Check for updates

Visual Proof of Catalan's Identity for the Fibonacci Numbers

Nam Gu Heo

Note

atalan's identity. Let F_n denote the nth Fibonacci number with $F_0 = 0$, $F_1 = 1$, $F_{n+1} = F_n + F_{n-1}$. Then the identity $F_n^2 - F_{n+r}F_{n-r} = (-1)^{n-r}F_r^2$ holds for all positive integers.

Lemma. Let $f(n, r) = F_n^2 - F_{n+r}F_{n-r}$. Then f(n-1, r) + f(n, r) = 0. That is, $F_{n+r}F_{n-r} + F_{n+r-1}F_{n-r-1} = F_n^2 + F_{n-1}^2$.

Proof. By induction.

When r = 1, we have $F_{n+1}F_{n-1} + F_nF_{n-2} = F_n^2 + F_{n-1}^2$.

Suppose that $F_{n+r}F_{n-r} + F_{n+r-1}F_{n-r-1} = F_n^2 + F_{n-1}^2$ is true when r = k. That is, $F_{n+k}F_{n-k} + F_{n+k-1}F_{n-k-1} = F_n^2 + F_{n-1}^2$.

Nam Gu Heo, Department of Mathematics Education, Sunchon National University, Suncheon, Republic of Korea. E-mail: ngheo@scnu.ac.kr

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Theorem (Catalan's identity). $F_n^2 - F_{n+r}F_{n-r} = (-1)^{n-r}F_r^2$.

Proof. Since f(n, r) = -f(n - 1, r), $f(r, r) = F_r^2$, it follows that $f(n, r) = (-1)^{n-r} F_r^2$. That is, $F_n^2 - F_{n+r} F_{n-r} = (-1)^{n-r} F_r^2$.