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To your average pianist, G-sharp and A-flat are 
the same. They are located at the same black 
key between the white G and A keys, but 
with different names. For other musicians, 
however, for example violinists, they are 
different notes. They would claim that the 

piano represents a compromise, since it is often tuned to 
the equal-tempered scale, while other musical scales, based 
on simple harmonic ratios, often appear more harmonious 
to the ear. This article explains and illustrates this dilemma 
geometrically. In these scales, G-sharp and A-flat will no 
longer be the same. The difference between them is called 
the Pythagorean comma, and the name hints at the long 
history of music theory.

Music is first and foremost an auditory experience, but 
some of its principles can also be communicated with math-
ematics. Although a note can assume any value on a con-
tinuous frequency scale, humans have preferred only a few 
selected tone combinations. The oldest theory for this prefer-
ence is that of notes related by integer ratios, and it is striking 
how simple ratios give rise to pleasant perceptual effects. This 
theory is often credited to Pythagoras (fl. sixth century bce), 
who constructed a scale using an octave (ratio 2/1), a perfect 
fourth (4/3), and a perfect fifth (3/2) [2] and [1, Chap. 5], but 
most likely it dates back to the Sumerians [9]. Hermann von 
Helmholtz (1821–1894) suggested a physical theory in 1877 
that asserted that dissonance is caused by a lack of harmonic 
overlap that gives rise to auditory roughness in the form of 
unpleasant amplitude fluctuations [5]. Such an interference 
pattern is called a beat.

Like the Pythagorean scale, the just, or pure, scale also has 
ancient roots. It is based on even simpler integer ratios consist-
ent with the natural occurrence of overtones for vibrating 
strings and in wind instruments. The presence of simple ratios 
means that it should be possible to construct the ratios of the 
notes of both of these scales with straightedge and compass. 
Such constructions have only been partly presented before, 
but here we will introduce a new and simpler geometric 
method, whereby special emphasis is placed on visualizing 
some oddities of these scales where they differ from the modern 
equal-tempered scale.

The equal-tempered scale has become popular over the 
last few centuries. Its twelve notes are evenly distributed 
on a logarithmic frequency scale with successive intervals 
having the ratio

to the fundamental frequency. The ratio r can be viewed 
as a normalized frequency. In this paper we deal only with 
two adjacent octaves, with r = 1 corresponding to a low C, 
and r = 2 to a C one octave above, which we shall denote by 
C2.

Since our perception of musical difference is based on 
ratios, Alexander J. Ellis, the translator of Helmholtz’s 
book [5], introduced the cent as a logarithmic measure for 
the distance between notes [4]. Two notes separated by the 
ratio r are said to be separated by

The seven notes of the C major scale, which correspond to 
the white keys on a piano keyboard, are given as ratios and 
cents in the first columns of Table 1 in three different scales. 
Throughout this article, ratio and difference will both be 
used to compare two notes. It will be understood that dif-
ference implicitly involves a logarithmic measure such as 
cents, as defined in (2).

The sharp designation ♯ , e.g., C♯ , means one semitone up 
from C, and the flat ♭ , e.g., D♭ , denotes one semitone down 
from D. In the equal tempered scale, one semitone is by 
definition 100 cents. A property of this scale is that notes 
with different names can be enharmonic equivalents; that 
is, two notes with different names, such as C♯ and D♭ , will 
sound the same.

This is the case for the five black keys of the piano: C♯ 
and D♭ (100 cents), D♯ and E♭ (300 cents), F♯ and G♭ (600 
cents), G♯ , and A♭ (800 cents), A♯ and B♭ (1000 cents). Fur-
ther, there is an equivalence between the four pairs C and 
B♯ (1200 cents), E and F♭ (400 cents), F and E♯ (500 cents), B 
and C♭ (1100 cents).

Thus all the intervals are exactly the same size, and 
this makes it simpler to transpose music to a different key. 
The price to pay for this simplicity is that none of the 
intervals, except for the octave, have simple integer ratios, 
as is evident from the ratio column of Table 1 for equal 
temperament.

The Pythagorean scale, based on integer ratios, is used 
in some classical vocal music and for fretless string instru-
ments, such as the violin. It is based on letting the 3:2 

(1)r = 2n∕12, n = 0,… , 12,

(2)1200 log2(r) cents.

https://orcid.org/0000-0003-1084-9430
https://orcid.org/0000-0001-7173-5221
https://orcid.org/0000-0002-2273-705X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00283-022-10260-4&domain=pdf


  ⚫  The Mathematical Intelligencer26

interval (perfect fifth) or the 4:3 interval (perfect fourth) 
be central [1].1 Since these two ratios are inverses, except 
for a factor of 2, which represents an octave, the two ap-
proaches are equivalent. We will use a mix of musical and 
mathematical terminology in this paper. As an example, 
raising or lowering a pitch by a fourth is musical termi-
nology for multiplication by 4/3 or 3/4 respectively in 
mathematics.

One way to construct the Pythagorean scale is by 
starting with C = 1 and multiplying by 4/3 (a per-
fect fourth) to obtain F = 4∕3 . Next, C is increased by 
an octave, i.e., multiplied by 2, to yield C2 = 2 . Fur-
ther continue by decreasing by 3/4, thereby obtain-
ing 2 ⋅ 3∕4 = 3∕2 = G . The next note is found by going 
down by another fourth to 3∕2 ⋅ 3∕4 = 9∕8 = D , then 
down again to get 9∕8 ⋅ 3∕4 = 27∕32 . Since this ratio is 
less than 1, it is increased by an octave to its equivalent 
note 2 ⋅ 27∕32 = 27∕16 , which is A. Then E is found as 
3∕4 ⋅ 27∕16 = 81∕64 . A doubling is again required to find 
B from E, and we get 243/128. We have thereby obtained 
all the notes of the scale, and the result is the succession of 
notes shown in the center column of Table 1.

Unlike the equal tempered scale, the Pythagorean scale 
exhibits ambiguities in the sharp and flat notes mentioned 
above. They will not be the same. The difference between, 
for example, C♯ and D♭ is called the Pythagorean comma 
(PC). It can be found as the difference between a major 
second of 9:8 from, e.g., C to D and two minor seconds. In 
the equal tempered scale, two minor seconds will always 
equal a major second, but in the Pythagorean scale, such is 
not the case. A minor second, such as from B to C2 , is the 
ratio 256∶243 = 28∕35 . The ratio between a major second 
and two minor seconds, which in the equal tempered scale 
is exactly unity, is in the Pythagorean scale,

The Pythagorean comma will appear as the ratio be-
tween each pair C♯ and D♭ , D♯ and E♭ , and so on, that is, 

(3)

PC =
(

32∕23
)

∕
(

28∕35
)2

= 312∕219 ≈ 1.01364 ≈ 23.5 cents.

all nine pairs that were enharmonically equivalent in the 
equal temperament scale. It is also common to interpret 
the Pythagorean comma as the difference or ratio between 
twelve perfect fifths, (3∕2)12 , and seven octaves, 27 . In 
the equal temperament scale, this difference is distributed 
about equally over all the twelve tempered semitones, 
which means that the notes in the equal tempered scale are 
slightly out of tune compared to the more naturally harmo-
nious integer-based scales.

A third scale uses just, or pure, intonation, which is 
often used in folk music and some non-Western music, es-
pecially if it is based on a pentatonic scale, such as the five 
notes C, D, E, G, and A. The principle is to use the smallest 
integer ratios possible, as shown in the right column of 
Table 1.

The just scale differs from the Pythagorean C major 
scale in just three places, A, E, and B, which are replaced 
by notes AJ , EJ , and BJ , where the subscript J denotes just 
intonation. A reappreciation of just intonation in Renais-
sance practice was given in [3], and the online version of 
that paper also gives auditory examples.

Just intonation also exhibits differences between sharp 
and flat notes. Of special interest is the small difference 
between the Pythagorean E and the EJ of just intonation. It 
is called the syntonic comma (SC), and its value is

Another interesting difference is that between the Pythago-
rean comma and the syntonic comma. It is called the 
schisma and has a value of

Geometric Constructions
We offer here several figures that display the positions of 
the seven notes of the Pythagorean diatonic scale as well as 
five sharp and five flat notes. As a result, the Pythagorean 
comma is displayed geometrically in multiple places as the 
difference between the flat and sharp notes. The scale of 
just intonation can be constructed similarly. This construc-
tion will visualize the syntonic comma at the three notes 

(4)SC = (81∕64)∕(5∕4) = 81∕80 = 1.0125 ≈ 21.5 cents.

(5)Schisma = 5 ⋅ 38∕215 ≈ 1.00113 ≈ 1.95 cents.

Table 1.  Ratios between notes in the equal temperament, Pythagorean, and just scales for the notes of C major. Here n is the num-
ber of semitones (half-steps) above the fundamental C

n Note Equal Temp. Pythagorean Just

ratio cents ratio cents ratio cents

0 C 1.000 0 1 0.0 1 0.0
2 D 1.122. 200 9/8 203.9 9/8 203.9
4 E 1.260. 400 81/64 407.8 5/4 386.3
5 F 1.335. 500 4/3 498.0 4/3 498.0
7 G 1.498. 700 3/2 702.0 3/2 702.0
9 A 1.682. 900 27/16 905.9 5/3 884.4
11 B 1.888. 1100 243/128 1109.8 15/8 1088.3
12 C2 2.000 1200 2 1200.0 2 1200.0

1Intervals are named by the number of notes forming the interval. Thus the interval from C to F, encompassing C, D, E, F, is called a 
perfect fourth.
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that differ in the two scales. The tiny difference between 
the syntonic and Pythagorean commas, or schisma, can also 
be visualized.

We begin with the 30◦–60◦–90◦ right triangle of Fig-
ure 1. The horizontal base of this triangle, the hypotenuse, 
is the frequency axis, with 0 frequency at the origin O at 
the left, the note C normalized to frequency 1 in the mid-
dle, and C2 = 2 on the right.

The construction for finding the notes begins by setting 
the position of C = 1 . This note is doubled by following 
the black arrow to C2 before continuing to the next perfect 
fourth downward (division by 4/3) via C′2 and the red line 
to G = 3∕2 . The next note is found by again starting at 
C and following the perpendicular to F′ and projecting it 
down the blue line to F = 4∕3 . This operation represents 
going upward by a fourth, i.e., multiplication by 4/3. The 
values for F and G can be confirmed by elementary geom-
etry and trigonometry. It will be seen in the figures to come 
that the continuation of the operation corresponding to 
the red lines will result in all the diatonic notes of Table 1 
except F, as well as all the sharp notes. Furthermore, the 
operation corresponding to the blue line will give F and all 
the flat notes.

We then demonstrate a simple rule for the geometric 
construction of the seven notes of the Pythagorean scale 
shown in Table 1. The scheme can be continued to yield all 
sharp and flat semitones and the three unique notes of just 
intonation. The key observation on which the rest of the 
article builds has already been demonstrated in Figure 1. 
It is that an interval of a perfect fourth either up or down 
is simple to construct geometrically in a 30◦–60◦–90◦ right 
triangle. This step is also essential for deriving the Pythago-
rean scale starting with the note C.

In addition, a correction by an octave may be required. 
This may take the form of an increase by an octave, i.e., a 
doubling along the frequency axis, as in moving from C to 
C2 . The doubling is shown in Figure 1 in that the triangle 

O–C–F′ is mirrored in the triangle C–F′–C2 . Likewise, a 
decrease by an octave consists in dividing the frequency by 
two. These operations will now be applied to the Pythago-
rean and just scales.

The Pythagorean Scale
The rest of the diatonic notes of the Pythagorean scale are 
now constructed in this order: G, D, A, E, B. The first step, 
from C to G, was shown by arrows in Figure 1. Continu-
ing from G, the result of the additional steps is shown in 
Figure 2 in the red lines. Two notes outside of the main 
interval are found as intermediate results, A0 and B0 , and 
doubled to fit in the principal interval.

Figure 1  A 30◦–60◦–90◦ right triangle with a linear frequency 
axis from the origin, O to C2 , whose frequency is twice that 
of C = 1 . The construction starts at C and then doubles that 
note to C2 = 2 . Then one follows the black arrow to the point 
C2 , from which the red normal to the frequency axis meets it 
at the point G = 3∕2 . The black perpendicular line from C to 
F′ is then drawn, followed by the blue line, which meets the 
frequency axis at F = 4∕3.

Figure 2  The remaining Pythagorean whole steps can be 
constructed by going down successive perfect fourths, i.e., 
multiplication by 3/4, from C2 , and doubling the frequency 
whenever needed to stay between C and C2 , via A0 and B0 , as 
shown by the red lines. The sequence of operations is G–D–A–
E–B.

Figure 3  The first Pythagorean comma appears as the differ-
ence between G♯ and A♭ and is denoted by arrows and PC. It is 
found when the three sharp notes F♯ , C♯ , G♯ (dashed red lines) 
and the three flat notes B♭ , E♭ , A♭ (dashed blue lines) are added 
to the Pythagorean whole steps (solid lines).
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The sharp semitones may also be found by going down-
ward by perfect fourths, i.e., multiplication by 3/4, starting 
from B. This is shown by the red dashed lines in Figure 3. 
The first note found will then be F♯ . Then C♯ is found, as 
shown in Figure 3, followed by G♯ . Likewise, the flat semi-
tones are found by proceeding upward by perfect fourths, 
i.e., multiplication by 4/3, from F, giving B♭ , as shown by 
the dashed blue lines. Half the value, B♭0 , is then found and 
projected upward to give E♭ , and then A♭ . Figure 3 also 
illustrates the first appearance of the Pythagorean comma 
as the difference between G♯ and A♭ , as hinted at in the 
introduction.

Continuing the process of generating all sharp and flat 
notes results in Figure 4. The mathematical details can be 
found in the appendix at the end of this paper. Since the 
Pythagorean comma is the difference between the enhar-
monic sharp and flat notes, it appears in all whole-step in-
tervals, i.e., as the ratios of C♯ and D♭ , D♯ and E♭ , F♯ and G♭ , 
G♯ and A♭ (as already mentioned), and A♯ and B♭ . As noted, 
in an equal temperament tuning, each of these pairs would 
have had the exact same pitch. The Pythagorean comma is 
also found based on the half-step intervals as the ratios of 

B
♯
0 and C, E and F♭ , E♯ and F, and B and C♭2.

Just Intonation
The just intonation scale is based on small whole-number 
ratios. As noted, it differs from the Pythagorean scale in the 
three notes AJ = 5∕3 , EJ = 5∕4 , and BJ = 15∕8 . The note 
AJ is the average of C2 and F, and therefore the geometric 

construction consists in dividing the baseline between two 
notes into two equal parts, for instance by going from F to 
C2 via K in an equilateral triangle and projecting down to 
get AJ . This is shown in green in Figure 5. Then EJ is found 
as usual by decreasing from AJ by a perfect fourth, i.e., 
multiplication by 3/4; B0J is found by a second decrease by 
a perfect fourth; and finally, BJ is found by doubling. Fig-
ure 5 shows the diatonic Pythagorean scale with the three 
unique notes of the just scale overlaid.

The difference between the Pythagorean E and that of 
just intonation is the syntonic comma. The same difference 
is found between the A’s and the B’s in the two scales. The 
syntonic comma between AJ and A is marked in Figure 5 
with SC.

The diatonic Pythagorean and just intonation scales 
may now be combined into a single figure. However, the 
amount of detail is so large that the focus will be now on 
the interval from AJ to B, as shown in Figure 6, making 
it possible to see more clearly the two commas. Here the 
difference between the Pythagorean and the syntonic 
commas, the schisma, is apparent. The minor half step, 

Figure 4  Nine Pythagorean commas (PC) found from the 
Pythagorean whole notes (solid lines) and semitones. Dashed 
red lines represent sharp notes, while dashed blue lines rep-
resent flat notes. The Pythagorean comma, shown by a pair of 
arrows, appears inside every semitone as the relative distance 
between the sharp and the flat semitones and between the 
notes C, E, F, and B and the nearest dashed line.

Figure 5  The just scale, the syntonic comma, and the three 
unique notes of just intonation (green lines), i.e., EJ , AJ , BJ , 
along with the notes of the Pythagorean scale. The difference is 
the syntonic comma, as indicated by SC.

Figure 6  Pythagorean and syntonic commas with schisma 
with all the details in the interval from AJ to B, showing the 
Pythagorean comma, the syntonic comma, and the schisma as 
the difference between them. The minor and major half steps, 
the limma, and the apotome are also indicated.
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or limma, and the major half step, the apotome, are also 
indicated.

The increase and decrease by a perfect fourth may 
be continued to yield B♭♭ , E♭♭ , A♭♭ , and so on, as well as 
new instances of the Pythagorean comma, but this is 
not illustrated in the figures in order not to make them 
overly complex (see the appendix). The methods used 
here may also be used to construct most if not all the 
different interval ratios promulgated by prominent Re-
naissance musical theorists as given in [3, Table 1].

Final Remarks
Before we end, let us just remark that many have sought 
to explore the connection between geometry and musi-
cal notes. Daniel Muzzulini reproduces a 1637 triangle-
based figure from Descartes for constructing geometric 
progressions [10]. Based on this figure, it appears to 
be possible to construct some of the ratios correspond-
ing to the white keys of the piano, the diatonic scale. 
Jahoda also has several geometric figures from which it 
is possible to obtain some of the ratios [6, Fig. 51 and 
tables pp. 87–91]. In [7], this was made more complete, 
and Figure 19 therein shows how all the ratios of the 
seven notes of the diatonic scale may be constructed. 
Ernest McClain demonstrated visualization of musical 
proportions by a succession of paper-folding operations 
[8]. A major scale of seven notes was found by a succes-
sion of eight folding maneuvers. Flat notes are found by 
an additional five operations in order to display a single 
occurrence of the Pythagorean comma. Even an instance 
of the syntonic comma is found. McClain rightly claims 
that the paper folding “approaches the elegance of 
geometry,” although it is somewhat impractical to fold 
a strip of paper accurately thirteen or more times. This 
paper complements these earlier works by geometrically 
finding all the instances of the Pythagorean commas of 
(3), the syntonic comma of (4), and the schisma of (5).

The well-known links between music and mathemat-
ics are represented in these geometric constructions. 
Since geometry is naturally comprehensible to a much 
wider circle than to those who appreciate mathematical 
beauty in other forms, these constructions may make 
the link between music and mathematics more acces-
sible to a larger audience and may also be clarifying 
for students. In addition, the figures may further the 
understanding of the compromises inherent in different 
ways of distributing the commas and even how it relates 
to the characteristics and moods conveyed by different 
tunings and keys [1, Sect. 5.13].

Appendix
In this appendix, the notes C, D, E, F, G, A, B are in the 
principal octave, while C2 is one octave higher than C, and 
A0 is one octave below A. The relative frequencies are nor-
malized so that C has frequency 1, and C2 has frequency 2.

The Pythagorean Scale
The diatonic scale of the Pythagorean tuning system may be 
found by proceeding upward from F by perfect fifths, i.e., 
multiplying by 3/2, and possibly dividing by two in order to 
obtain a note within the octave between C and C2 . The same 
result can be obtained by proceeding downward from F by 
perfect fourths, i.e., dividing by 4/3, and possibly multiplying 
by two to remain in the principal octave. This is the approach 
in our work, where C = 1 and F = 4∕3 , as shown in Figures 1 
through 4.

The diatonic scale of Pythagorean tuning is found as 
follows:

The index 0 (along with the parentheses) indicates that 
A0 < 1 . Now A is found by multiplying by two, as must be 
done subsequently every time the new note has a value less 
than one. Hence the remaining notes in the diatonic scale 
are as follows:

By continuing this procedure another five times, we obtain 
the five sharp semitones in the Pythagorean chromatic scale:

By continuing two more steps, we obtain 
B
♯
0
 (which equals 

the Pythagorean comma, since C = 1):

In general, the Pythagorean comma is equal to B♯
0
∕C . Please 

note that even E♯∕F equals the Pythagorean comma.
Now, by going upward by perfect fourths from F = 4∕3 , 

the five flat semitones of the Pythagorean tuning system can 

C = F ⋅ 3∕4 = 1,

C2 = C ⋅ 2 = 2,

G = C2 ⋅ 3∕4 = 3∕2,

D = G ⋅ 3∕4 = 32∕23 = 9∕8,

(A0 = D ⋅ 3∕4 = 32∕25 = 27∕32 < 1).

A = A0 ⋅ 2 = 33∕24 = 27∕16,

E = A ⋅ 3∕4 = 34∕26 = 81∕64,

(B0 = E ⋅ 3∕4 = 35∕28 = 243∕256 < 1),

B = B0 ⋅ 2 = 35∕27 = 243∕128.

F♯ = B ⋅ 3∕4 = 36∕29 = 729∕512,

C♯ = F♯ ⋅ 3∕4 = 37∕211 = 2187∕2048,

(G
♯
0
= C♯ ⋅ 3∕4 = 38∕213 = 6561∕8192 < 1),

G♯ = G
♯
0
⋅ 2 = 38∕212 = 6561∕4096,

D♯ = G♯
⋅ 3∕4 = 39∕214 = 19683∕16384,

(A
♯
0
= D♯

⋅ 3∕4 = 310∕216 = 59049∕65536 < 1),

A♯ = A
♯
0
⋅ 2 = 310∕215 = 59049∕32768.

E♯ = A♯
⋅ 3∕4 = 311∕217 = 177147∕131072 ,

B
♯
0 = E♯ ⋅ 3∕4 = 312∕219 = 531441∕524288.
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be found. However, in order to ensure that these semitones 
end up between C and C2 , we must first divide the base note 
by two whenever the result is greater than G = 3∕2 . The flat 
semitones then are obtained as follows:

By continuing in the same way, we can find two more flat 
notes that are not ordinary semitones:

More notes, namely double flat notes, can be found by con-
tinuing even further:

Here D♭♭ also turns out to be the inverse Pythagorean 
comma.

The apotome is defined as the ratio between a sharp 
semitone and the nearest whole tone below it, i.e., C♯ /C = 
D♯ /D = F♯ /F = G♯ /G = A♯/A:

Since we have assumed C = 1 , the apotome equals C♯ here.
In a similar way, the limma is the ratio between a flat 

semitone and the nearest whole note below it, i.e., D♭ /C = 
E♭ /D = G♭ /F = A♭ /G = B♭/A:

Since we have assumed C = 1 , the limma equals C♭ here. The 
interval of an apotome plus a limma equals a whole step, 
i.e.,

B♭ = F ⋅ 4∕3 = 24∕32 = 16∕9 > 3∕2,

(B♭
0
= B♭∕2 = 23∕32 = 8∕9),

E♭ = B♭
0
⋅ 4∕3 = 25∕33 = 32∕27,

A♭ = E♭ ⋅ 4∕3 = 27∕34 = 128∕81 > 3∕2,

(A♭
0
= A♭∕2 = 26∕34 = 64∕81),

D♭ = A♭
0
⋅ 4∕3 = 28∕35 = 256∕243,

G♭ = D♭
⋅ 4∕3 = 210∕36 = 1024∕729.

C♭2 = G♭
⋅ 4∕3 = 212∕37 = 4096∕2187 > 3∕2,

(C♭ = C♭2∕2 = 211∕37 = 2048∕2187),

F♭ = C♭ ⋅ 4∕3 = 213∕38 = 8192∕6561.

B♭♭ = F♭ ⋅ 4∕3 = 215∕39 = 32768∕19683 > 3∕2,

(B♭♭0 = B♭♭∕2 = 214∕39 = 16384∕19683),

E♭♭ = B♭♭0 ⋅ 4∕3 = 216∕310 = 65536∕59049,

A♭♭ = E♭♭ ⋅ 4∕3 = 218∕311 = 262144∕177147,

D♭♭ = A♭♭
⋅ 4∕3 = 220∕312 = 1048576∕531441 > 3∕2,

(D♭♭ = D♭♭
2 ∕2 = 219∕312 = 524288∕531441).

Apotome = 37∕211 = 2187∕2048.

Limma = 28∕35 = 256∕243.

Apotome ⋅ Limma = 2187∕2048 ⋅ 256∕243 = 9∕8.

Just Intonation
The diatonic scale of just intonation can be constructed 
from the base notes C = 1 , F = 4∕3 , and C2 = 2 . The 
remaining notes can be found as follows, where the unique 
notes of the just scale are denoted by the subscript J:

The following notes of the Pythagorean scale therefore dif-
fer from their just scale counterparts:

Thus, the syntonic comma appears in three places:

The schisma is the ratio between the Pythagorean comma 
and the syntonic comma. Since the Pythagorean comma is 
equal to 312∕219 , the schisma is
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G =
(

C + C2

)

∕2 = (1 + 2)∕2 = 3∕2,

AJ =
(

F + C2

)

∕2 = (4∕3 + 6∕3)∕2 = 5∕3,

EJ = (C + G)∕2 = (2∕2 + 3∕2)∕2 = 5∕4 = 5∕22,

D =
(

C + EJ

)

∕2 = (4∕4 + 5∕4)∕2 = 9∕8 = 32∕23,

BJ =
(

G + D2

)

∕2 = (6∕4 + 2 ⋅ 9∕8)∕2 = 15∕8 = 3 ⋅ 5∕23.

A = 27∕16 = 33∕24,

E = 81∕64 = 34∕26,

B = 243∕128 = 35∕27.

A∕AJ =
(

33∕24
)

∕(5∕3) = 34∕
(

24 ⋅ 5
)

= 81∕80,

E∕EJ =
(

34∕26
)

∕
(

5∕22
)

= 34∕
(

24 ⋅ 5
)

= 81∕80,

B∕BJ =
(

35∕27
)

∕
(

3 ⋅ 5∕23
)

= 34∕
(

24 ⋅ 5
)

= 81∕80.

PC/SC =
(

312∕219
)

∶
(

34∕24 ⋅ 5
)

= 38 ⋅ 5∕215 = 32805∕32768 ≈ 1.0011.
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