Skip to main content
Log in

Hymenobacter guriensis sp. nov., and Hymenobacter duratus sp. nov., Radiation-Resistant Species Isolated from Soil in South Korea

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Two novel Gram-stain-negative, non-motile, aerobic, rod-shaped, circular, convex, red-colored and UV-tolerant strains BT594T and BT646T were isolated from soil collected in Guri city (37° 36′ 0″ N, 127° 9′ 0″ E) and Gwangju city (37° 22′ 0″ N, 127° 17′ 0″ E), respectively, South Korea. 16S rDNA sequence analysis indicated that strains BT594T and BT646T belong to a distinct lineage within the genus Hymenobacter (family Hymenobacteraceae, order Cytophagales, class Cytophagia, phylum Bacteroidetes, kingdom Bacteria). The 16S rDNA gene sequence similarity between the two strains BT594T and BT646T was 96.2%. The strain BT594T was closely related to Hymenobacter psychrotolerans Tibet-IIU11T (97.0% 16S rDNA gene similarity) and Hymenobacter tibetensis XTM003T (96.3%). The strain BT646T was closely related to Hymenobacter psychrotolerans Tibet-IIU11T (98.6%), Hymenobacter kanuolensis T-3 T (96.8%) and Hymenobacter perfusus LMG 26000 T (96.7%). The two strains were found to have the same quinone system, with MK-7 as the major respiratory quinone. The major polar lipids of strains BT594T and BT646T were phosphatidylethanolamine (PE) and aminophospholipids (APL). The major cellular fatty acids of strain BT594T were anteiso-C15:0 (17.9%), iso-C15:0 (16.1%) and summed feature 3 (C16:1 ω6c / C16:1 ω7c) (10.0%). The major cellular fatty acids of strain BT646T were summed feature 3 (C16:1 ω6c / C16:1 ω7c) (18.3%), C16:0 (17.2%) and summed feature 4 (iso-C17:1 I / anteiso-C17:1 B) (14.5%). Based on the polyphasic analysis, strains BT594T and BT646T can be suggested as two novel bacterial species within the genus Hymenobacter and the proposed names are Hymenobacter guriensis and Hymenobacter duratus, respectively. The type strain of Hymenobacter guriensis is BT594T (= KCTC 21863 T = NBRC 114853 T) and the type strain of Hymenobacter duratus is BT646T (= KCTC 21915 T = NBRC 114854 T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Munoz R, Rossello-Mora AR (2017) Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov. Syst Appl Microbiol 39:281–296

    Article  Google Scholar 

  2. Zhang L, Dai J, Tang Y, Luo X, Wang Y, An H, Fang C, Zhang C (2009) Hymenobacter deserti sp. nov., isolated from the desert of Xinjiang. China Int J Syst Evol Microbiol 59:77–82

    Article  CAS  Google Scholar 

  3. Han L, Wu SJ, Qin CY, Qin CY, Zhu YH, Lu ZQ, Xie B, Lv J (2014) Hymenobacter qilianensis sp. nov., isolated from a subsurface sandstone sediment in the permafrost region of Qilian Mountains, China and emended description of the genus Hymenobacter. Antonie Van Leeuwenhoek 105:971–978

    Article  CAS  Google Scholar 

  4. Kim MK, Kang MS, Srinivasan S, Lee DH, Lee SY, Jung HY (2017) Complete genome sequence of Hymenobacter sedentarius DG5BT, a bacterium resistant to gamma radiation. Mol Cell Toxicol 13:199–205

    Article  CAS  Google Scholar 

  5. Sedlacek I, Pantucek R, Kralova S, Maslanova I, Holochova P, Stankova E, Vrbovska V, Svec P, Busse HJ (2019) Hymenobacter amundsenii sp. nov. resistant to ultraviolet radiation, isolated from regoliths in Antarctica. Syst Appl Microbiol 42:284–290

    Article  CAS  Google Scholar 

  6. Chung AP, Lopes A, Nobre MF, Morais PV (2010) Hymenobacter perfusus sp. nov., Hymenobacter flocculans sp. nov. and Hymenobacter metalli sp. nov. Three new species isolated from an uranium mine waste water treatment system. Syst Appl Microbiol 33:436–443

    Article  CAS  Google Scholar 

  7. Feng GD, Zhang J, Chen W, Wang SN, Zhu H (2020) Hymenobacter fodinae sp. nov. and Hymenobacter metallicola sp. nov., isolated from abandoned lead-zinc mine. Int J Syst Evol Microbiol 70:4867–4873

    Article  CAS  Google Scholar 

  8. Jiang F, Danzeng W, Zhang Y, Zhang Y, Jiang L, Liu J, Lu L, Fan W, Peng F (2018) Hymenobacter rubripertinctus sp. nov., isolated from Antarctic tundra soil. Int J Syst Evol Microbiol 68:663–668

    Article  CAS  Google Scholar 

  9. Klassen JL, Foght JM (2011) Characterization of Hymenobacter isolates from victoria upper glacier, Antarctica reveals five new species and substantial non-vertical evolution within this genus. Extremophiles 15:45–57

    Article  Google Scholar 

  10. Dai J, Wang Y, Zhang L, Tang Y, Luo X, An H, Fang C (2009) Hymenobacter tibetensis sp. nov., a UV-resistant bacterium isolated from Qinghai-Tibet plateau. Syst Appl Microbiol 32:543–548

    Article  CAS  Google Scholar 

  11. Yu SL, Lee SK (2017) Ultraviolet radiation: DNA damage, repair, and human disorders. Mol Cell Toxicol 13:21–28

    Article  CAS  Google Scholar 

  12. Kang MS, Srinivasan S (2018) Complete genome sequence of Methylobacterium sp. 17Sr1-43, a radiation-resistant bacterium. Mol Cell Toxicol 14:453–457

    Article  CAS  Google Scholar 

  13. Kim MK, Kim JY, Kim SJ, Kim MJ, Lee JY, Kim CG, Srinivasan S (2017) Complete genome sequence of Spirosoma pulveris JSH 5–14T, a bacterium isolated from a dust sample. Mol Cell Toxicol 13:373–378

    Article  Google Scholar 

  14. Maeng S, Kim MK, Subramani G (2020) Hymenobacter jejuensis sp. nov., a UV radiation-tolerant bacterium isolated from Jeju Island. Antonie Van Leeuwenhoek 113:553–561

    Article  CAS  Google Scholar 

  15. Sathiyaraj G, Kim MK, Kim JY, Kim SJ, Jang JH, Maeng S, Kang MS, Srinivasan S (2018) Complete genome sequence of Microvirga sp. 17mud 1–3, a radiation-resistant bacterium. Mol Cell Toxicol 14:347–352

    Article  CAS  Google Scholar 

  16. Sathiyaraj G, Kim MK, Kim JY, Kim SJ, Jang JH, Maeng S, Kang MS, Srinivasan S (2018) Complete genome sequence of Nibribacter radioresistens DG15C, a radiation resistant bacterium. Mol Cell Toxicol 14:323–328

    Article  CAS  Google Scholar 

  17. Srinivasan S, Lee SY, Kim MK, Jung HY (2017) Complete genome sequence of Hymenobacter sp. DG25A, a gamma radiation-resistant bacterium isolated from soil. Mol Cell Toxicol 13:65–72

    Article  CAS  Google Scholar 

  18. Cappuccino JG, Sherman N (2010) Microbiology: a Laboratory Manual, 9th edn. Benjamin Cummings

    Google Scholar 

  19. Weisburg WG, Barns SM, Pellerier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  CAS  Google Scholar 

  20. Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286

    Article  CAS  Google Scholar 

  21. Jeon YS, Lee K, Park SC, Kim BS, Cho YJ, Ha SM, Chun J (2014) EzEditor: a versatile sequence alignment editor for both rRNA- and protein-coding genes. Int J Syst Evol Microbiol 64:689–691

    Article  CAS  Google Scholar 

  22. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    Article  CAS  Google Scholar 

  23. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Bio Evol 4:406–425

    CAS  Google Scholar 

  24. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  Google Scholar 

  25. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  26. Felsenstein J (1985) Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  27. Kimura M (1983) The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  28. Tatusova T, DiCuccio M, Badretdin A et al (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624

    Article  CAS  Google Scholar 

  29. Lee I, Ouk Kim Y, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103

    Article  CAS  Google Scholar 

  30. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60

    PubMed  PubMed Central  Google Scholar 

  31. Komagata K, Suzuki K (1987) 4 Lipid and cell-wall analysis in bacterial systematics. Method Microbiol 19:161–207

    Article  CAS  Google Scholar 

  32. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth 2:233–241

    Article  CAS  Google Scholar 

  33. Sasser M (1990) Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101, pp. 1–7. Newark DE: MIDI Inc

  34. Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by high performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469

    Article  CAS  Google Scholar 

  35. Feng GD, Zhang J, Zhang XJ, Wang SN, Xiong X, Zhang YL, Huang HR, Zhu HH (2019) Hymenobacter metallilatus sp. nov., isolated from abandoned lead-zinc ore. Int J Syst Evol Microbiol 269:2142–2146

    Article  Google Scholar 

  36. Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131

    Article  CAS  Google Scholar 

  37. Su S, Chen M, Teng C, Jiang S, Zhang C, Lin M, Zhang W (2014) Hymenobacter kanuolensis sp. nov., a novel radiation-resistant bacterium. Int J Syst Evol Microbiol 64:2108–2112

    Article  CAS  Google Scholar 

  38. Zhang G, Niu F, Busse HJ, Ma X, Liu W, Dong M, Feng H, An L, Cheng, (2008) Hymenobacter psychrotolerans sp. nov., isolated from the Qinghai-Tibet Plateau permafrost region. Int J Syst Evol Microbiol 58:1215–1220

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from Seoul Women’s University (2021) and by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR202002108). This research was supported by the MIST (Ministry of Science, ICT), Korea, under the National Program for Excellence in SW), supervised by the IITP (Institute of Information & communications Technology Planing & Evaluation) in 2021 (2016-0-00022). We are grateful to Dr. Aharon Oren (The Hebrew University of Jerusalem, Israel) for helping with the etymology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to In-Tae Cha or Myung Kyum Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3585 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damdintogtokh, T., Cha, IT. & Kim, M.K. Hymenobacter guriensis sp. nov., and Hymenobacter duratus sp. nov., Radiation-Resistant Species Isolated from Soil in South Korea. Curr Microbiol 78, 3334–3341 (2021). https://doi.org/10.1007/s00284-021-02517-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02517-6

Navigation