Visual Proof of Catalan's Identity for the Fibonacci Numbers
 Nam Gu Нео

c
atalan's identity. Let F_{n} denote the nth Fibonacci number with $F_{0}=0, F_{1}=1, F_{n+1}=F_{n}+F_{n-1}$. Then the identity $F_{n}^{2}-F_{n+r} F_{n-r}=(-1)^{n-r} F_{r}^{2}$ holds for all positive integers.

Lemma. Let $f(n, r)=F_{n}^{2}-F_{n+r} F_{n-r}$. Then
$f(n-1, r)+f(n, r)=0$.
That is, $F_{n+r} F_{n-r}+F_{n+r-1} F_{n-r-1}=F_{n}^{2}+F_{n-1}^{2}$.
Proof. By induction.
When $r=1$, we have $F_{n+1} F_{n-1}+F_{n} F_{n-2}=F_{n}^{2}+F_{n-1}^{2}$.

Suppose that $F_{n+r} F_{n-r}+F_{n+r-1} F_{n-r-1}=F_{n}^{2}+F_{n-1}^{2}$ is true when $r=k$.

That is, $F_{n+k} F_{n-k}+F_{n+k-1} F_{n-k-1}=F_{n}^{2}+F_{n-1}^{2}$.

Nam Gu Heo, Department of Mathematics Education,
Sunchon National University, Suncheon,
Republic of Korea. E-mail: ngheo@scnu.ac.kr
Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

When $r=k+1$, we must show that $F_{n+k+1} F_{n-k-1}+$ $F_{n+k} F_{n-k-2}=F_{n}^{2}+F_{n-1}^{2}$.

Theorem (Catalan's identity). $F_{n}^{2}-F_{n+r} F_{n-r}=(-1)^{n-r} F_{r}^{2}$.
Proof. Since $f(n, r)=-f(n-1, r), f(r, r)=F_{r}^{2}$, it follows that $f(n, r)=(-1)^{n-r} F_{r}^{2}$. That is, $F_{n}^{2}-F_{n+r} F_{n-r}=(-1)^{n-r} F_{r}^{2}$.

