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A Bayesian Treatment 
of the German Tank Problem
Cory M. Simon

The German tank problem has an interesting 
historical background and is an engaging 
problem of statistical estimation for the class-
room. The objective is to estimate the size of 
a population of tanks inscribed with sequen-
tial serial numbers, from a random sample. In 

this tutorial article, we outline the Bayesian approach to the 
German tank problem, whose solution assigns a probability 
to each tank population size, thereby quantifying uncer-
tainty, and which provides an opportunity to incorporate 
prior information and/or beliefs about the tank popula-
tion size into the solution. We illustrate with an example. 
Finally, we survey problems in other contexts that resemble 
the German tank problem.

Background
To inform their military strategy during World War II 
(1939–1945), the Allies sought to estimate Germany’s rate 
of production and capacity of various types of military 
equipment (tanks, tires, rockets, etc.). Conventional meth-
ods to estimate armament production, including extrapolat-
ing data on prewar manufacturing capabilities, obtaining 
reports from secret sources, and interrogating prisoners of 
war, were mostly unreliable or contradictory.

In 1943, British and American economic intelligence 
agencies exploited a German manufacturing practice in 
order to statistically estimate their armament production. 
Specifically, Germany marked their military equipment 
with serial numbers as well as codes for the date and/or 
place of manufacture. Their intention was to facilitate the 
handling of spare parts and to trace defective equipment 
and parts back to the manufacturer for quality control. 
However, these serial numbers and codes on a captured 
sample of German equipment conveyed information to the 
Allies about Germany’s production.

To estimate Germany’s rate of production of tanks, the 
Allies collected serial numbers on the chassis, engines, 
gearboxes, and bogie wheels of samples of tanks by in-
specting captured tanks and examining captured records.1 
Despite lacking an exhaustive sample, the sequential nature 
of these serial numbers and patterns in the samples enabled 

the Allies to estimate Germany’s tank production. Postwar 
research has shown that serial number analysis gave more 
accurate estimates than the overestimates produced by con-
ventional intelligence methods (Table 1).2 See Richard Rug-
gles and Henry Brodie’s article [44] for a detailed historical 
account of the serial number analysis used to estimate Ger-
man armament production during World War II.

The German Tank Problem
Simplification of the historical context in which German 
tank production was estimated via serial number analysis 
[44] motivated the formulation of the textbook-friendly 
German tank problem [21]:

Problem statement. During World War II, the German 
military is equipped with n tanks. Each tank is inscribed 
with a unique serial number in the set {1,… , n}.

As the Allies, we do not know n, but we have captured 
(without replacement, of course) a sample of k German tanks 
with (ordered) inscribed serial numbers (s1,… , sk).

Assuming that every tank in the population was equally 
likely to be captured and n is fixed, our objective is to estimate 
n in light of the data (s1,… , sk).

In 1942, in a crowded restaurant in Washington, D.C., 
Alan Turing and Andrew Gleason discussed a variant of the 
German tank problem: “how to estimate the total number 
of taxicabs in a town after having seen a random selection 
of their license numbers” [13, 24]. Today, with its interest-
ing historical background [44], the German tank problem 
is still a suitable dinner conversation topic and serves as an 
intellectually engaging, challenging, and enjoyable problem 
to illustrate combinatorics and statistical estimation in the 
classroom [3, 15, 27, 33].

1For example, captured records from tank repair depots listed serial numbers of the chassis and engine of repaired tanks, and 
records from divisional headquarters listed chassis serial numbers of tanks held by a specific unit.
2Gearboxes on captured tanks, for example, were inscribed with serial numbers belonging to an unbroken sequence. Chassis serial 
numbers, on the other hand, were broken into blocks to distinguish models/designs, leaving gaps between the serial numbers 
assigned to them.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00283-023-10274-6&domain=pdf
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Uncertainty quantification. Any estimate of the tank 
population size n from the data (s1,… , sk) is subject to 
uncertainty, since we (presumably) have not captured all of 
the tanks (i.e., k ≠ n , probably). Quantifying uncertainty in 
our estimate of n is important because high-stakes military 
decisions may be made on the basis of it.

Our contribution. In this pedagogical article, we outline 
the Bayesian approach to the German tank problem, whose 
solution assigns a probability to each tank population size, 
thereby quantifying uncertainty, and which provides an 
opportunity to incorporate prior information and/or beliefs 
about the tank population size into the solution.

Survey of Previous Work on the German 
Tank Problem
The frequentist approach. Kim Border [7] calls the Ger-
man tank problem a “weird case” in frequentist estimation. 
The maximum likelihood estimator of the tank population 
size n is the maximum serial number observed among the 
k captured tanks, m(k) ∶= maxi∈{1,…,k} si . This is a biased 

estimator, since certainly m(k) ≤ n.
Leo Goodman [21, 22] derives the minimum-variance 

unbiased estimator of the tank population size

To intuit n̂ , note that n must be greater than or equal to 
m(k) , and if we observe large (small) gaps between the 
serial numbers (s1,… , sk) after sorting them (including the 
gap preceding the smallest serial number), then n is likely 
(unlikely) to be much greater than m(k) . The estimator of 
n in (1) quantifies how far beyond the maximum serial 
number m(k) we should estimate the tank population size, 
based on the gaps; m(k)∕k − 1 is the average size of the gaps. 
Goodman [21] also derives a frequentist two-sided 1 − a 
confidence interval m(k) ≤ n ≤ x for n, where x is the great-
est integer satisfying 

(
m(k) − 1

)
k
∕(x)k ≥ a (the notation (n)k 

for the falling factorial is defined in (5)).

Use in pedagogy. Julian Champkin [23] highlights the 
application of statistics to estimate German tank produc-
tion during WWII as a “great moment in statistics.” Roger 

(1)n̂ = m
(k) +

(
m(k)

k
− 1

)

.

Johnson [27] lists and evaluates several intuitive point 
estimators for the size of the tank population. Richard 
Scheaffer et al. [45] propose a hands-on learning activity 
to illustrate the German tank problem by sampling chips 
labeled with numbers from 1 to n from a bowl. Inspired by 
the German tank problem, Arthur Berg [3] orchestrates a 
classroom-based competition to best estimate the size of a 
population of a city from a random sample. George Clark, 
Alex Gonye, and Steven J. Miller [10] explore the use of 
simulations of tank capturing and linear regression to dis-
cover the estimator in (1).

The Bayesian approach. Closely related to our pedagog-
ical exploration of the Bayesian approach to the German 
tank problem, Harry Roberts [41], Michael Höhle, and 
Leonhard Held [25], Wolfgang Von der Linden, Volker 
Dose, and Udo Von Toussaint [49], and Simona Cocco, 
Rémi Monasson, and Francesco Zamponi [11] undertake 
a Bayesian analysis of the German tank problem and 
provide an analytical formula for the mean and variance 
of the posterior distribution of the tank population size 
under an improper uniform prior distribution. Mark 
Andrews [1] outlines the Bayesian approach to the Ger-
man tank problem in a blog post containing code in the R 
language. William Rosenberg and John Deely [43] outline 
an empirical Bayesian approach to estimate the number 
of horses in a race from a sample of numbered horses 
(the likelihood function here is equivalent to that in the 
German tank problem). Arthur Berg and Nour Hawila 
[4] use Bayesian inference for the closely related taxicab 
problem.

Generalizations and variants. Goodman [21, 22] and 
Clark, Gonye, and Miller [10] pose a variant of the Ger-
man tank problem in which the initial serial number is not 
known; i.e., the n tanks are inscribed with serial numbers 
{b + 1,… , n + b} with b and n unknown. Lee and Miller 
[31] generalize the German tank problem to the settings in 
which the serial numbers belong to a continuum and/or lie 
in two or more dimensions within a square or circle.

Overview of the Bayesian Approach 
to the German Tank Problem
Adopting a Bayesian perspective [6, 15, 46], we treat the 
(unknown) total number of tanks as a discrete random 
variable N to model our uncertainty about it. A probability 
mass function of N assigns a probability to each possible 
tank population size n. This probability is a measure of 
our degree of belief, perhaps with some basis in knowl-
edge and data, that the tank population size is n [20]. The 
spread of the mass function of N over the integers reflects 
uncertainty.

The observed serial numbers (s1,… , sk) convey informa-
tion about the tank population size. Hence, the probability 
mass function of N changes after the data (s1,… , sk) are 
collected and considered. That is, N has a prior and a pos-
terior probability mass function.

Table 1.  Monthly production rate of tanks by Germany [44].

Month Estimates German 
records

Conventional American 
& British Intelligence

Serial num-
ber analysis

June, 1940 1000 169 122
June, 1941 1550 244 271
August, 1942 1550 327 342
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The three inputs to a Bayesian treatment of the German 
tank problem are as follows: 

1. The prior mass function of N , which expresses a combi-
nation of our subjective beliefs and objective knowl-
edge about the tank population size before we collect 
and consider the sample of serial numbers.

2. The data, namely the sample of serial numbers 
(s1,… , sk) , viewed as realizations of random variables 
(S1,… , Sk) owing to the stochasticity of tank-captur-
ing.

3. The likelihood function, giving the probability of the 
data (S1,… , Sk) = (s1,… , sk) under each tank popula-
tion size N = n , based on a probabilistic model of the 
tank-capturing process.

The output of a Bayesian treatment of the German tank 
problem is the posterior mass function of N, conditioned 
on the data (s1,… , sk) . The posterior follows from Bayes’s 
theorem and can be viewed as an update to the prior in 
light of the data, as illustrated by Figure 1. The posterior 
mass function of N assigns to each possible tank popu-
lation size n a probability according to a compromise 
between its likelihood, which invokes the probabilistic 
tank-capturing model to quantify the support lent by the 
observed serial numbers (s1,… , sk) for the hypothesis that 
the tank population size is n, and its prior probability, 
which quantifies how likely we thought the tank popula-
tion size was n before the serial numbers (s1,… , sk) were 
collected and considered [46]. The posterior mass func-
tion of N is the raw Bayesian solution to the German tank 
problem; its spread quantifies our posterior uncertainty 
about N. We may summarize the posterior by reporting its 
median and a small subset of the integers on which most of 
the posterior mass sits—a credible set that likely contains 
the tank population size. Furthermore, from the posterior, 
we can answer questions such as, what is the probability 
that N exceeds some threshold quantity n′ that would 
alter military strategy?

The Bayesian Approach 
to the German Tank Problem
We now delve into the details of the Bayesian approach to 
the German tank problem and illustrate via an example. For 
reference, the variables are listed in Table 2. We use upper-
case letters to represent random variables and lowercase let-
ters to represent their realizations. Throughout, we employ 
the indicator function associated with a set A:

The Prior Distribution
We construct the prior probability mass function 
�prior(N = n) to express a combination of our subjective 
beliefs and objective knowledge about the total number 
of tanks N before the data (s1,… , sk) are collected and 
considered.

The prior mass function that we impose on N depends 
on the context. If we do not possess prior information 
about the tank population size, we may adopt the principle 
of indifference and impose a diffuse prior, e.g., a uniform 
distribution over a set of feasible tank population sizes. 
On the other hand, if we possess a rough estimate of the 
number of tanks from some other source of information or 
analysis, we may construct a more informative prior that 
concentrates its mass around this estimate. By definition, a 

(2)IA(x) =

{
1 x ∈ A,
0 x ∉ A.

Figure 1.  Bayes’s theorem applied to the German tank problem. An Euler diagram [32, 37] represents the two events S(k) = s(k) 
and N = n with circles. The area of each circle is proportional to the probability of the event, and the area of overlap is propor-
tional to the probability of the intersection (S(k) = s(k)) ∩ (N = n) of the events. The Euler diagram rationalizes the two statements 
of conditional probability in terms of the intersection of the events, which in turn imply Bayes’s theorem [30].

Table 2.  List of parameters/variables.

Parameter/variable ∈ Description

n ℕ≥0 Size of population of tanks
k ℕ

>0
Number of captured tanks

s
i ℕ

>0
Serial number on captured tank i

s(k) ℕ
k

>0
Vector listing the serial numbers 

on the k captured tanks

m(k) ℕ
>0

Maximum serial number among 
the k captured tanks
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diffuse prior admits more uncertainty (measured, for exam-
ple, by entropy [35]) about the tank population size than a 
more informative prior [46].

Thinking ahead about the posterior mass function of 
N, which balances the prior and the likelihood (the latter 
based on the data), a more informative prior will have 
a larger impact on the posterior than a diffuse one [46], 
which “lets the data speak for itself” [15], and generally, 
as the number of captured tanks k increases, we expect the 
prior to have a smaller impact on the posterior [15] as the 
data “overwhelms” the prior.

The Data, Data‑Generating Process, 
and Likelihood Function

The data. The data we obtain in the German tank problem 
is the vector

of serial numbers inscribed on the k captured tanks. We 
view the data s(k) as a realization of the discrete random 
vector S(k) ∶= (S1,… , Sk) . At this point, we are enter-
taining the possibility that the order in which tanks are 
captured matters.

The data-generating process. The stochastic data-gener-
ating process consists in the sequential capture of k tanks 
from a population of n tanks, without replacement, and then 
inspecting their serial numbers to construct s(k) . We assume 
that each tank in the population is equally likely to be cap-
tured at each step. Then mathematically, the stochastic data-
generating process is a sequential uniform random selection 
of k integers, without replacement, from the set {1,… , n}.

The likelihood function. The likelihood function speci-
fies the probability of the data S(k) = s(k) given each tank 
population size N = n . Each outcome s(k) in the sample 
space Ω(k)

n  is equally likely, where

with (⋯)≠ meaning that the elements of the vector (⋯) 
are unique. The number of outcomes ||Ω

(k)
n
|| in the sample 

space is the number of distinct ordered arrangements of k 
distinct integers from the set {1,… , n} , given by the falling 
factorial:

Under the data-generating process, then, the probability 
of observing data S(k) = s(k) given the tank population size 
N = n is the uniform distribution:

(3)s
(k) ∶= (s1,… , sk)

(4)
Ω(k)

n
∶= {(s1,… , s

k
)≠ ∶ s

i
∈ {1,… , n}

for all i ∈ {1,… , k}},

(5)(n)k ∶= n(n − 1)⋯ (n − k + 1) =
n!

(n − k)!
.

(6)�likelihood

(
S
(k) = s

(k) ∣ N = n
)
=

1

(n)k
I
Ω
(k)
n

(
s
(k)
)
.

Interpretation. The likelihood quantifies the support pro-
vided by the serial numbers on the k captured tanks in s(k) , 
when compared with our probabilistic model of the tank-
capturing process, for the hypothesis that the tank population 
size is n [46]. We view �likelihood(S

(k) = s(k) ∣ N = n) as a func-
tion of n, since in practice we possess the data s(k) but not n.

The likelihood as a sequence of events. Alternatively, 
we may arrive at (6) from a perspective of sequential events 
S1 = s1, S2 = s2,… , Sk = sk . First, the probability of a 
given serial number on the i th captured tank, conditioned 
on the tank population size and the serial numbers on the 
previously captured tanks, is the uniform distribution

since there are n − (i − 1) tanks to choose from, uniformly 
and randomly. By the chain rule of probability [29], the 
joint probability is

which gives (6) after simplifying the product of indicator 
functions.

The likelihood function in terms of the maximum 
observed serial number. We will find out below that only 
two independent features of the data (s1,… , sk) provide 
information about the tank population size N : its size, k , 
and the maximum observed serial number

Thus, we also write a different likelihood: the probability 
�likelihood(M

(k) = m(k) ∣ N = n) of observing a maximum 
serial number m(k) given the tank population size N = n.

Because each outcome s(k) ∈ Ω
(k)
n  is equally likely, 

�likelihood(M
(k) = m(k) ∣ N = n) is the fraction of the sample 

space Ω(k)
n  in which the maximum serial number is m(k) . To 

count the outcomes s(k) ∈ Ω
(k)
n  where the maximum serial 

number is m(k) , consider that one of the k captured tanks 
has serial number m(k) and the remaining k − 1 tanks have 
a serial number in {1,… ,m(k) − 1} . For each of the k pos-
sible positions of the maximum serial number in the vector 
s(k) , there are (m(k) − 1)k−1 distinct outcomes specifying the 
other k − 1 entries. Thus

(7)
�(Si = si ∣ N = n, S1 = s1,… , Si−1 = si−1)

=
1

n − i + 1
I{1,…,n}⧵{s1,…,si−1}

(si),

(8)

�likelihood(S1 = s1,… , Sk = sk ∣ N = n)

=

k∏

i=1

�(Si = si ∣ N = n, S1 = s1,… , Si−1 = si−1),

(9)m
(k) = max

i∈{1,…,k}
si.

(10)

�likelihood(M
(k) = m

(k) ∣ N = n)

=
k(m(k) − 1)k−1

(n)k
I{k,…,n}(m

(k)).
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The Posterior Distribution
The posterior probability mass function of N assigns a 
probability to each possible tank population size n in 
consideration of its consistency with the data (s1,… , sk) , 
according to the likelihood in (6), and our prior beliefs/
knowledge encoded in �prior(N = n).

The posterior distribution is a conditional distribu-
tion related to the likelihood and prior mass functions by 
Bayes’s theorem [30] (see Figure 1):

The denominator, the evidence [30], is the probability of the 
data s(k):

We view �posterior
(
N = n ∣ S(k) = s(k)

)
 as a probability 

mass function of N, since in practice, we have s(k) . Then 
�evidence

(
S(k) = s(k)

)
 , which is independent of n, is just a 

normalizing factor for the numerator in (11).
In interpreting (11), the prior mass function of N is up-

dated, in light of the data (s1,… , sk) , to yield the posterior 
mass function of N. The posterior probability that N = n is 
proportional to the product of the likelihood at and prior 
probability of N = n , giving a compromise between the 
likelihood and prior.

We simplify the posterior mass function of N in (11) by 
substituting (6), restricting the sum in (12) to tank popula-
tion sizes where the likelihood is nonzero, and noting that 
the only two features of the data (s1,… , sk) that appear are 
its size k and the maximum serial number m(k):

Note, we may arrive at (13) through (10) as well.

Interpretation. The posterior probability mass function of 
N in (13) assigns a probability to each tank population size 
n in consideration of the serial numbers (s1,… , sk) observed 
on the captured tanks, our probabilistic model of the 

(11)

�posterior(N = n ∣ S(k) = s
(k))

=
�likelihood(S

(k) = s(k) ∣ N = n)�prior(N = n)

�evidence(S
(k) = s(k))

.

(12)

�evidence(S
(k) = s

(k))

=

∞∑

n�=0

�likelihood

(
S
(k) = s

(k) ∣ N = n
�
)
�prior(N = n

�).

(13)

�posterior(N = n ∣ S(k) = s
(k))

= �posterior(N = n ∣ M(k) = m
(k))

=
(n)−1

k
�prior(N = n)

∞∑

n�=m(k)

(n�)−1
k
�prior(N = n

�)

I{m(k),m(k)+1,…}(n).

tank-capturing process, and our prior beliefs and knowledge 
about the tank population size expressed in the prior mass 
function of N. The spread (measured, e.g., by entropy) of 
the posterior mass function of N reflects remaining epis-
temic (reducible with more data) [17, 47] uncertainty about 
the tank population size.

A remark on “uncertainty.” The source of posterior 
uncertainty is a lack of complete data: we have not captured 
all of the tanks3 and observed their serial numbers to be 
certain of the tank population size. In practice, an additional 
source of posterior uncertainty about the tank population 
size is the possible inadequacy of the model of the tank-cap-
turing process (uniform sampling) in (6). That is, selection 
bias could be present in the tank-capturing process. Our 
analysis here neglects this source of uncertainty.

Summarizing the posterior mass function of N  . We 
may summarize the posterior mass function of N with a 
point estimate of the tank population size and a credible 
subset of the integers that contains the tank population 
size with a high probability.4 A suitable point estimate of 
the tank population size is a median of the posterior mass 
function of N ; by definition, the posterior probability that 
the tank population size is greater (less) than or equal to 
a median is at least 0.5. A suitable credible subset, which 
entertains multiple tank population sizes, is the a-high-mass 
subset [26]

where �a is the largest mass to satisfy

In words, the a-high-mass subset Ha is the smallest that 
contains at least a fraction 1 − a of the posterior mass of N 
and ensures that every tank population size belonging to it 
is more probable than any population size outside of it.

Querying the posterior distribution. We may find the 
posterior probability that the tank population size belongs 
to any set of interest by summing the posterior mass over 
it; e.g., the probability that the tank population size exceeds 
some number n′ is

(14)

Ha ∶=
{
n
� ∶ �posterior

(
N = n

� ∣ M(k) = m
(k)
)
≥ �a

}
,

(15)�posterior

(
N ∈ Ha ∣ M

(k) = m
(k)
)
≥ 1 − a.

(16)

𝜋posterior

(
N > n

� ∣ M(k) = m
(k)
)

=

∞∑

n=n�+1

𝜋posterior

(
N = n ∣ M(k) = m

(k)
)
.

3Certainly, k < n if there are gaps in the observed serial numbers (s
1
,… , sk) . Even if there are no gaps in (s

1
,… , sk) , we cannot be 

certain we have captured the tank with the largest serial number.
4Under our assumptions embedded in the likelihood and prior mass functions.
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An Example
We illustrate the Bayesian approach to the German tank 
problem through an example.

The prior probability mass function of N . Suppose we 
have an upper bound nmax for the possible number of tanks, 
based on, e.g., the supply of some raw material needed for 
tank production, but no other information. Then we may 
impose a diffuse prior, a uniform prior probability mass 
function

This prior mass function expresses that in the absence of 
any data (s1,… , sk) (i.e., no serial numbers, and not even 
k), we believe that the total number of tanks N is equally 

(17)�prior(N = n) =
1

nmax + 1
I{0,…,nmax}

(n).

likely to be any value in {0,… , nmax} . Particularly, suppose 
nmax = 35 . Figure 2a visualizes �prior(N = n).

The data (s
1
,… , s

k
) and the likelihood function. 

Now suppose we capture k = 3 tanks, with serial num-
bers s(3) = (15, 14, 3) . See Figure 2b. So the maximum 
observed serial number is m(3) = 15 . The likelihood func-
tion �likelihood(M(3) = 15 ∣ N = n) in (10) is displayed in 
Figure 2c. Note that the likelihood function is maximal at 
n = m(3) = 15 and decreases monotonically.

The posterior probability mass function of N . Under the 
uniform prior in (17), the posterior probability mass function 
of N in (13) becomes

Figure 2.  A Bayesian approach to the German tank problem. (a) The prior mass function. (b) The data s(3) , with maximum 
observed serial number m(3) = 15 . (c) The likelihood function associated with the data s(3) . (d) The posterior mass function of N; 
H0.2 is highlighted, and the median is marked with a vertical dashed line.
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Figure 2d visualizes the posterior probability mass func-
tion of N for the data s(3) in Figure 2b and the prior in (17) 
( nmax = 35).

Summarizing the posterior. The posterior mass func-
tion of N has median 19 and high-mass credible subset 
H0.2 = {15,… , 25} (highlighted in Figure 2d). For what 
it’s worth, the data in Figure 2b were generated from a tank 
population size of n = 20 (explaining the choice of scale in 
Figure 2b).

Querying the posterior. Suppose our military strategy 
would change if the size of the tank population were to 
exceed 30. From the posterior distribution of N , we calcu-
late 𝜋posterior(N > 30 ∣ M(3) = 15) ≈ 0.066.

Sensitivity of the posterior to the prior. Because of the 
subjectivity involved in constructing the prior, checking 

(18)

�posterior

(
N = n ∣ M(k) = m

(k)
)

=
(n)−1

k

nmax∑

n�=m(k)

(n�)−1
k

I{m(k),m(k)+1,…,nmax}
(n).

the sensitivity of the posterior to the prior is good practice 
[46]. Figure 3 shows how the posterior mass function of N 
changes with the upper bound on the tank population nmax 
that we impose via the prior mass function of N in (17). 
For example, under nmax = 75 , the high-mass subset H0.2 
expands to {15,… , 29}.

Capturing more tanks. Suppose we capture an additional 
nine tanks and rerun the Bayesian analysis. Figure 4 shows 

Figure 3.  Evaluating the sensitivity of the posterior mass 
function of N to the upper bound nmax imposed by the prior 
mass function of N.

Figure 4.  The posterior distribution of N after we capture 
more tanks. (a) We capture an additional nine tanks. (b) The 
updated posterior mass function of N.
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the updated posterior mass function of N . The high-mass 
credible subset H0.2 shrinks considerably, to {19, 20} . This 
shows how more data—a larger number k of tanks cap-
tured—generally reduces our uncertainty about the tank 
population size.

Simulations to Investigate 
the Behavior of the Posterior of N 
Under a Known Population Size
We now investigate how, on average, over the sto-
chastic outcomes of the tank-capturing process for a 
fixed tank population size, the posterior distribution 
�posterior

(
N = n ∣ S(k) = s(k)

)
 depends on the number k of 

tanks captured and the maximum nmax of the support of the 
uniform prior.

For a given k and nmax , we conduct 50,000 simula-
tions, in each of which k random tanks are captured from 
a population of n = 20 tanks, giving data s(k) ; computing 
the posterior mass function �posterior

(
N = n ∣ S(k) = s(k)

)
 ; 

then finding the high-mass subset Ha ( a = 0.2 ) and median 
of the posterior. Figure 5 displays (1, stems) , the probabil-
ity of each tank population size n belonging to Ha , and 
(2, vertical line) , the median of the median of the posterior, 
for (k, nmax) ∈ {3, 6, 9} × {25, 50, 100}.

As k increases, the high-mass subset Ha tends to be less 
sensitive to nmax , since the data overrides the prior, and to 
shrink, since uncertainty decreases with a larger sample. 
As nmax increases, larger population sizes become more 
likely to be included in Ha . The median of the median of 
the posterior matches the true tank population size of 20 
when nmax = 25 or k = 9 . For k ∈ {3, 6} , the larger nmax 
values pull the median above the true tank population size.

Figure 5.  The average high-mass subset and median of the median of the posterior over tank-capturing under a fixed tank popu-
lation size. Rows: different numbers k of tanks captured (left). Columns: different maxima of tank population sizes entertained by 
the uniform prior nmax (top). For a particular (k, nmax) , the stem plots show the probability of each tank population size belonging 
to the high-mass subset Ha=0.2 of the posterior. The vertical dashed line shows the median of the median of the posterior. The red 
arrow shows the true tank population size, 20.
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Discussion

Selection bias. A strict assumption in the textbook-
friendly German tank problem, which enables us to 
estimate the size of the population of tanks from a ran-
dom sample of their (sequential) serial numbers, is that 
sampling is uniform. To check consistency of the sample 
with this model of the tank-capturing process, Goodman 
[22] demonstrates a test of the hypothesis that the sample 
of serial numbers is from a uniform distribution. Inter-
esting extensions of the textbook German tank problem 
could involve modeling selection bias in the tank-captur-
ing process. For example, such bias could arise hypo-
thetically if older tanks with smaller serial numbers were 
more likely to be deployed in the fronts opened earlier 
in the war, where capturing tanks is more difficult than 
at less fortified fronts opened more recently. Selection 
bias could also manifest in clusters in the observed serial 
numbers.

The German tank problem in other contexts. The 
Bayesian probability theory used to solve the German tank 
problem applies (perhaps with modification) to many other 
contexts in which we wish to estimate the size of some 
finite hidden set [9], such as the number of taxicabs in a 
city [19, 23], racing cars on a track [48], accounts at a bank 
[25], pieces of furniture purchased by a university [22], 
aircraft operations at an airport [34], cases in court [50], or 
electronic devices produced by a company [2]. And also 
the extent of leaked classified government communica-
tions [18], the time needed to complete a project deadline 
[16], the time-coverage of historical records of extreme 
events like floods [39], the length of a short-tandem repeat 
allele [51], the size of a social network [28], the lifetime of 
a flower of a plant [38], or the duration of existence of a 
species [42]. In addition, mark and recapture methods in 
ecology to estimate the size of an animal population [8, 36] 
are tangentially related to the German tank problem.

The practice of inscribing sequential serial numbers 
on military equipment. Germany adopted the practice of 
marking their military equipment with serial numbers and 
codes to trace the equipment/parts/components back to 
the manufacturer. However, the sequential nature of those 
serial numbers was exploited by the Allies to estimate their 
armament production. To reduce vulnerability to serial 
number analysis for estimating production while main-
taining the advantages of tracing equipment back to the 
manufacturer, serial numbers and codes could instead be 
encrypted [14] or obfuscated, for instance by the method 
known as chaffing [40].
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