) groups (Fig. 2b).

Liver MDA levels decreased in all the experimental 
groups by comparing to 16 M middle-age group (4.8 µM), 
including the resveratrol control (2.88 µM, **P < 0.01), 
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low-dose probiotics (0.78 µM, ***P < 0.001), low-dose 
probiotics plus postbiotics (1.32 µM, ***P < 0.001), high-
dose probiotics (1.52 µM, ***P < 0.001), and high-dose 
probiotics plus postbiotics (1.36 µM, ****P < 0.0001) 
groups (Fig. 2c). Finally, kidney MDA levels decreased 
in all the experimental groups by comparing to 16 M 
middle-age group (3.31 µM), including the resveratrol 
control (1.59  µM, **P < 0.001), low-dose probiotics 
(1.6 µM, **P < 0.01), low-dose probiotics plus postbiot-
ics (1.72 µM, *P < 0.05), high-dose probiotics (1.74 µM, 

**P < 0.01), and high-dose probiotics plus postbiotics 
(1.33 µM, **P < 0.01) groups (Fig. 2d).

Gut Microbiota Phylum Changes Among 
Middle‑Aged Mice Fed Probiotics

We examined gut microbiota changes to verify whether 
the fed probiotics colonized in the gut and determine the 
influence on antioxidative levels of the colonizing probi-
otic strains. NGS was employed to analyze microbiota in 
mouse feces. We compared the microbiota of seven groups: 

Fig. 1  Screening potential 
antioxidative probiotics through 
in vitro radical scavenging 
capacity testing (DPPH assay). 
a antioxidative ability ranking 
of viable probiotic strains. b 
antioxidative ability ranking of 
metabolites of probiotic strains 
(postbiotics). The experimental 
probiotic strains were listed 
below: B. animalis subsp. infan-
tis BLI-02, B. breve Bv889, B. 
bifidum VDD088, B. animalis 
subsp. lactis CP-9, Lactobacil-
lus plantarum PL-02, L. lactis 
L-87, L. rhamnosus L-13, E. 
faecium L-38, L. gasseri L-2, L. 
paracasei L-134, L. paracasei 
L-30, and S. thermophilus 
L-243. 10 µg/ml of vitamin C 
was used as positive control
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2 M (young age group without treatment), 16 M (middle-
age group without treatment), the resveratrol treatment 
group (16  months old), the low-dose probiotics group 
(16 months old), the low-dose probiotics plus postbiot-
ics group (16 months old), the high-dose probiotics group 
(16 months old), and the high-dose probiotics plus postbiot-
ics group (16 months old).

At the phylum level, the relative abundance of proteo-
bacteria was significantly elevated in the high-dose pro-
biotics plus postbiotics group (5.35%, P < 0.05) compared 
with the 16 M group (1.36%) (Fig. 3a). The relative abun-
dance of Actinobacteria was 0.14% in 2 M and 0.043% in 
16 M. However, treatment with resveratrol, low-dose pro-
biotics plus postbiotics, high-dose of probiotics, and high-
dose probiotics plus postbiotics significantly increased gut 
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Fig. 2  Probiotics reduced oxidative stress (lipid peroxidation level; 
MDA) in the a brain, b heart, c liver, and d kidney (probiotics 
administered for 6  months). Experimental mice were divided into 
nine groups. The groups 2 months old (2 M), 10 months old (10 M), 
13 months old (13 M), and 16 months old (16 M) were not treated 
with probiotics. The 2  M mice were considered young mice and 

those older than 10 months were considered aged mice. Resveratrol 
was used as positive control for antiaging intervention. We began the 
probiotic treatment from the 10th month of age and treated the mice 
for 6 months. Treatment groups were compared with the 16 M group 
(vehicle control). *P < 0.05, **P < 0.01, ***P < 0.001
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Actinobacteria to 0.22% (P < 0.001), 0.38% (P < 0.001), 
0.37% (P < 0.05), and 0.46% (P < 0.001), respectively 
(Fig. 3a).

Genus Abundance of Lactobacillus, Bifidobacterium, 
and Akkermansia Elevated by Probiotics

At the genus level, the relative abundance of Lactobacil-
lus was 4.43% in 2 M, whereas it dropped significantly to 
2.11% (P < 0.05) in the middle-age group with natural aging 
(Fig. 3b). However, after 6 months of intervention, the res-
veratrol, low-dose probiotics, low-dose probiotics plus post-
biotics, high-dose probiotics, and high-dose probiotics plus 
postbiotics groups had elevated gut populations of Lactoba-
cillus of 3.86% (P < 0.05), 5.56%, 6.54% (p < 0.001), 7.22% 
(P < 0.001), and 7.31% (P < 0.001), respectively (Fig. 3b). 
Similarly, the relative abundance of Bifidobacterium was 
0.27% in the 2 M group but was significantly decreased to 
0.05% (P < 0.05) in the middle-aged group. After 6 months 
of intervention, the resveratrol, low-dose probiotics, low-
dose probiotics plus postbiotics, high-dose probiotics, and 
high-dose probiotics plus postbiotics groups exhibited ele-
vated gut populations of Lactobacillus of 0.27% (P < 0.05), 
0.35% (P < 0.01), 0.48% (P < 0.001), 0.42% (P < 0.01), and 
0.56% (P < 0.001), respectively (Fig. 3b). Furthermore, 
the relative abundance of Akkermansia was 0.35% in 2 M, 
whereas it was significantly decreased to 0.04% (P < 0.05) 

in the middle-aged group. After 6 months of intervention, 
the resveratrol, low-dose probiotics, low-dose probiot-
ics plus postbiotics, high-dose probiotics, and high-dose 
probiotics plus postbiotics groups contained elevated gut 
populations of Lactobacillus of 0.11%, 0.26% (P < 0.05), 
0.2% (P < 0.001), 0.23% (P < 0.01), and 0.41% (P < 0.01), 
respectively (Fig. 3b).

Probiotic Intervention Changed the Dispersion 
of Lactobacillus Species in Middle‑Aged Mice

Next, The Greengenes database was used to classify the 
OTU of Lactobacillus and Bifidobacterium at 97% simi-
larity. The abundance of L. plantarum was significantly 
expanded in the probiotic-treated groups, specifically, in the 
low-dose probiotics (0.01%, P < 0.001), low-dose probiot-
ics plus postbiotics (0.02%, P < 0.05), high-dose probiotics 
(0.01%, P < 0.001), and high-dose probiotics plus postbiot-
ics (0.03%, P < 0.001) groups (Fig. 4a). The abundance of 
Lactobacillus intestinalis, Lactobacillus japonicas, Lacto-
bacillus pentosus, Lactobacillus reuteri, and Lactobacillus 
johnsonii was also significantly increased in the probiotic 
groups.

Among all species of Lactobacillus in the gut, L. john-
sonii exhibited a dramatic change following probiotic treat-
ment. The relative abundance of L. johnsonii was 3.32% in 
2 M but decreased to 1.29% in the middle-aged group. After 
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Fig. 3  NGS analysis of gut microbiota change by taking probiotic 
product a in phylum level and b in genus level. The group 2 M was 
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6 months of intervention, the resveratrol, low-dose probiot-
ics, low-dose probiotics plus postbiotics, high-dose probiot-
ics, and high-dose probiotics plus postbiotics groups had 
elevated gut populations of L. johnsonii, of 3.76% (P < 0.01), 
3.56% (P < 0.001), 3.72% (P < 0.05), 4.28% (P < 0.001), and 
4.42% (P < 0.01), respectively (Fig. 4a).

Probiotic Intervention Changed the Dispersion 
of Species of Bifidobacterium in Middle‑Aged Mice

The abundance of each of B. animalis, B. bifidum, and B. 
breve in the gut was elevated by the mixed probiotic strains 
(Fig. 4b). The gut population of B. animalis significantly 
increased in the high-dose probiotics group (0.0029%, 
P < 0.01) and the high-dose probiotics plus postbiotics 
group (0.01%, P < 0.001). The abundance of gut B. bifi-
dum was significantly elevated in the low-dose probiotics 
plus postbiotics (0.05%, P < 0.001), high-dose probiotics 
(0.04%, P < 0.001), and high-dose probiotics plus postbiotics 
(0.13%, P < 0.001) groups. Moreover, all probiotic treatment 
groups had greater abundance of B. breve in the gut; 0.004% 
(P < 0.05) in the low-dose probiotics, 0.007% (P < 0.05) in 
the low-dose probiotics plus postbiotics, 0.005% (P < 0.05) 
in the high-dose probiotics, and 0.016% in the high-dose 

probiotics plus postbiotics (P < 0.001) groups (Fig. 4b). 
Moreover, some gut Bifidobacterium populations different 
from the Bifidobacterium in the supplement of mixed strains 
also increased after treatment, including Bifidobacterium 
adolescentis, Bifidobacterium longum, and Bifidobacterium 
stercoris.

High‑Dose Probiotic Intervention Changed 
the Serum Short‑Chain Fatty Acids (SCFAs) 
Distribution in Middle‑Aged Mice

SCFA belongs to the nature of the metabolites produced by 
probiotics. Next, the serum SCFAs levels were measured 
among different treatment groups (Fig. 5). Comparing to 
non-treatment control (16 M mice), resveratrol, high-dose 
probiotic treatment and high-dose probiotic plus postbiotic 
in serum SCFAs. High-dose probiotic treatment significantly 
increased the serum butyrate (478.8%, P < 0.001), caproate 
(135.9%, P < 0.05), octanoic acid (201.5%, P < 0.01) and 
decanoic acid (280.1%, P < 0.01) levels. The high-dose 
probiotic plus postbiotic would significantly elevate serum 
butyrate (518.5%, P < 0.001), isovalerate (168.9%, P < 0.05) 
and caproate (126.3%, P < 0.01).
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Fig. 4  NGS analysis of gut microbiota change by taking probiotic 
product a  in species of Lactobacillus and  b in species of Bifido-
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Discussion

In this study, we used a natural aging method to establish a 
16-month-old murine model. Numerous studies have admin-
istrated D-galactose to establish an aging mice model, which 
successfully accelerated aging in 45 days [20–22].

Navarro et al. indicated that SOD levels and behavioral 
activity are significantly decreased in aging mice, whereas 
levels of the oxidative marker MDA are significantly 
increased in the mouse brain [23], which consistent with 
our natural aging model. Furthermore, levels of oxidative 
stress markers including MDA), protein carbonyl after pro-
tein oxidation, and mitochondrial 8OHdG decreased in mice 
receiving the probiotics (Fig. 2; Supplemental Figs, 2-5).

Mitochondria play an essential role in energy produc-
tion through oxidative phosphorylation and intracellular 
homeostasis. Damage to or dysfunction of mitochondria 
can lead to aging, cardiovascular disease, neurodegen-
erative disorders, and cancer, among other outcomes [24]. 
Thus, the predominant forms of the free radical–induced 
oxidative marker mitochondrial DNA 8OHdG have been 
widely used as a biomarker of oxidative stress [25]. Our 
results indicate that mixed probiotic strains significantly 
reduced mitochondria 8OHdG levels in the brain, liver, 
and kidney (Supplemental Figs, 2-5). However, there was 
no large difference between the number of probiotics in 
the low-dose group (1.03 ×  109 CFU/kg) and the high-dose 
group (4.1 ×  109 CFU/kg) in antioxidative activities. More 
probiotic dosages should be test in the antioxidative assays 
in the future.

Postbiotics are fermentation components generated by 
bioactive probiotic strains. They consist of various metab-
olites including microbial cell fractions, short-chain fatty 
acids, teichoic acid, extracellular polysaccharides, pepti-
doglycan-derived muropeptides, and functional proteins, 
and they reportedly benefit the regulation of anti-inflam-
matory and immune effects [26]. The synergetic effects 
of L. plantarum and β-glucans were reported to enhance 
digestive enzyme activity and intestinal morphology [27]. 
Our results also confirmed the synergetic effects of viable 
probiotic strains combined with their postbiotics in elevating 
antioxidative activities in the brain, liver, heart, and kidney 
of middle-aged mice (Fig. 2; Supplemental Figs. 2-5).

Gut microbiota have been recognized as playing a key 
role in aging and in antiaging interventions [28]. Evidence 
of the potential beneficial effects of dietary probiotics in 
older adults continues to accumulate [29]. In our study, com-
pared with the young group, the proportions of the Bac-
teroidates phylum, Verrucomicrobia, and Actinobacteria 
were smaller in middle-aged mice, whereas the amount of 
Firmicutes was elevated (Fig. 3a) The genera of Lactobacil-
lus, Bifidobacterium, and Akkermansia exhibited a similar 
tendency after treatment with probiotic formulas (Fig. 3b). 
The probiotic-fed groups had increased gut B. animalis, B. 
breve, B. bifidum, and L. plantarum, especially the high-
dose probiotics plus postbiotics group, which implies the 
fed probiotic strains successfully colonized the GI tract and 
enlarged the populations of the original species (Fig. 4a, b). 
Unexpectedly, the populations of some species not members 
of the fed probiotics also increased in the gut, including L. 

Fig. 5  Serum short-chain fatty 
acids (SCFAs) levels in middle-
aged group. The group of 
16 months old (16 M) was not 
treated with probiotics, which 
was considered middle-aged 
mice. We began the probiotic 
treatment from the 10th month 
of age and continued the treat-
ment for 6 months. Resveratrol 
was used as positive control for 
antiaging intervention. Serum 
short-chain fatty acids (SCFAs) 
were measured after sacrificing 
including acetate, propionate, 
isobutyrate, butyrate, valer-
ate, caproate, hexanoic acid, 
octanoic acid, and decanoic 
acid. Treatment groups were 
compared with the 16 M group 
(vehicle control). *P < 0.05, 
**P < 0.01, ***P < 0.001
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johnsonii, and Akkermansia muciniphila (Fig. 4a; Supple-
mental Fig. 6).

The abundance of L. johnsonii notably increased to 
4.42% in the gut of mice receiving probiotic (high-dose) 
plus postbiotics (Fig. 4c). Several beneficial functions 
of L. johnsonii have been reported, including thickened 
mucous membranes in stomach ulcers [30], restored num-
bers of serum IgA, IgG, and CD8 + cells, increased spleno-
cyte counts in aged mice with protein–energy malnutrition 
[31], decreased glucagon and glucose levels in diabetic 
rats [32], and prevention of memory dysfunction [33]. The 
proportion of gut Akkermansia was also significantly ele-
vated, to 0.41%, in mice receiving probiotics (high-dose) 
plus postbiotics, whereas in the 16-month-old mice it was 
only 0.04% (Fig. 4b). The colonization of Akkermansia 
in the gut was reported to relieve appendicitis-related 
inflammation and inflammatory bowel disease [34]. A 
recent clinical study discovered that Akkermansia were 
significantly increased among semisupercentenarians (age 
105–109 years), which suggests that Akkermansia might 
play a part in building new gut homeostasis in extreme 
aging people [35].

A dysfunction in the gut–brain axis has been explained 
by a series of studies linked to neuropsychological, meta-
bolic, and gastrointestinal disorders. Study findings reveal 
that perturbations of short-chain fatty acid and amino acid 
metabolism in serum and CSF are implicated in the onset 
of depression [36]. At the present study, the high-dose pro-
biotics and high-dose probiotics plus postbiotics would sig-
nificantly elevate serum butyrate levels (Fig. 5). Butyrate, 
a four-carbon short-chain fatty acid, is a crucial energy 
source for gut [37]. Studies had revealed multiple benefits 
of butyrate in human including enhancement of intestinal 
barrier function and mucosal immunity [38], elevating anti-
inflammation status [39], modulating oxidative stress in the 
colonic mucosa [40] and alleviation of depression-related 
symptoms [41]. Thus, the probiotic secreting SCFAs may 
be the key factors in antiaging effect.

In conclusion, the mixed probiotic formula of B. ani-
malis subsp. infantis BLI-02, B. breve Bv889, B. bifidum 
VDD088VDD088, B. animalis subsp. lactis CP-9, and L. 
plantarum PL-02 successfully elevated antioxidative activity 
with positive modulation of beneficial intestinal microbiota 
and elevated serum SCFA in the middle-aged mice. How-
ever, the sample sizes of each experimental group should be 
enlarged to eight mice, and animal behavior testing should 
be performed in the future. Finally, a human study on antiag-
ing function could be conducted using the mixed probiotic 
formula of this study [42].

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00284- 022- 02783-y.
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