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Abstract
Bacterial contact-dependent growth inhibition (CDI) systems are two-partner secretion systems in which toxic CdiA proteins 
are exported on the outer membrane by cognate transporter CdiB proteins. Upon binding to specific receptors, the C-terminal 
toxic (CT) domain, detached from CdiA, is delivered to neighbouring cells. Contacts inhibit the growth of not-self-bacteria, 
lacking immunity proteins co-expressed with CdiA, but promote cooperative behaviours in “self” bacteria, favouring the 
formation of biofilm structures. The Acinetobacter baylyi ADP1 strain features two CdiA, which differ significantly in size 
and have different CT domains. Homologous proteins sharing the same CT domains have been identified in A. baumannii. 
The growth inhibition property of the two A. baylyi CdiA proteins was supported by competition assays between wild-type 
cells and mutants lacking immunity genes. However, neither protein plays a role in biofilm formation or adherence to epi-
thelial cells, as proved by assays carried out with knockout mutants. Inhibitory and stimulatory properties may be similarly 
uncoupled in A. baumannii proteins.

Introduction

Gram-negative bacteria exploit six secretion systems (types 
I–VI) to secrete proteins outside the cell [8]. Most secre-
tion machineries are complex structures which span both 
the inner membrane (IM) and the outer membrane (OM). In 
the type V secretion system, proteins cross the IM through 
the Sec system and subsequently the OM either alone, in 
the auto-transporter pathway, or assisted by dedicated pro-
teins, in the two-partner secretion (TPS) pathway [17]. The 
secreted proteins may remain onto the OM, be released 
into the extracellular milieu, or be injected into target cells. 
Secreted proteins are involved in different processes which 
include adhesion to cells or abiotic surfaces, iron acquisi-
tion, invasion of eukaryotic cells, environmental adaptation. 

Many are weapons used to prey upon non-self-bacteria. In 
type VI secretion systems, proteins evolutionarily related to 
phage tails components assemble contractile tubules which 
deliver killing proteins to adjacent cells [4].

In the peculiar TPS systems known as contact-dependent 
growth inhibition (CDI), CdiA proteins are exported on the 
outer membrane by cognate CdiB proteins and stop upon 
contact the growth of neighbouring bacteria [1, 16]. The 
C-terminal domain of CdiA (CdiA-CT) proteins contains 
a toxin activity delivered to targeted cells to inhibit their 
growth. Immunity CDI proteins neutralize toxin activity 
in CDI + bacteria. CDI systems had been identified in sev-
eral Gram-negative bacteria, and multiple CdiA/CdiI toxin/
antitoxin systems had been described in the same bacterial 
species [16, 20]. CdiA proteins promote also cooperative 
interactions between isogenic CDI + cells, facilitating bio-
film formation. CDI-dependent cell–cell adhesion had been 
observed in Escherichia coli [1], Xylella fastidiosa [14], 
Xanthomonas axonopodis [13] Burkholderia thailandensis 
[12], P. aeruginosa [20]. The same holds for the type IV 
secretion system (T6SS), which has been shown to play an 
active role in kin recognition and territorial behaviour by 
exporting self-recognition proteins in Proteus mirabilis [28].

Acinetobacter baylyi is an environmental non-pathogenic 
bacterium occasionally found responsible for opportunistic 
infections [6], amenable to genetic modifications because 
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highly competent in natural transformation [11]. In recent 
years, A. baylyi had been extensively analysed because pro-
vided of an efficient T6SS [23, 27] able to kill neighbouring 
bacteria and promote the acquisition of DNA from targeted 
cells [7].

The analysis of the complete genome sequence [3] 
revealed that the A. baylyi ADP1 strain potentially encodes 
two large surface proteins of 2000 and 3711 amino acids 
(orfs 2784 and 940, respectively), which were annotated as 
filamentous hemagglutinins.

The objectives of the present report were to (i) analyse the 
structural organization of these proteins and their relatedness 
to homologous proteins present in A. baumannii; (ii) demon-
strate that they are components of two distinct CDI systems; 
(iii) analyse their role in biofilm formation and adherence to 
human pneumocytes.

Materials and Methods

Construction of A. baylyi Mutants

Acinetobacter baylyi ADP1 mutant strains were constructed 
by insertion of the kanamycin-resistance cassette into target 
genes as described previously [2]. Briefly, the kanR gene 
was PCR amplified from plasmid pCR2.1-TOPO (Thermo 
Fisher Scientific) using the KmFw and KmRv primers, and 
the upstream and the downstream regions of each target 
gene were amplified from ADP1 DNA using specific primer 
pairs. A nested overlap PCR was carried out with an Expand 
High Fidelity Taq DNA polymerase (Roche), using NestFw 
and NestRv primers to generate DNA fragments including 
the kanR cassette flanked by 400–700 bp of chromosomal 
regions upstream and downstream of the gene segment to be 
deleted. The nested overlap PCR was performed as previ-
ously described [9]. Transformation assays were performed 
as previously described [21]. Knockout deletions were veri-
fied in PCR experiments using primers CF and CR. Oligo-
nucleotide primers are listed in Table S1. For biofilm assays, 
bacteria were grown in LB at 30 or 37 °C, or in brain heart 
infusion broth at 30 °C.

Competition Assays

Overnight cultures were diluted in modified LB (10 g/l 
tryptone, 5 g/l yeast extract, 0.5 g/l NaCl) and incubated 
at 30 °C, till an A600 of ~1.0 was reached. Cultures were 
then diluted to an A600 of 0.4. For competition assays, 40 µl 
of predator A. baylyi ADP1 were mixed with 4 µl of prey 
cells and 20 µl of the mixture were spotted on LB-agar 
plates. Plates were incubated at 30 °C for 4 h. Then, spots 
were excised from the plate, placed in 500 µl of PBS, seri-
ally diluted, and plated on LB agar containing 12.5 µg/ml 

kanamycin. Of each dilution, 100 µl was spread for CFU 
count; 10 µl was spotted to visualize the outcome of the 
competition assay. Experiments were performed in triplicate.

RNA Analyses

RNA was isolated from A. baylyi ADP1 cells at log, late-
log, and stationary phases. To monitor expression levels 
of cdiA genes, RT-PCR analyses were carried out as pre-
viously described [24] using the oligonucleotides listed in 
Table S1. Transcript levels were normalized to 16S rRNA 
levels. Changes in transcript levels were determined by the 
relative quantitative method (ΔΔCT). Experiments were car-
ried out in triplicate.

Biofilm Formation Assay

Quantitative biofilm formation on polystyrene surfaces was 
investigated as previously reported [29]. To quantify bio-
film formation in glass tubes, cultures were grown overnight 
in 12-mm-diameter glass under static conditions for 72 h 
at 30 °C. Upon medium removal, tubes were washed three 
times with PBS. Subsequently, 5 ml of 0.1% crystal violet 
was added for 15 min at room temperature, followed by rins-
ing with PBS. Tubes were photographed after air drying. 
For confocal laser scanning microscopy (CLSM) analyses, 
~2 × 105 CFU/ml of wild-type and mutant cells were added 
to cell culture plates containing glass coverslips and incu-
bated in static conditions at 30 °C for 72 h. Biofilm images 
were recorded as previously described [9]. All experiments 
were performed in triplicate.

Cell Adhesion Assays

Adherence of A. baylyi strains to A549 cells (human type 2 
pneumocytes) was determined as described previously [9], 
with minor modifications. In brief, ~105 A549 cells were 
infected with ~107 bacterial CFU and incubated for 60 min 
at 37 °C in 5% CO2 (v/v) atmosphere. After removal of non-
adherent bacterial cells by washing with PBS, infected cells 
were lysed by the addition of 1 ml distilled water and serial 
10-fold dilutions were plated on LB agar to determine the 
number of CFU of adherent bacteria. Dilutions from har-
vested samples were seeded on LB agar plates and bacterial 
colony counts were assessed after overnight incubation at 
37 °C. Each experiment was performed in triplicate.

Statistical Analysis

Data were analysed using GraphPad Prism Version 5. Differ-
ences between mean values were tested for significance by 
performing one-way ANOVA analysis followed by Dunnett’s 
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comparison test. A P value < 0.001 was considered to be 
statistically significant.

In Silico Analyses

The CT regions of the CdiA2784 and CdiA940 proteins 
were used as queries for homology searches at GenBank car-
ried out against both complete and draft genomes databases 
classified as Acinetobacter (taxid:469). Protein domains 
were searched at the NCBI CDD (Conserved Domain Data-
base) site (http://www.ncbi.nlm.nih.gov/Struc​ture/cdd/
cdd.shtml​). Protein alignments were generated with the 
CLUSTAL OMEGA program (https​://www.ebi.ac.uk/Tools​
/msa/clust​alo/). The sequence types of CDI+ strains were 
determined by querying either the genomes, or the pool of 
contig sequences of the strain of interest in FASTA format, 
against the A. baumannii MLST database (https​://pubml​
st.org/bigsd​b?db=pubml​st_abaum​annii​_paste​ur_seqde​
f&set_id=2&page=seque​nce).

Results and Discussion

Acinetobacter baylyi CDI Systems

The A. baylyi ADP1 strain features two cdi gene clusters. 
Each includes three adjacent genes, which encode the CdiB 
transporter, the secreted CdiA protein and an immunity CdiI 
protein, respectively (Fig. 1a). RT-PCR analyses revealed 
that both cdi gene clusters are transcribed (Fig. S1). The 
immunity genes cdiI941 and cdiI2783 are located at a dis-
tance of 1 and 12 bp from the upstream cdiA genes, respec-
tively, and hence are co-transcribed with them. CdiA2784 
and CdiA940 share an extended signal peptide region 
(ESPR) domain at the NH2 side, which is recognized by 
the Sec-translocation machinery and eventually cleaved dur-
ing the export through the IM, and a TPS domain involved 
in CdiA–CdiB interactions, but differ in length and organi-
zation. CdiA2784 features a domain of unknown function 
(DUF637, PF04830), and a PT (pre-toxin)-VENN domain 
(PF04829), located, as in CdiA from many bacterial species 
[20], immediately upstream of the CT region. The CdiA2784 
CT region spans a Tox-REase-7 domain (PF15649). 
CdiA940 features a large repeat region, constituted by arrays 
of short repeats reminiscent of those found in (B) pertus-
sis filamentous hemagglutinin [18]. No toxin domain was 
recognized at the COOH terminus of CdiA940 at the NCBI 
Conserved Domain Database.

Homology searches showed that the two proteins were 
perfectly conserved in the few unfinished A. baylyi genomes 
deposited at GenBank (data not shown). CdiA2784 exhib-
its similarity to CdiA from A. baumannii reference strains 
ACICU and ATCC19606 (Fig. 1b), which carry different 

CT. Proteins exhibiting 62% identity to CdiA2784 and car-
rying similar CT regions (78% identity) were identified in 
several A. baumannii strains belonging to different lineages, 
including the epidemic sequence type (ST) 25 [26]. Some 
of these strains are shown in Fig. 1b. CdiA940 exhibited 
41% identity to a large CdiA encoded by the A. bauman-
nii Ab120-H2 strain [21], but 71% identity to large CdiA 
encoded by the same A. baumannii strains hosting CdiA2784 
homologs. Noteworthy, these proteins feature the same CT 
region of CdiA940 (Fig. 1b). Sequence alignments of CdiA-
CT regions are reported in figure S2. Data shown suggest 
that both A. baylyi cdiA genes may have been acquired from 
the same A. baumannii cell.

Growth Competition Experiments

CdiA proteins have been shown to have two opposite effects 
on neighbouring cells. They may inhibit the growth of non-
self-bacteria, which lack immunity proteins antagonizing 
their toxins, but may also stimulate self-bacteria to build 
up biofilm structures. We asked whether the two different 
A. baylyi CdiA were able to perform both functions. A. bay-
lyi cells should be self-protected against the toxic action of 
CdiA940 and CdiA2784 by the immunity proteins CdiI941 
and CdiI2783 (Fig. 1). To validate the functioning of the 
two hypothesized toxin-antitoxin systems, we obtained dele-
tion derivatives, in which the antitoxin cdiI941 and cdiI2783 
genes were knocked out by the insertion of the kanamycin 
gene cassette [2]. The Δ941 and Δ2783 mutants were used 
as prey in competition experiments against tenfold excess of 
wild-type predator A. baylyi cells. As shown in Fig. 2, the 
growth of the antitoxin-minus Δ941 and Δ2783 cells was 
significantly inhibited by wild-type toxin-producers cells. 
For each experiment, the number of prey cells survived to 
competition was reported. Growth competition between 
mutant prey cells and non-toxic, mock predator E. coli cells 
were carried out as control, to rule out that 10-fold excess of 
predator cells, by reducing nutrients availability, may lower 
prey’s CFU in a non-specific way.

Biofilm Formation and Adherence to A549 Human 
Bronchial Cells of cdiA Mutants

Next, we asked whether CdiA2784 and CdiA940 enhance 
biofilm formation, similarly to CdiA in other bacterial spe-
cies [1, 12–14, 20]. Two mutants of the cdiA940 gene were 
tested, in which DNA encoding residues 1–802 of CdiA940 
(940-ΔNH2), or the entire cdiA gene (Δ940), was deleted. 
Biofilm formation was unaffected by the complete knockout 
of the cdiA940 gene but was surprisingly fourfold enhanced 
in 940-ΔNH2 cells, which resulted phenotypically different 
from wild-type cells (Fig. 3). Growth rates of wild-type and 
940-ΔNH2 cells were identical, ruling out that changes in 

http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
https://www.ebi.ac.uk/Tools/msa/clustalo/
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https://pubmlst.org/bigsdb?db=pubmlst_abaumannii_pasteur_seqdef&set_id=2&page=sequence
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https://pubmlst.org/bigsdb?db=pubmlst_abaumannii_pasteur_seqdef&set_id=2&page=sequence
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morphology and ability to form biofilm were correlated to 
increased number of 940-ΔNH2 cells.

Similar mutants of the cdiA2784 gene were obtained 
and assayed. The mutants 2784-ΔNH2 and Δ2784, in which 
DNA encoding residues 1–801 of CdiA2784 or the entire 
2784 cdiA gene was deleted, respectively, produced biofilm 
with similar efficiency as parental A. baylyi ADP1 cells 
(Fig. 3). Altogether, data rule out that CdiA proteins play a 
role in biofilm formation. In 940-ΔNH2, an aberrant CdiA 
protein could be fortuitously translated and reach the OM, as 
shown for a B. pertussis hemagglutinin mutant lacking the 
TPS domain [10]. The increase in biofilm formation could 
have resulted from an altered surface presentation, due to 

either membrane misplacement or misfolding of the trun-
cated CdiA940. The mutant was not further analysed.

In light of the results obtained, we knocked out also A. 
baylyi ADP1 orf 2866, which corresponds to the biofilm 
associated protein (bap) gene. BAP is a surface protein 
proved crucial for biofilm formation in A. baumannii [19]. 
BAP has similarly a significant role in the process of biofilm 
formation in A. baylyi (Fig. 3).

We monitored whether the loss of CdiA or BAP proteins 
could interfere with the ability of A. baylyi ADP1 cells 
to interact with A549 human bronchial cells. No signifi-
cant differences were observed in the ability of CdiA and 
BAP mutants to adhere to A549 cells in comparison with 
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wild-type A. baylyi ADP1 cells (Fig. 4). The length of the 
protruding structures formed by the A. baylyi (1725 aa) and 
the A. baumannii (8200 aa) BAP on the OM could plausibly 
explain why only the A. baumannii BAP stimulated bacterial 
adhesion to human epithelial cells [5].

Conclusions

CdiA2784 and CdiA940 seem to function only as killing 
effectors since their absence does not impinge on the abil-
ity of A. baylyi cells to aggregate in biofilm structures. The 
finding that inhibitory and stimulatory properties are not 
associated in A. baylyi CdiA, as observed in most analo-
gous proteins [1, 12–14, 20], is of interest, and foreseeable 

for the properties of A. baumannii CDI systems. Data are 
in agreement with a previous study [22], showing that the 
AbfhaB CdiA expressed by the A. baumannii AbH120-A2 
strain (Fig. 1b) was crucial for adhesiveness to A549 cells 
but had no role in biofilm formation. The adhesiveness to 
A549 cells may reflect intrinsic differences between AbfhaB 
and CdiA940, or the presence of auxiliary factors enhanc-
ing the AbfhaB-dependent adhesion to eukaryotic cells of 
AbH120-A2.

The reason why BAP, but not CdiA proteins, stimu-
lates biofilm formation is not known and merits further 
investigation. In A. baumannii, biofilm formation pro-
cess is associated to the selective expression and regula-
tion of a myriad of genes [25]. Taking into account that 
cdi are accessory genes, while bap genes are conserved 

Fig. 2   Growth competition 
assays. Δ941 (a) and Δ2783 
(b) cells were incubated 4 h 
at 30 °C alone or mixed with 
a 10-fold excess of either A. 
baylyi ADP1 or E. coli JM109 
cells before plating (see “Mate-
rials and Methods” for details). 
Images correspond to one 
representative experiment from 
three independent assays done 
with different cultures of prey 
and predator cells
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component of Acinetobacter genomes [9], it is tempt-
ing to speculate that BAP proteins may be co-regulated 
with other proteins involved in biofilm formation in 
Acinetobacter.
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