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On the Origins of Cantor’s 
Paradox: What Hilbert Left Unsaid 
at the 1900 ICM in Paris David E. Rowe

The first two of the twenty-three unsolved 
problems that David Hilbert famously pro-
posed at the 1900 International Congress of 
Mathematicians (ICM) in 1900 dealt with 
issues associated with the real number con-
tinuum. The first problem concerned Cantor’s 

continuum hypothesis, whereas the second dealt with Hil-
bert’s attempt to establish the existence of the continuum 
by proving the consistency of his axioms for characterizing 
its properties. Few have noted, however, that Hilbert him-
self linked the larger goals of Cantor’s theory of transfinite 
arithmetic with those of his own program for axiomatiza-
tion. By carefully recounting Hilbert’s interactions with 
Cantor from 1897 onward, this paper shows how Hilbert’s 
understanding of “Cantor’s paradox” influenced the views 
he expressed at the 1900 ICM.

Hilbert’s First Two Paris Problems
Georg Cantor loved to talk about his latest mathematical 
ideas with anyone who would listen. One of those who did 
was David Hilbert, who probably met Cantor for the first 
time in Bremen in September 1890 at the annual meeting 
of the German Society of Natural Scientists and Physi-
cians. Mathematicians rarely participated at these confer-
ences, but several attended that year in answer to Can-
tor’s well-publicized effort to enlist their support for an 
important undertaking. During the preceding year, he and 
his allies had prodded their fellow colleagues to join them 
in Bremen in order to discuss plans for founding a national 
mathematical society. Over thirty answered that call—
including Hilbert, Hermann Minkowski, and Felix Klein—
and this group succeeded in launching today’s Deutsche 
Mathematiker-Vereinigung (DMV, or German Mathematical 
Society). None was more eager to do so than Hilbert.

Having grown up in the remotely located East Prussian 
city of Köngisberg, where he studied and taught at its “Al-
bertina” (as the Albertus-Universität Königsberg was affec-
tionately known), Hilbert was acutely aware that the DMV 
could play a critically important social function. Already be-
fore its founding, he freely offered this opinion to Klein by 
way of throwing his support behind such an organization:

It seems to me that the mathematicians of today 
understand each other far too little and that they do 

not take an intense enough interest in one another. 
They also seem to know—so far as I can judge—too 
little of our classical authors [Klassiker]; many,  
moreover, spend much effort working on dead ends 
[21, p. 68].1

Hilbert also fully recognized the importance of reaping 
the kinds of rewards that only an organization like the 
DMV could bestow. One year later, Cantor hosted the 
DMV’s inaugural meeting in Halle, on which occasion 
he unveiled one of his most famous ideas: the diagonal 
argument for proving that the set of real numbers is not 
countably infinite [5]. In fact, he showed that for any set 
M, the set of all its subsets, its power set P(M) , has a 
greater cardinality than that of M. Ernst Zermelo, who 
introduced the axiom of power sets as part of the first 
axiomatization of set theory, would later dub this Can-
tor’s theorem [56, p. 276].

A decade later, international congresses had become 
another standard venue at which mathematicians could 
celebrate their collective achievements and hawk their 
latest wares. At the first ICM, held in Zurich in 1897, 
Cantor took pleasure in hearing Adolf Hurwitz expound 
on the importance of set theory for recent research in 
analysis. Such praise had been late in coming, but on 
this occasion as well at the next two ICMs, in Paris (1900) 
and Heidelberg (1904), Cantor’s name and his longstand-
ing agenda were on prominent display. In Zurich he had 
the pleasure of meeting Émile Borel for the first time 
and informing him of Felix Bernstein’s recent proof of 
the Cantor–Bernstein theorem. Borel was then prepar-
ing a textbook on function theory, to which he added an 
extensive note on Cantor’s theory of cardinal numbers, 
only part of which he found to be solidly grounded [3, 
pp. 102–110]. This included Bernstein’s proof, which 
Cantor communicated to him either during or after their 
encounter in Zurich.

Cantor had also originally planned to visit Paris for the 
second ICM, in 1900, but ultimately he decided not to at-
tend, presumably due to illness. On that occasion, Hilbert 
underscored the importance of Cantor’s novel ideas in his 
remarkable lecture entitled simply “Mathematical Prob-
lems.”2 He did so by describing what still remained to be 
proved, namely Cantor’s conjectures about well ordering 
and the continuum hypothesis. Together these formed the 

1All translations in the paper from original German sources are mine.
2In the congress proceedings, the text appeared in French translation under the title “Sur les Problèmes futurs des Mathématiques” 
[14, pp. 58–114].
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first of Hilbert’s 23 Paris problems,3 whereas the second 
dealt with Hilbert’s own ideas for axiomatizing the real 
number continuum. For that problem, Hilbert claimed 
one could legitimize the mathematical existence of the real 
numbers—defined by the axioms for a complete, ordered 
Archimedean field—by proving that this system of axioms 
was consistent.

These three challenges—well ordering, consistency of 
arithmetic, and the continuum hypothesis—were among 
the most famous foundational problems ever posed, and 
their solutions evoke equally famous names: Ernst Zermelo, 
Kurt Gödel, and Paul Cohen.4 Neither Cantor nor Hilbert 
foresaw the eventual outcomes, of course, it was far too 
early in the game, and their hunches were completely 
wrong.5 But what ideas were in the air when Hilbert spoke 
in 1900 and why did he come to think of the first two Paris 
problems as strongly linked? To what extent were his ideas 
influenced by Cantor’s own views and in what ways did he 
depart from them?

José Ferreirós has argued forcefully that Hilbert’s early 
ideas relating to set theory and logic were closely aligned 
with those he found on reading Richard Dedekind’s Was 
sind und was sollen die Zahlen? [9].6 He cites Hilbert’s reply 
to Cantor, who had alerted him that the class of all alephs 
was not a set [18, p. 51], a claim Hilbert initially resisted:

The collection of all alephs can be conceived as a 
definite well-defined set, for certainly if any thing 
is given, it must always be possible to determine 
whether this thing is an aleph or not; and nothing 
more belongs to a well-defined set [38, p. 390].

As Ferreirós emphasizes:

Dedekind would not have answered differently: it is 
enough that the concept of an aleph be well defined, 
this suffices (by the unstated comprehension prin-
ciple) for the corresponding set to exist. Hilbert’s 
answer is thus a perfect example of the dichotomic 
conception of sets [18, p. 51].

By the time Hilbert wrote his text for the 1900 Paris ICM, 
however, he had clearly accepted Cantor’s view of the situ-
ation, as will be shown below in some detail.

Hilbert’s friend Minkowski found the second Paris prob-
lem particularly provocative. On reading about it for the 
first time one month before the Paris congress took place, 
he sent Hilbert his reaction in the form of these prophetic 
words:

It is, in any case, highly original to set out as a prob-
lem for the future one that mathematicians have long 
since believed to have already completely in their pos-

session, such as the arithmetic axioms. What might 
the numerous laymen in the auditorium say to that? 
Will their respect for us grow? And you will also have 
a tough fight on your hands with the philosophers 
[39, p. 129].

Minkowski’s premonition that some might feel baffled or 
provoked by this problem turned out to be right. In the 
discussion that followed, Giuseppe Peano made a pointed 
priority claim for his compatriot Alessandro Padoa, claiming 
that he had already solved the second problem [14, p. 21].7 
But no one, it seems, had any inkling as to what Hilbert 
meant when he asserted that “the system8 of all cardinal 
numbers or of all Cantorian alephs” (which Cantor believed 
were identical) did not exist. Today this is called Cantor’s 
paradox, but in 1900 only a very small number of math-
ematicians had any idea of such matters [17, pp. 290–296]. 
Hilbert learned about this thorny issue from Cantor himself, 
beginning with a conversation they had in Brunswick in 
September 1897.9 The general circumstances surrounding 
this have been known since the publication of [47]. What 
has remained unclear, however, is what Hilbert thought 
about the matter after Cantor first informed him. That is 
something well worth knowing, but which he left unsaid at 
the ICM in Paris.

Later commentators who have written about Hilbert’s 
awareness of logical problems in Cantorian set theory—but 
also in Dedekind’s approach to the infinite in his grounding 
of arithmetic—have typically been persuaded by the opti-
mistic rhetoric that pervaded Hilbert’s Paris address. The 
consensus view has been that he and Ernst Zermelo were 
aware of the problem of set-theoretic antinomies already 
in the late 1890s, but that neither saw this as a problem 
of deep concern. Ferreirós thus writes, “it was only after 
Frege’s reaction to the Zermelo–Russell paradox, published 
in 1903, that Hilbert came to doubt whether set theory 
really belongs to pure logic, and whether pure mathemat-
ics can be reduced to logic” [18, p. 49]. Publicly, at least, 
Hilbert first addressed the larger problems at stake in the 
paper he delivered at the Heidelberg ICM in [31].

Hilbert’s lecture in Heidelberg picked up where he had 
left his second Paris problem four years earlier. His tone, 
however, was now very different, since this time he had to 
address recent controversies over the paradoxes of logic and 
set theory. He proposed to do so by simultaneously develop-
ing the laws of logic and arithmetic, an approach sometimes 
regarded as the initial step on Hilbert’s way toward proof 
theory based on finitist principles. Before turning to his 
own proposal, though, Hilbert began by quickly dispos-
ing of earlier ideas offered by others. Mixing ridicule with 
praise, he attached a series of invidious labels to his rivals’ 

3In the literature, they are usually referred to as the “Hilbert problems,” but several were not original with him, of course.
4Sometimes, Gerhard Gentzen is credited with having given a positive solution to the second Paris problem in [22], but his  
methods went beyond Hilbert’s strictures.
5For overviews of subsequent developments in set theory, see [13, 17, 42].
6Although the title is often translated What Are Numbers and What Should They Be? a more accurate rendering would be 
What Are Numbers and What Is Their Meaning?
7This remark was apparently just a misunderstanding, as in the published text of his talk, Padoa made no reference at all to 
Hilbert’s axiom system or to the second Paris problem [14, pp. 249–256]; see further [25, pp. 98–101].
8Hilbert often employed the notion of a “system of things,” just as used by Dedekind; see [18, p. 44].
9Hilbert later formulated a related paradox in a lecture course from 1905; see [45] and [46].
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views, beginning with Kronecker, the dogmatist, who 
failed to examine the foundations of the number concept.10 
Helmholtz represented the empiricist approach, which was 
doomed to finitism, whereas Christoffel was one of numer-
ous analysts, the opportunists, who tried in vain to save 
the notion of irrational number in the face of Kronecker’s 
criticism.

Hilbert credited the logicist Frege with having started on 
the right track, since he “correctly recognized the essential 
properties of the notion of integer as well as the significance 
of inference by complete induction” [31, p. 175]; unfortu-
nately, this entire effort had crumbled in the face of Russell’s 
paradox. A similar fate befell the transcendentalist Dede-
kind,11 who invoked the notion of a universe of objects, 
whereas Cantor adopted a subjectivist stance in trying to 
distinguish between “consistent” and “inconsistent” sets. 
Cantor was thus aware of the contradiction that arose in 
considering collections such as “the set of all sets,” which 
led him to distinguish between “consistent” and “inconsist-
ent” sets. The problem, however, was that “he provides no 
precise criterion for this distinction, [so] I must describe his 
conception of this matter as one that still leaves room for 
subjective opinion and hence furnishes no objective cer-
tainty” [31, p. 176].

Hilbert’s brief synopsis of prior attempts to ground 
arithmetic on more primitive notions from both logic and set 
theory set the stage for his main theme, which was to sug-
gest a way out of this morass. Not surprisingly, the signpost 
to which he next pointed was already familiar. “It is my 
opinion,” he proclaimed, “that all the difficulties touched 
upon can be overcome and that we can provide a rigorous and 
completely satisfying foundation for the notion of number, 
and in fact by a method that I would call axiomatic ...” [31, 
p. 175]. Hilbert proceeded to describe some of the basic ideas 
behind his new method, beginning with the primitive notion 
of a thought-object (Gedanken-ding) and its designation by a 
sign. Recognizing that a proof of the consistency of arithme-
tic could not be attained by showing that the laws of arithme-
tic were reducible to logic, he proposed to develop the laws 
of logic and arithmetic simultaneously, thereby avoiding the 
paradoxes of set theory. This early program contained some 
of the germs of Hilbert’s proof theory from the 1920s, in par-
ticular the idea of treating a mathematical proof as a formula 
in order to prove the consistency of arithmetic.

In Heidelberg, Hilbert sketched a proof for the consist-
ency of a system of elementary axioms, and he went on to 
express his conviction that by such means, the resolution 
of his second Paris problem could not be long off. Speaking 
with his usual fervent enthusiasm, he ended his speech by 
taking some parting shots at Cantor’s old nemesis, Leopold 
Kronecker:

The existence of the totality of real numbers can be 
demonstrated in a way similar to that in which the exist-
ence of the smallest infinite can be proved; in fact, the 
axioms for real numbers as I have set them up [in “Über 
den Zahlbegriff” [29]] can be expressed by precisely such 
formulas as the axioms hitherto assumed. In particular, so 
far as the axiom I called the completeness axiom [Voll-
ständigkeitsaxiom] is concerned, it expresses the fact that 
the totality of real numbers contains, in the sense of a 
one-to-one correspondence between elements, any other 
set whose elements also satisfy the axioms that precede; 
thus considered, the completeness axiom, too, becomes 
a stipulation expressible by formulas constructed like 
those above, and the axioms for the totality of real num-
bers do not differ qualitatively in any respect from, say, 
the axioms necessary for the definition of the integers. In 
the recognition of this fact lies, I believe, the real refuta-
tion of the conception of the foundations of arithmetic 
associated with L. Kronecker and characterized at the 
beginning of my lecture as dogmatic. In the same way 
we can show that the fundamental notions of Cantor’s set 
theory, in particular Cantor’s alephs, have a consistent 
existence [31, p. 185].

On Hilbert’s Axiomatic Strategy
It may seem surprising that Hilbert wanted to identify 
himself so strongly with Cantor’s new approach to the 
continuum based on a general theory of infinite sets. By the 
1920s, when facing the new challenge posed by Brouwer’s 
intuitionism, he was increasingly inclined to invoke Can-
tor’s name in his rhetorical flourishes, famously declaring, 
“No one will cast us out from the paradise that Cantor 
has created for us” [32, p. 170]. Yet, as emphasized in [13], 
throughout his career, Hilbert’s foundational interests 
reflected the concerns of “working mathematicians” rather 
than issues of a more philosophical nature, which he hap-
pily relegated to others.12 As Burton Dreben and Akihiro 
Kanamori write:

Hilbert did not make direct mathematical contribu-
tions toward the development of set theory. Although 
he liberally used nonconstructive arguments, his 
were still the concerns of mainstream mathematics, 
and he stressed concrete approaches and the eventual 
solvability of every mathematical problem. After its 
beginnings as the study of the transfinite numbers 
and definable collections of reals, set theory was 
becoming an open-ended axiomatic investigation of 
arbitrary collections and functions. For Hilbert, this 
was never to be a major concern, but he nonetheless 
exerted a strong influence on this development both 
through his broader mathematical approaches and 

10The labels already appear in italics in [31].
11What Hilbert meant by this term seems hardly clear. Ferreirós argues that Dedekind’s foundational program for arithmetic was 
essentially a logicist approach much like Frege’s [18, p. 39]. Indeed, he sees Hilbert’s work ca. 1900 as that of a logicist largely  
following in Dedekind’s footsteps.
12The survey [13] also makes clear that Hilbert’s general orientation toward foundational matters was strongly influenced by his 
early conflict with Paul Gordan, who famously objected to the nonconstructive nature of Hilbert’s new results in invariant theory 
[13, pp. 78–80].
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through his specific attempt to establish the contin-
uum hypothesis [13, p. 77].

During the late 1890s, Hilbert developed an abstract axi-
omatic theory for the real number continuum, whereas 
Cantor never approached the continuum hypothesis from 
an axiomatic point of view. Yet in reading the text of 
Hilbert’s Paris lecture carefully, one sees that he defi-
nitely wanted to establish this linkage in order to gain 
complete clarity with regard to the properties of the real 
number continuum. His strategy came down to proving 
the consistency of its axiom system, for if that could be 
done, the game would be won. The uniqueness of the re-
als would then follow from his final completeness axiom, 
which essentially asserted that the established model was 
categorical.13

For his second problem, Hilbert put the matter this way:

... the proof of the consistency of the axioms is at the 
same time the proof of the mathematical existence of 
the complete system of real numbers or of the con-
tinuum. Indeed, when the proof for the compatibility 
of the axioms shall be fully accomplished, the doubts 
which have been expressed occasionally as to the 
existence of the complete system of real numbers will 
become totally groundless [30, p. 301].

Insiders surely recognized that Hilbert’s sweeping repudia-
tion of the skeptics who cried ignorabimus was a conveni-
ent way to attack the views of the deceased Berlin algebra-
ist Leopold Kronecker, an outspoken advocate of finitist 
constructive principles in mathematics. Cantor had long 
portrayed himself as a victim of Kronecker’s machinations, 
though his claims in this respect were surely exaggerated. 
Yet be that as it may, within German mathematical circles, 
Kronecker was widely known as having been Cantor’s 
nemesis, which made the subtext of Hilbert’s address only 
that much clearer. With regard to the admissibility of 
infinite sets in mathematics, he intended to banish Kro-
necker’s ghost from the mathematical world forever. At the 
center of this conflict stood the status of the continuum as 
a mathematical entity, the issue being whether it could be 
grasped “rigorously” as an infinite collection of objects. In 
Hilbert’s view:

The totality of real numbers ... is not the totality of all 
possible series in decimal fractions, or of all possible 
laws according to which the elements of a funda-
mental sequence may proceed. It is rather a system 
of things whose mutual relations are governed by the 
axioms set up and for which all propositions, and 
only those, are true which can be derived from the 
axioms by a finite number of logical processes. In my 

opinion, the concept of the continuum is strictly logi-
cally tenable in this sense only [30, p. 301].

Thus, once this was achieved, mathematicians could 
proceed to give a fully rigorous proof of Cantor’s two con-
jectures, which Hilbert lumped together as the first Paris 
problem. Proving the continuum hypothesis would then es-
tablish that either every infinite subset of the real numbers 
would be denumerable or its cardinality would be identical 
to that of the continuum itself.14 When we turn to Hilbert’s 
very last comments in connection with the second problem, 
the linkage with Cantor’s theory of transfinite numbers 
could not be clearer:

The concept of the continuum or even that of the 
system of all functions exists, then, in exactly the same 
sense as the system of integers or rational numbers, for 
example, or as Cantor’s higher classes of numbers and 
cardinal numbers. For I am convinced that the exist-
ence of the latter, just as that of the continuum, can be 
proved in the sense I have described; unlike the system 
of all cardinal numbers or of all Cantorian alephs, for 
which, as may be shown, a system of axioms, consist-
ent in my sense, cannot be set up. These systems are, 
therefore, according to my terminology, mathematically 
nonexistent.

Hilbert’s famous second problem was one of the ten he 
spoke about in Paris, so his audience presumably heard him 
make these remarks. Nevertheless, they and presumably 
the many more who read his text later likely missed the 
fact that Hilbert was calling for an axiomatization of Can-
tor’s transfinite numbers parallel to the one he had already 
set forth for the real numbers. Many of Hilbert’s contem-
poraries probably also overlooked the evident connec-
tion between his first and second Paris problems. Clearly, 
the second Paris problem should have taken precedence 
over the first, since it was first necessary to do away with 
“Kronecker’s ghost,” i.e., to prove that the totality of real 
numbers exists as a consistent set, before one could pos-
sibly exhibit it as a well-ordered set. Hilbert could have 
made the linkage between the two problems much clearer 
had he simply reversed their order. But that would have 
meant placing his own work before Cantor’s, which would 
have undermined his larger goal of speaking in the name 
of mathematical researchers worldwide.15 For those in the 
know—particularly certain members of the German math-
ematical community—Hilbert’s address contained an obvi-
ous subtext, hinted at when he spoke of certain unnamed 
“doubters,” who refused to accept the concept of the “set 
of all real numbers” (Hilbert used the word Inbegriff rather 
than Menge; this was an older Cantorian terminology for 

13For an interpretation of Hilbert’s completeness axiom that avoids models and reflects a parallelism with Dedekind’s chain axiom, 
see [18, pp. 47–49].

14In Paris, Hilbert spoke only about this weaker formulation, long called the continuum problem. This was Cantor’s original claim 
in 1878—that the continuum contains only two orders of infinity, which he later wrote as ℵ0 and 2ℵ0 . In 1884, Cantor was  
actually able to prove this for closed subsets of the continuum. By that time, however, having made several futile attempts to solve 
the original problem, he adopted a different approach based on ordinal numbers (for a detailed account of this shift, see [41]).
15Thus, he introduced the first two problems by referring to the highly significant progress made during the last century in the 
foundations of analysis through “the arithmetic formulation of the concept of the continuum in the works of Cauchy, Bolzano, and 
Cantor” [30, p. 298]. The choice of names—representing France, Bohemia, and Germany—reflects the setting as well; had he been 
speaking to a German audience, Hilbert surely would not have overlooked Weierstrass or Dedekind.
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what we now translate with the word “set”). That this was 
no mere passing remark can be seen from the fact that Hil-
bert elaborated at length on the broader significance of his 
second Paris problem.

In Cantorian language, the existence of the reals 
naturally led to the continuum hypothesis, namely that 
2ℵ0 = ℵ1 . For both Cantor and Hilbert, this claim, along 
with the assertion that the continuum of real numbers can 
be reordered so as to form a well-ordered set, were central 
tenets of Cantor’s set theory. Hilbert left little doubt 
that both of Cantor’s claims were correct, adding that a 
direct proof of the latter was highly desirable, by which 
he meant an explicit well-ordering of the reals. Zermelo’s 
proof in [55] by means of the axiom of choice was surely 
not what he had in mind, but Hilbert was nevertheless 
pleased that this at least salvaged Cantor’s claim. Years 
later, commenting on attempts to achieve well ordering 
by means of a recursive procedure, Zermelo called such 
“well-known primitive attempts ... unsatisfying both in-
tuitively and logically” [8, p. 352]. Hilbert’s brief explana-
tion of the continuum problem was also misleading in that 
it conflated Cantor’s earlier formulation, sometimes called 
the weak continuum hypothesis, with the later version. 
He thus writes that if one could prove that every infinite 
subset of the continuum was either countable or had the 
same cardinality as the full continuum, then it would 
follow immediately “that the continuum has the next car-
dinal number beyond that of countable sets; the proof of 
this theorem would therefore form a new bridge between 
the continuum and countable sets” [30, pp. 298–299]. This 
overlooks that one must first establish that 2ℵ0 is equiva-
lent to an aleph, a result Cantor claimed he could prove 
starting from the assumption that every set can be well 
ordered.

If this may seem like nitpicking, let me reiterate that the 
present account merely aims to shed light on Hilbert’s views 
at the time he delivered his famous Paris address. It goes 
without saying that the significance of his first two prob-
lems should be measured against the significant role they 
played in focusing attention on key foundational issues. My 
purpose here, on the other hand, is to look backward to the 
1890s in an attempt to grasp how Hilbert came to link his 
own work on the axiomatization of geometry and arithmetic 
with Cantor’s theory of transfinite arithmetic.

Cantor’s Letters to Hilbert from 1897
Hilbert did not attend the Zurich congress, but one 
month later, in September 1897, he and Cantor met at 
the annual DMV conference, held in Brunswick. Rich-
ard Dedekind, a native of the city who taught at its 

Technische Hochschule, delivered the opening address 
on that occasion. Dedekind had already been informed 
about the Cantor paradox earlier that year, but it seems 
unlikely that he and Cantor discussed foundational mat-
ters during the course of this meeting. The official report 
[12] notes that Hilbert was one of the sixteen speakers, 
whereas Cantor’s name was not among them; nor was 
set theory among the topics taken up at the conference. 
Nevertheless, we know that Cantor was present and took 
an active part on the sidelines of the meeting. In fact, he 
even gave a lecture about his latest results before a small 
group of attendees [19, p. 214].

In March 1897, Cantor had submitted the second part 
of his “Beiträge” [6] to Mathematische Annalen, just one 
month before Hilbert put the final touches on his Zahlbe-
richt. Hilbert’s famous preface contains a slight bow in Can-
tor’s direction, though not in connection with set theory, 
but rather for his role in strengthening the foundations of 
analysis, about which Hilbert expressed his belief:

... that the modern development of pure mathemat-
ics takes place above all under the banner of num-
ber: Dedekind’s and Weierstrass’s16 definitions of 
the fundamental concepts of arithmetic and Cantor’s 
construction of the general concept of number lead 
to an arithmetization of function theory and serve 
to realize the principle that even in function theory 
one can only regard a result as ultimately proven 
when it has been reduced to relations between 
rational numbers [27, p. 66].

Hilbert surely heard Cantor’s informal talk at the DMV 
conference in Brunswick, which no doubt intensified his 
interest in transfinite arithmetic. During this meeting, he 
informed Cantor that he had recently been appointed to the 
editorial board of Mathematische Annalen. Cantor evidently 
considered this a fortuitous turn of events, since he was 
trying to complete the third installment of his “Beiträge”17 
and could anticipate that Hilbert would be most interested 
in its contents. Toward the end of the conference, they may 
have spoken about these things, but in any event, Cantor 
was intent on answering a question Hilbert had posed to 
him.

On September 29, one day after the end of the confer-
ence, he sent Hilbert a letter in which he remarked:

Unfortunately, the day before yesterday, due to the 
advancing noon hour, I had to interrupt our conversa-
tion on set theory at the Brunswick Polytechnicum, 
just when you had raised a concern as to whether 
all transfinite cardinal numbers are contained in the 
alephs, in other words, whether any definite a or b is a 
definite aleph.

16In the English edition, Leopold Kronecker’s name mistakenly appears instead of Weierstrass’s [35, ix]. We can be sure that Hilbert 
would never have committed this mistake—he had a deep respect for Weierstrass’s work and regarded Kronecker’s criticisms of it 
as scandalous.
17The first two were [6], translated in [7].
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That this is indeed the case can be rigorously proved. 
The totality of all alephs is namely of the kind that it 
cannot be comprehended as a definite well-defined 
finished [fertige] set. Were this the case, then a defi-
nite aleph would succeed this totality in size, and it 
would thus belong to this totality (as an element) as 
well as not belong, a contradiction.

This having been said, I can rigorously prove: “If 
a definite well-defined finished set were to have a 
cardinality that was not an aleph, then it must contain 
subsets whose cardinality is the same as any given 
aleph, in others words, this set must then contain the 
totality of all alephs” [38, p. 388].

From this, Cantor drew the conclusion that the alephs 
are coextensive with all infinite cardinal numbers, so that 
the continuum of real numbers, whose cardinality is 2ℵ0 , 
must correspond to an aleph. His continuum hypothesis 
claimed further, in fact, that 2ℵ0 = ℵ1 . Cantor’s assertions 
were grounded on the conviction that every set can be well 
ordered, which turned out to be equivalent to Zermelo’s 
axiom of choice [40]. In his letter to Hilbert, Cantor elabo-
rated on the above remarks by explaining:

It follows from these results that the linear con-
tinuum, torn from its context [the natural ordering of 
the real numbers], is countable in a higher sense, that 
is, can be represented as a well-ordered set.

Totalities which we cannot grasp as “sets” (like the 
example of the totality of all alephs, as was proved 
above) I have already many years ago named “absolute 
infinite” totalities and sharply distinguished from 
transfinite sets [38, p. 388].

As Walter Purkert has emphasized, Cantor attached great 
philosophical and religious significance to this distinction, 
since he identified such humanly incomprehensible totali-
ties with the Absolute in the sense of Leibniz and Spinoza 
(see [48, pp. 57–61]).

Hilbert’s reply to Cantor’s letter no longer exists, but 
from the latter’s counter-reply we can see that initially, the 
main point of Cantor’s paradox had escaped him. Writing 
on October 2, Cantor began his explanation of its import 
by citing Hilbert’s words: “The set [Inbegriff] of the alephs 
can be comprehended as a definite well-defined set, since 
for any given thing it must always be decidable whether 
or not that thing is an aleph; indeed, more than this is not 
required of a well-defined set” [38, p. 390]. Cantor then 
pointed out that this remark missed the point of his letter, 
which he underscored by putting his claim in the form of a 
theorem: the totality of all alephs cannot be comprehended 
as a definite well-defined and also finished set. He then 
emphatically added:

I venture to designate this theorem, which is com-
pletely secure and is proved from the definition of 
the “totality of all alephs,” as the most important and 
noble theorem of set theory. But one must under-

stand the expression “finished” correctly. I say of a 
set that it can be thought of as finished, and name 
such sets, if they contain infinitely many elements, 
“transfinite” ... if it is possible without contradic-
tion (as is the case for finite sets) to think of all their 
elements as existing together and hence the set itself 
as joined together as a thing by itself; or also, in 
other words, if it is possible to think of the set with 
the totality of its elements as presently existing [38, 
p. 390].

This brings to mind Cantor’s famous definition at the very 
beginning of his “Beiträge”: “A set is a collection of defi-
nite, distinguishable objects of perception or thought com-
bined into a whole [Zusammenfassung zu einem Ganzen]” 
[6, p. 282]. Cantor varied his terminology a great deal over 
the years; nevertheless, it is striking that he formulated 
the above definition only in this, his final, work, which 
goes beyond the descriptive explanation in the first note 
to [4].

This was the era of so-called naive set theory, in which 
sets were conceived as arbitrary collections whose elements 
satisfy a given definition that was considered conceptually 
clear. One simply assumed that these elements belonged 
to some still larger collection, which was itself a set, thus 
suggesting the notion of a universal set of objects. The same 
viewpoint dominates in Arthur Schoenflies’s official report 
on point set theory, which merely repeated what Cantor 
wrote about set comprehension back in 1882 [51, p. 5]. At 
that time, Cantor stated that a set of elements belonging to 
a given conceptual sphere is well defined when two condi-
tions hold. First, its defining property must be such that the 
set is internally determined, meaning that the logical law of 
the excluded middle applies in answering whether a given 
element belongs to the set. Second, it must be possible to 
ascertain for any two elements whether they are identical. 
Cantor made it clear that these conditions were theoretical 
in nature and had nothing to do with the methodological 
issues involved in deciding whether a particular element 
might or might not happen to belong to a well-defined set. 
To illustrate this point, he noted that it was still not known 
whether � was a transcendental number.18 This question, 
however, had no bearing on the definition of the set of all 
algebraic numbers, which was in any case well defined [8, 
pp. 150–151].

Hilbert thus invoked this idea in replying to Cantor’s 
first letter when he asserted that the collection of all alephs 
was a well-defined set on the grounds that one could (in 
principle) always decide whether a given number was an 
aleph or was not. In the meantime, however, Cantor had 
come to realize that this naive conception based on the 
principle of comprehension was a grievous error, though 
his own earlier writings had served to entrench this very 
understanding. Lurking behind this, to be sure, were Dede-
kind’s influential ideas in [9]. Thus, Ferreirós describes the 
shift in Hilbert’s thinking as a shift away from Dedekind’s 
views, once he came to recognize the import of Cantor’s 
message:

18A few months later, Klein asked Cantor to referee Lindemann’s paper containing such a proof [38, pp. 73–75]; see [50].
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Hilbert’s views on “truth and existence” in math-
ematics emerged from a logicistic understanding of 
set theory in terms of the principle of comprehension. 
He was led to revising that contradictory principle in 
the light of Cantor’s discovery of the antinomies of set 
theory; this is what triggered his noteworthy inver-
sion of previous ideas about existence and consist-
ency [18, p. 49].

Once he read Cantor’s second letter, Hilbert must have 
realized the import of his message. In fact, it left him both 
puzzled and worried. Clearly, one could not admit these 
gigantic sets into a mathematical theory, but Cantor’s ap-
proach lacked any fixed criteria for distinguishing between 
finished and unfinished collections. In his private note-
book, Hilbert pondered what to do:

Cantor’s letters: “Fertig” [is] undefined. This evil 
becomes worse the more one thinks about it. The 
system of all irrational numbers should be thought of 
as “fertig” [b]ut not the system of all sets that result 
from the countable [sets] by the operations MM and � 
[26, p. 91].

These operations were used without restriction in Cantor’s 
theory: MM stands for the collection of all mappings  
(Belegungen) M → M , whereas � stands for the sum or 
union of a collection; both play a ubiquitous role in naive 
(nonaxiomatic) set theory.19

Hilbert’s further reflections about how to finesse the 
problem Cantor had described are both illuminating and 
surprising:

I see only the following way [out]: One examines the 
propositions and problems of set theory and first tries 
to formulate them without using the word set—as 
[this is] essentially only façon de parler. That there 
are as many points on the line as in the square is also 
easy. Yet even the problem of whether something lies 
between the countable and the linear continuum is 
very difficult. Also the following: one does not think 
of something existent behind a concept, but rather 
façon de parler should only signify that with a word 
I mean that I now want to use a certain fact that was 
previously established. Thus, an irrational number 
= thing for which I know that every rational num-
ber can be given a mark > [or] < in relation to this 
thing. This fact and only this fact shall apply when I 
speak of the concept. One must avoid speaking of the 
system of all irrationals, but one can still formulate 
general theorems about irrational numbers (e.g. there 
are infinitely many, e is irrational) in which the word 
thing = irrational number occurs. Then this shall 
merely mean a thing described by that property alone 
[26, p. 91].

These remarks, although undated, were surely written 
long before August 1900, when Hilbert spoke at length 
about Cantor’s conjectures at the Paris ICM. He could have 
been reacting to the two letters cited above, although a 
later date in 1899 is also possible, since Cantor wrote him 
several times then about the same topic [38, pp. 399–431]. 
In any case, the reaction cited above gives a clear impres-
sion of Hilbert’s state of mind during the time that the 
antinomies in set theory first emerged. They also contain 
hints of what was to come. Rather than imposing restric-
tions on the operations of set theory, Hilbert considered the 
more radical approach of treating mathematical concepts on 
two different levels, only one of which would have onto-
logical significance.

Wakter Purkert recognized the importance of Cantor’s 
two letters to Hilbert when he first published them in [47]. 
They reveal that Cantor fully grasped the problem posed by 
antinomies in the theory of infinite sets well before other 
mathematicians had attained this insight. Certainly he be-
came aware of this problem independently of Cesare Burali-
Forti, who in 1897 published a paper related to the paradox 
that today bears his name.20 Retrospectively, this led to the 
realization that the set of all ordinal numbers, were it to exist, 
would lead to an immediate contradiction, since one could 
then define a still greater ordinal that would not belong to 
the “set” containing all of them. In principle, this was the 
very same difficulty Cantor had encountered and commu-
nicated to both Hilbert and Dedekind that same year. It re-
mains unclear exactly when Cantor realized that one needed 
somehow to restrict set-theoretic operations in order to 
avoid forming inconsistent sets, but in his letters to Hilbert 
from this time, he kept returning to the distinction between 
finished and unfinished, or consistent and inconsistent, sets 
(the terminology he introduced a few years later). Yet Cantor 
never made these mathematical issues transparent in his 
publications, preferring instead to inform sympathetic col-
leagues, like Hilbert, through personal communications. Nor 
did he tackle the continuum hypothesis—his conjecture that 
2ℵ0 = ℵ1—though he surely planned to do so in the third 
installment of his “Beiträge,” which he was working on at 
the time he spoke with Hilbert in Brunswick.

Minkowski, who always read and followed Hilbert’s 
work with intense pleasure, had in the meantime accepted 
a professorship in Zurich, where he taught alongside Hur-
witz. One of his students from this time—remembered later 
as a “real lazybones”—was a young fellow by the name of 
Albert Einstein.21 In the summer of 1898, Hilbert and his 
wife visited the Minkowskis in Zurich. The two friends 
planned to see each other again at the forthcoming DMV 
conference in Düsseldorf, where Minkowski gave a lecture 
on his recent work in number theory. Hilbert’s name was 
not among those listed on the program of speakers, but he 

19Belegungen are not literally mappings but rather coverings. Cantor introduced this notion in 1892, and it plays a key role in his 
“Beiträge”; see Jourdain’s comments in [7, pp. 81–82]. The symbol 

2M
 , which denotes the set of mappings M → {0, 1} , is com-

monly used for the power set of M.
20As shown in [43], however, the so-called Burali-Forti paradox does not appear in that paper.
21Minkowski later told his assistant Max Born that “relativity came as a tremendous surprise, for in his student days Einstein  
was a real lazybones. He never bothered about mathematics at all” (translated from [52, p. 45]).
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undoubtedly took part as a listener. This we know from a 
letter Cantor wrote to Hilbert on October 6, 1898, roughly 
a fortnight after the Düsseldorf meeting took place.

Cantor had decided not to attend that event, preferring 
instead to spend time vacationing with his family. When 
he arrived home in Halle, he was delighted to find a letter 
from Hilbert awaiting him. It was dated September 16, 
1898, thus three days before the DMV conference began, 
and was evidently written with the hope and expectation 
that they would be able to pick up their discussion of fun-
damental problems in set theory at the DMV conference. 
In his reply, Cantor expressed his regrets that he had been 
unable to meet Hilbert in Düsseldorf, but also wanted him 
to know how happy he was “for the interest you devote to 
set theory.” He then added:

How often during the past year my thoughts have 
involuntarily turned to you with the question 
whether the active participation [Theilnahme] in 
these researches that you showed me in Brunswick 
would continue.

Nothing could be more welcome or dearer to me than 
to discuss the elements of set theory with you, as 
this promises not only to bring profit for the matter 
itself but also instruction and motivation for me [38, 
p. 393].

Curiously, Hilbert had still not fully absorbed the message 
Cantor had tried to convey to him one year earlier, and in 
the remainder of this letter, Cantor merely recapitulated 
what he had already written him then. After explaining the 
main idea once again, he closed by saying, “In the example 
you present, however, the set of all alephs is assumed to be 
a finished set, which thus solves and explains the contra-
diction you were led to by applying theorems that are only 
proven valid for finished sets” [38, p. 393].

After October 1898, there seems to be no evidence of fur-
ther contacts between Cantor and Hilbert until the spring of 
1899. In early May of that year, Hilbert sent Cantor a post-
card, to which the latter replied with some brief but sig-
nificant remarks. Concerning terminology, Cantor informed 
him that he no longer spoke of “finished” (fertige) sets, 
preferring instead to use the adjective “consistent.” He then 
wrote that he and Hilbert shared the conviction that the 
arithmetic continuum is a consistent set, though the ques-
tion remained “whether this truth is provable or whether 
it is an axiom. I now incline more to the latter alternative, 
although I would gladly be convinced by you of the for-
mer” [38, p. 399]. These words reflect a sense of pessimism 
that one rarely finds in earlier correspondence. Two years 
earlier, Cantor had shown Hilbert an argument for why 
every cardinal number must be an aleph,22 and he had long 
believed that the cardinality of the continuum was ℵ1 . Now 
he seemed unsure whether an axiom might be needed in 
order to assert that the continuum of real numbers was even 
a consistent set. Thus, the possibilities for axiomatizing set 

theory had begun to creep into his speculations, and Cantor 
must have realized that his theory stood in need of stronger 
foundations. Hilbert clearly recognized this, too.

Climactic Events of 1899
By this time, Hilbert had firmly established his reputa-
tion as the era’s leading authority in both invariant theory 
and the theory of number fields, two formerly distinct 
disciplines that had now been brought under the same 
algebraic roof through his work. But then came a most 
unexpected turn of events. Many years later, in [2, p. 402], 
Otto Blumenthal recalled the buzzing chatter among the 
students when they read Hilbert’s announcement for a 
course on “Grundlagen der Euklidischen Geometrie” [36, 
pp. 185–406], which he was offering for the winter semes-
ter of 1898–1899. Blumenthal and the older students, those 
who had been accompanying Hilbert on weekly walks, had 
never heard him talk about geometry, only number fields. 
Little did they realize that Hilbert had been contemplat-
ing the foundations of geometry ever since his years as a 
Privatdozent in Königsberg, as evidenced by recent histori-
cal studies (see, in particular, [36, 53], and the commentar-
ies by Klaus Volkert in [28]). Hilbert’s lecture course that 
semester surprised them even more, for in it he sought to 
lay out the fundamental structures underlying Euclidean 
geometry as no one had ever done before. The following 
spring, following a request from Klein, he revised this 
material and presented his “Grundlagen der Geometrie” 
for a Festschrift commemorating the unveiling of the 
Gauss–Weber monument in Göttingen in June 1899.

One often reads that Hilbert’s principal goal in his Fest-
schrift article was to prove the relative consistency of Euclid-
ean geometry by showing that its axiom system depended 
only on the consistency of the axioms for the real numbers. 
This faulty reading stems from viewing his Festschrift 
contribution through the prism of Hilbert’s second Paris 
problem, which Kurt Gödel later showed could not be solved 
within the framework of proof theory as designed by Hilbert 
and Paul Bernays. This was the upshot of Gödel’s second 
incompleteness theorem, published in “On Formally Unde-
cidable Propositions of Principia Mathematica and Related 
Systems I” [23]. This classic paper also contains Gödel’s first 
incompleteness theorem, which roughly states that any con-
sistent formal system F strong enough to contain elementary 
arithmetic (e.g., that of Whitehead and Russell’s Principia 
Mathematica) is incomplete, meaning there are statements in 
F that can be neither proved nor disproved in the language 
of F. These famous results lie far beyond the chronological 
bounds of the present essay, but they were rooted, of course, 
in the problems dealt with here. The distinction that needs 
to be made clear, though, concerns the challenge of prov-
ing the consistency of the axioms for the real numbers, on 
the one hand, and proving the relative consistency of the 
axioms for Euclidean geometries, on the other. The proof 
of the latter appears at the beginning of Chapter 2 in [28, 
pp. 19–21/95–97].

22He presented his argument in more detail in his long letter to Dedekind from August 3 [38, pp. 407–411].
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For Hilbert, establishing relative consistency was, of 
course, an important aim, but he accomplished that goal 
without any appeal to the field of real numbers. In fact, for 
the system of axioms he presented in the original edition of 
Grundlagen der Geometrie, this was only one among several 
possible models for a Euclidean geometry (geometries in 
which the axiom of parallels holds). Initially, Hilbert identi-
fied continuity with a single axiom—the axiom of Archi-
medes—so what he called Cartesian geometry, i.e., analytic 
geometry over the reals, was only one particular case. Since 
this model would have required coming to grips with the 
properties of the real number continuum, Hilbert sensibly 
opted to give a proof of consistency using a smaller, indeed 
countable, model that satisfies all of his original axioms. He 
introduced this as a plane analytic geometry over the num-
ber field Ω , an extension of ℚ generated by the four arith-
metic operations and square roots of the form 

√

1 + �2 . 
This meant that Ω was the smallest possible Pythagorean 
number field, and its existence proved the consistency 
of the axioms for “complex number systems,” although 
Hilbert took the consistency of Ω itself simply for granted. 
His concluding Chapter 7 was devoted to constructions 
corresponding to this model, which he carried out with 
two virtual instruments: a compass and a device for trans-
porting line segments. The conventional constructions with 
straightedge and compass found in Euclid’s Elements cor-
respond to an extension of ℚ allowing for arbitrary square 
roots 

√

� , as Descartes had essentially already observed in 
1637. For a brief overview of Hilbert’s models, see Volkert’s 
commentary [28, pp. 247–251].

The unveiling of the Gauss–Weber monument took 
place on June 17, 1899, and two of those who came to  
Göttingen to attend that ceremony were Cantor and 
Minkowski. Cantor was curious to learn more about the 
status of the “arithmetic axioms” (his quotation marks) in 
Hilbert’s Festschrift, if possible even before meeting Hil-
bert in Göttingen [38, p. 399]. What he may have learned 
about these no one can say, but Hilbert definitely spoke 
about this very topic with Minkowski, who alluded to it in 
a thank-you letter, written one week after the festivities in 
Göttingen:

Dear friend,

Now that I’ve returned to the reality of Zurich, the won-
derful days in Göttingen seem today like a dream to me, 
and yet one can as little doubt their existence as that of 
your 18 = 17 + 1 axioms of arithmetic. I felt especially 
comfortable in your warm home, and I’ve been reporting 
here repeatedly with pleasure about the exciting time I 
spent there with you. ...

Anyone who experienced these days in Göttingen will 
hardly get over their astonishment over the liveliness in 
the Göttingen mathematical circle, and at the moment 
this is entirely due to you. Spending time in such air 

gives a person higher ambitions and an impulse to more 
intensive creativity [39, pp. 116–117].

Minkowski was here alluding to the full set of axioms that 
Hilbert would present three months later at the DMV con-
ference in Munich.

Over the course of Hilbert’s career, this conference 
stands out as an early and significant personal triumph. He 
was one of some eighty mathematicians who gathered in 
Munich for the annual DMV conference, despite floods that 
had left the city’s transportation system largely paralyzed. 
The impressive turnout and upbeat atmosphere set the 
mood as the DMV’s presiding officer, Max Noether, greeted 
the assembled throng. In opening the meeting, Noether 
mentioned some noteworthy accomplishments of the past 
years, not least of which was the publication of Hilbert’s 
Zahlbericht. In this brief period, the DMV had indeed come 
into its own, emerging as the core structure around which a 
fast-growing German mathematical community was taking 
form. Hilbert, still not yet forty, was about to move into its 
spotlight.

It was at this Munich meeting that he first presented 
the second Paris problem, his plan for a rigorous axiomatic 
approach to the real number continuum, one that entailed 
proving the consistency of the eighteen axioms he used to 
characterize the set of all real numbers. Hilbert also deliv-
ered a second talk on the Dirichlet principle, a topic that 
would prove even more important as a leitmotiv for many 
of his leading pupils. Their methods proved to be spec-
tacularly successful, and they helped usher in a major new 
subfield in analysis [54, pp. 380–382].

As noted above, Hilbert’s argument for the logical 
consistency of Euclidean geometry rested on assuming the 
consistency of the number field Ω . Furthermore, in his 
Festschrift he had only analyzed the consistency and inde-
pendence of his axiom system. In his Munich lecture [29], 
Hilbert shifted the focus to consistency and completeness, 
while emphasizing that these were the two general goals of 
the axiomatic method. Thus, it was only at this stage that 
the full continuum became the object of investigation. In 
the case of Cartesian geometry, he had merely noted its 
relative consistency; it thus remained to provide a proof 
of absolute consistency, which now hinged on proving 
this directly for the axiom system of the real numbers. In 
emphasizing the importance of this problem, Hilbert linked 
it directly with the very issues he had been discussing with 
Cantor for the last two years. He furthermore claimed that 
to prove this consistency required only a suitable modifica-
tion of known methods of argument,23 “a proof that estab-
lishes the existence of the real numbers or, in the terminol-
ogy of G. Cantor, shows that the system of real numbers is a 
consistent (finished) set” [29, p. 184]. Cantor almost surely 
attended this lecture, and since he and Hilbert spoke at 
least briefly during this conference [38, p. 425], they pre-
sumably discussed this aspect of consistency as well. One 
year later, in presenting his famous second Paris problem, 

23For a discussion of what Hilbert probably meant by this, see [18, pp. 60–61].
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Hilbert would repeat the very same conviction using almost 
the identical words.

Cantor’s Forgotten Pupil
During his many years in Halle, Cantor never offered a 
course on set theory, nor did he supervise any of the stu-
dents who took doctoral degrees there. Interest in Cantor’s 
theory nevertheless gradually spread, and in Germany, 
three talented young postdocs taught special courses 
dealing with this subject. The first to do so, in the winter 
semester of 1900/01, was Ernst Zermelo, then a Privatdo-
zent working closely with Hilbert in Göttingen. One year 
later, Felix Hausdorff followed suit in Leipzig, and in 1902, 
Edmund Landau taught this new theory to a large group of 
auditors in Berlin [42, p. 44]. A little later, in 1905, Hilbert 
offered a lecture course on “Logical Principles of Math-
ematical Thought,” his first serious foray into mathemati-
cal logic (for details, see [45, pp. 50–58]). Zermelo’s course 
attracted seven students, one of whom, Felix Bernstein, 
was working on a dissertation in set theory in which he 
hoped to take a significant step toward solving Cantor’s 
continuum problem.

Bernstein grew up in Halle, where his father, Julius 
Bernstein, was a professor of physiology whose friendship 
with Cantor extended to their respective families. Their 
wives were both trained singers and talented musicians, 
so Hausmusik was surely a common bond. As a highly 
precocious gymnasium pupil, Felix had already begun to 
study Cantor’s theory, aided no doubt by his mathematics 
teacher, Friedrich Meyer [1]. Although this was only one 
of his many intellectual interests, he never abandoned it 
throughout his turbulent life. During his university studies 
in Munich, Halle, Berlin, and Göttingen, he took courses in 
subjects ranging from mathematics and physics to philoso-
phy and art history.

Many of his teachers were distinguished professors, 
though ultimately Cantor exerted the greatest influence 
on the young Felix Bernstein, whose name is remembered 
from the Cantor–Bernstein theorem. This classic result pro-
vides a criterion for A and B to have the same cardinality, 
namely, if A is equipollent with a proper subset of B, and 
B is equipollent with a proper subset of A.24 Cantor had 
long sought to prove a closely related theorem that could 
serve as a stepping stone toward confirming the trichotomy 
law for cardinal numbers in the realm of well-ordered sets. 
In 1882, he discussed these matters with Dedekind, who 
found a way to prove the theorem, though he revealed this 
to Cantor only much later (see [17, pp. 239–240]). In 1897, 
however, Dedekind learned directly from Bernstein that the 
latter had found a proof himself. The circumstances sur-
rounding this meeting were, indeed, quite remarkable.

In early June of that year, at age nineteen, Bernstein 
went to visit Dedekind in Bad Harzburg, an event he 

recalled more than three decades later in a letter to Emmy 
Noether [10, 3: p. 449]. Bad Harzburg, a tourist town in the 
Harz Mountains, lies fifty kilometers south of Brunswick, 
where Dedekind lived and taught. Its nearby location and 
fresh air drew many wealthier city dwellers, and in 1853, 
Dedekind’s father bought a house there on the Herzog-Ju-
lius-Strasse. Richard and his older sister Julie often stayed 
there, though in later years they frequented the hotel on 
the Burgberg above the town. Cantor spent a week in Bad 
Harzburg visiting Dedekind in September 1882, probably 
the most eventful of their various encounters.

According to Bernstein’s recollections, Cantor had 
written to Dedekind in early 1897 to inform him about 
the problem of paradoxes in set theory. This revelation 
had a direct bearing on Dedekind’s attempt to ground the 
number concept on purely logical principles, because in 
Section V of [9], he considered “the totality of all things 
that can be objects of thought,” which itself belonged to 
this system. Dedekind argued that this entity satisfied his 
definition of an infinite set, namely that it can be mapped 
one-to-one onto a proper subset of itself (see Müller-Stach’s 
commentary in [9, pp. 143–146]). Cantor had no sympathy 
at all for Dedekind’s effort to found arithmetic on the basis 
of logic and set theory, but he badly wanted the latter’s 
approval or at least a sign of recognition that his arguments 
were sound. Having received no reply, Cantor asked the 
young Bernstein to visit the old man. Dedekind was then 
65 and suffering from poor health; he had already resigned 
his professorship at the Brunswick Institute of Technology 
three years earlier. Bernstein recalled only that Dedekind 
had little to say, other than that he had pondered Cantor’s 
letter and was almost in despair over its implications; still, 
he had reached no definite conclusions and apparently he 
never would, at least not in print form.

Although the sources relating to this incident are very 
thin, we can certainly assume that Bernstein conveyed 
Dedekind’s reaction to Cantor shortly after this meeting 
took place. José Ferreirós commented about this as follows:

Bernstein says that Cantor had immediately realized that 
the contradiction affected the “system of all things” 
that underlay Dedekind’s theorem of infinity. In his cor-
respondence of 1899, Cantor formulates the paradoxes 
using Dedekind’s terminology of systems, and he says 
explicitly that they affect the collection of everything 
thinkable [8, p. 443]. Dedekind had stated that every 
system is a thing, but this now became untenable, and 
his theorem that there is an infinite set vanished, bring-
ing into question his whole logicistic project.25 Other-
wise said, Cantor had shown that Dedekind’s logicistic 
notion of set is not sufficient as a basis for set theory, 
for it allows both “finished” and “unfinished” collec-
tions. According to Bernstein, in 1897 Dedekind had 
not arrived at a definite opinion, but in his reflections 
he had almost come to doubt whether human thought is 
completely rational [17, p. 292].

24In the literature, this is sometimes called the Schröder–Bernstein theorem, though the proof published by Ernst Schröder in  
1898 turned out to be incorrect.
25As noted above, Hilbert would later make this explicit in his lecture at the 1904 Heidelberg ICM.
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In all likelihood, this episode was entirely forgotten 
until many years after the deaths of Cantor and Dede-
kind, when information about it surfaced in the course 
of research on their respective works and correspond-
ence. Emmy Noether, whose admiration for Dedekind 
only grew as she edited his collected works [10], was 
working on Volume 3 at the same time that Zermelo was 
preparing the edition of Cantor’s collected works [8], 
and she initially tried to convince him to publish all of 
their letters. Thus, on May 12, 1930, she wrote Zermelo, 
“I would be very pleased if the Cantor–Dedekind corre-
spondence would be published in your Cantor edition” 
[15, p. 161]. She reasoned that Cantor’s letters, unlike 
Dedekind’s, were full of mathematical claims, but Zer-
melo was not persuaded, and so he published only some 
excerpts from their correspondence. Jean Cavaillès later 
came to Göttingen, and he and Noether soon reached 
agreement on a joint project to publish the entire Can-
tor–Dedekind correspondence up to 1882; this edition, 
however, only appeared two years after her death, in 
[44].

References to Bernstein’s visit can be found in two 
letters from August 1899, apparently the last exchang-
es between the two mathematicians. On August 29, 
Dedekind sent Cantor a proof of the Cantor–Bernstein 
theorem (see [8, p. 449]). This was prefaced by a remark 
recalling Bernstein’s visit and how the young man had 
been taken aback when Dedekind informed him that 
this theorem was easy to prove using his method of 
chains in [9]. Noether published this part of the letter 
along with a manuscript from 1887 that Cavaillès found 
among Dedekind’s papers [10, 3: pp. 447–448]. Dede-
kind had indeed proved the theorem already then, but 
he had neglected to include this in his booklet, which 
appeared the following year. Ferreirós has suggested that 
this was something like a “cat and mouse” game, which 
Dedekind played to defend himself against Cantor’s 
entreaties [17, pp. 239–240]. The day after Dedekind 
sent him his proof, Cantor wrote to thank him for it. He 
also mentioned that Bernstein had presented his proof 
in the Halle seminar around Easter of 1897. Cantor then 
sketched his ideas for proving the trichotomy law and 
described his goal of showing that every cardinal num-
ber is an aleph. The weaknesses in his argument were 
analyzed by Zermelo in his commentary attached to this 
letter [8, pp. 449–451].

The contents of these two letters have thus long been 
known, whereas little has been written about the surround-
ing circumstances. Emmy Noether was curious to know 
more, and so she asked Felix Bernstein, a fellow colleague 
in Göttingen, about his visit to Bad Harzburg long ago. Like 
everyone who had known these two famous mathematicians, 
Bernstein was surely impressed by the striking differences 
in their physical presence and manner of expression—Can-
tor’s flamboyance versus Dedekind’s reticence—and he added 
an interesting note to this by recalling the sharp contrast in 
the metaphors they used in explaining how they imagined 

an infinite set. During this visit, Dedekind remarked that an 
infinite set was like a closed sack containing certain definite 
things, though one could not see or know them, except to 
say they were inside. Bernstein then recalled how Cantor had 
responded when asked the same question: he rose to his feet, 
lifted his arms and eyes upward and declared, “A set is to me 
like a giant abyss” [10, 3: p. 449].

Cantor Versus Dedekind
Over the course of the summer of 1899, Cantor reestab-
lished contact with Dedekind, during which time he sent 
him a barrage of letters in hopes of inducing him to take 
up the matter of inconsistent sets.26 Dedekind eventually 
answered and invited Cantor to visit him, but his response 
made clear that he had absolutely no desire to discuss the 
fundamental issues Cantor had raised. Part of the reason 
surely stemmed from personal misgivings, as documented 
in [16]; another, however, was purely mathematical. Just as 
Hilbert would later remark in his 1904 Heidelberg lecture, 
Dedekind pointed to that fact that Cantor failed to offer a 
criterion for distinguishing between consistent and incon-
sistent sets:

Highly honored friend!

�Your visit will always be welcome to me and my sister, 
but I am by no means prepared for a discussion of your 
communication, which at this stage would be completely 
fruitless! You will certainly appreciate this when I tell 
you openly that, although I have read through your let-
ter from August 3rd many times, I am still not clear as 
to your division of sets [Inbegriffe] into consistent and 
inconsistent; I do not know what you mean by “associa-
tion of all elements of a multiplicity” [Zusammensein 
aller Elemente einer Vielheit] and by its opposite. I don’t 
doubt that a light would come on if I were to study 
your letter more carefully, as I have great trust in your 
deep and sharp-minded researches. But because of the 
unending flood of proofs I have had to correct, I have 
until now not had the time or the tranquility needed 
to reflect on these matters. Now only revisions remain, 
and I promise to use this greater period of quiet for this 
reflection.

�... I have not busied myself with these interesting 
things at all for many years, and since my step-by-step 
thinking [Treppen-Verstand] was always very slow, 
it will not be easy for me to work my way into your 
researches [38, p. 413].

Cantor seems not to have taken this disappointment badly, 
as can be seen from a letter he wrote to Hilbert on Novem-
ber 15. None of Hilbert’s letters to Cantor have survived, 
but from the latter’s reply, it seems clear that Hilbert had 
written about Dedekind’s What Are Numbers and What Is 
Their Meaning? [9], confirming his agreement with Cantor’s 

26The significance of these letters was appreciated much later by Zermelo, who published lengthy excerpts from them followed by 
his commentary in [8, pp. 443–451].
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opinion. “From your worthy writing,” Cantor replied, “I 
see to my joy that you recognize the significance, which 
the open publication of the foundation of my set-theoretic 
researches must have precisely for him [Dedekind]” [38, 
p. 414]. Here Cantor added the curious remark that Hilbert 
would find this completely clear foundational declaration in 
the closing notes to [4], even though intentionally somewhat 
hidden. Cantor was greatly delighted to read that Hilbert 
now acknowledged the flaw in Dedekind’s theory. He went 
on to explain how he had long been hoping that Dedekind 
would reach the same conclusion and admit his mistake, 
namely that his theory was “based on the naive assumption 
that any well-defined property determines a consistent set.” 
Referring to his recent meeting with Dedekind, Cantor even 
took the trouble to copy out for Hilbert the long letter he 
had sent Dedekind on August 4 [38, pp. 407–411]. Evidently 
he was still hopeful that the latter would soon reach the 
same conclusion as had Hilbert. Cantor’s letter is the closest 
he ever came to completing the promised third installment of 
his “Beiträge.”

A tragic cloud hovers over this whole phase of Cantor’s 
life, as his behavior became ever more erratic and frenzied. 
In a letter to Hilbert from January 27, 1900, he attempted 
to reassure his younger supporter that his intense pursuit 
of historical studies—especially his passionate interest in 
proving that Francis Bacon was the true author of Shake-
speare’s works—in no way distracted him from pursuing 
his mathematical work. By this time, Hilbert must surely 
have come to doubt that Cantor would ever deliver the 
third installment of his “Beiträge,” and this letter could 
hardly have restored his confidence. Cantor had in the 
meantime come up with a rather odd-sounding title for it, 
namely, “Aphoristic Grounding of a Theory of Finite and 
Transfinite Ordinal and Cardinal Numbers” [38, p. 425]. He 
then explained that:

the reason why I have hesitated for so long (I can 
say for years) in laying forth [my latest work] is this, 
that its essential and principal conclusion places me 
in opposition to two great authorities, to Gauss and 
Dedekind, and to both in completely different ways 
.... This is especially unpleasant with regard to the 
latter because I know that my theory stands opposed 
to his favorite ideas [Lieblingsideen], which he devel-
oped most carefully in Was sind und was sollen die 
Zahlen? I placed this before him for his consideration 
in a mailing from August 1899, explaining every-
thing essential, but he only answered evasively and 
what he then said showed that he had not grasped 
the essence of the matter. He wanted to think it over 
further, but now I have heard nothing from him for 
the last five months [38, pp. 425–426].

This was a time of great duress for Cantor, who be-
gan to suffer his first serious attack of mental illness 
[24, pp. 365–368]. Well before this, though, he had 
been diagnosed as suffering from manic depression, 
although from this time forth his bouts of listlessness 
would become longer and more severe. On November 
10, 1899, thus five days before he first informed Hil-
bert of his recent contact with Dedekind, Cantor had 
become so discouraged that he petitioned the Prussian 

government for a position outside academia, either 
in the diplomatic service or perhaps at a library. This 
request was passed to the Ministry of Education, 
which then sent an inquiry to the Kurator, its local 
representative at Halle University. The latter spoke 
with Cantor’s personal physician, Dr. Mekus, who 
informed him that this episode had begun when Can-
tor learned that his daughter’s fiancé had broken off 
their engagement. Mekus strongly advised not to act 
on Cantor’s petition, but rather to grant him a leave of 
absence until he recovered. That process could best be 
furthered, according to the physician, by encouraging 
him to continue his researches in set theory, which 
deflected his mind from troubling thoughts. By the 
following summer semester, however, Cantor was still 
not well enough to resume teaching; not until Novem-
ber 1900 did he finally return to the lecture hall [49, 
pp. 193–195].

Richard Dedekind, who avoided mathematical stages 
both large and small, apparently never voiced any public 
opinion about the status of antinomies in set theory. 
The closest he came to doing so was in the preface to the 
third edition of Was sind und was sollen die Zahlen? [9], 
issued in 1911. There he expressed his conviction that 
his approach to the logical foundations of arithmetic was 
sound, even though he had not been able to address a 
weak point that he left unmentioned. Emmy Noether 
alluded to this weakness in her commentary by noting 
that Zermelo’s axiom of infinity as well as the axiom of 
choice was required to secure the arguments in Dede-
kind’s text [10, 3: p. 391]. Many years before, Dedekind 
had written the following remarks in the preface to the 
first edition:

Numbers are free creations of the human mind; 
they serve as a means of apprehending more easily 
and more sharply the difference of things. It is only 
through the purely logical process of building up the 
science of numbers and by thus acquiring the con-
tinuous number-domain that we are prepared accu-
rately to investigate our notions of space and time by 
bringing them into relation with this number-domain 
created in our mind. If we scrutinize closely what is 
done in counting an aggregate or number of things, 
we are led to consider the ability of the mind to relate 
things to things, to let a thing correspond to a thing, 
an ability without which no thinking is possible. 
Upon this unique and therefore absolutely indis-
pensable foundation, as I have already affirmed in an 
announcement of this work, must, in my judgment, 
the whole science of numbers be established [11, 
pp. 53–54].

This passage may bring to mind a famous saying of  
Cantor: “the essence of mathematics lies in its freedom”  
[4, p. 182]. But in fact, this latter expression reflects an  
entirely different understanding. Cantor, the inspired vi-
sionary who was often called the inventor of set theory, saw 
himself in a very different light. He thought of himself as a 
discoverer and an explorer, a kind of mathematical Moses, 
to whom God had shown the promised land. Dedekind’s 
mathematics, much like Hilbert’s, reflected the unfettered 
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freedom of rational thought; Cantor’s stemmed from a 
search for the divine.

These differences were also reflected in their personali-
ties [16]. Dedekind seems to have modeled himself after his 
mentor, Peter Gustav Lejeune Dirichlet, whom he greatly 
admired [37]. This applies to the exacting standards found 
in Dirichlet’s published works, but also to the personal 
dignity he exuded when in the company of others. Dede-
kind was nearly fifteen years older than Cantor, who always 
felt he had to fight an uphill battle for recognition from the 
establishment in Berlin, whereas Dedekind was content to 
work quietly offstage at Brunswick Polytechnic (elevated 
to a Technische Hochschule in 1877). After the death of his 
friend Bernhard Riemann in 1866, he became the last living 
representative of an earlier Göttingen tradition dating back 
to Gauss. Indeed, much of his subsequent work was inspired 
by or connected with the names of Gauss and Riemann, but 
especially Dirichlet, though he soon went beyond them, 
creating his own personal legacy so deeply appreciated by 
Emmy Noether. This solidity was reflected in Dedekind’s 
personal life, in his urbane manners, and in his letters to 
family and friends, such as those he wrote to his collabora-
tor Heinrich Weber, which abound in warmth and genuine 
humility [10, 3: pp. 483–490]. He expressed his views with 
utmost clarity, sometimes sharply, but almost never in sarcas-
tic language that might give offense to another party.

On Cantor’s Final Years
Cantor exhibited no such inhibitions; his letters were often 
full of prodding and pleading, unflattering gossip, or on 
occasion violent outbursts. He wrote openly about his unhap-
piness in Halle and how he felt victimized by Kronecker 
and the Berlin clique, who longed for nothing more than to 
suppress his divinely inspired ideas. Knowing that he would 
eventually succumb to manic depression, one cannot read 
his letters without sensing his mental fragility and the signs 
pointing to the tragic last years of his life. Whereas Dedekind 
stood proudly and independently as a representative of a 
great legacy, maintaining a noble distance from the fray,  
Cantor desperately longed for the support of friends and allies. 
After taking the initiative to launch the DMV, he took little 
interest in the mundane affairs of the organization. Although 
he usually attended its annual conferences and occasionally 
stepped forward to deliver a lecture, Cantor was no doubt 
happiest when he could hold forth about his latest ideas 
before a small group of avid listeners, as he did in Brunswick 
in 1897 when Hilbert first fell under his spell.

Hilbert’s public remarks about inconsistent sets from his 
lectures in Munich and Paris apparently never drew any 
significant notice, whereas others had in the meantime noted 
similar paradoxes already. It has sometimes been suggested 
that none of these mathematicians reacted with alarm because 
the massive constructs that led to these inconsistencies had 
no apparent bearing for applications of set theory to conven-
tional mathematical theories. Yet the private correspondence 
and recollections of conversations described above fail to 
square with this interpretation. Already in 1897, Cantor had 
brought forth the problem of antinomies forcefully, and the 
evidence strongly suggests that both Dedekind and Hilbert 

grasped very well the implications this had for the founda-
tions of set theory. None of these insiders, however, had any 
idea how to resolve these difficulties.

As Abraham Fraenkel wrote, the last decades of Can-
tor’s life were filled with growing recognition for his work 
[20]. Hilbert’s Paris lecture was an important milestone 
along that path, and one can easily see how Hilbert’s 
own rising fame was reflected in Cantor’s legacy, which 
he continued to extol long afterward. Never at a loss for 
superlatives, Hilbert found these words of praise to com-
memorate him:

It gives me great joy to contribute to the remembrance 
of Georg Cantor, who stands as one of the first in the 
succession of masters of our science. In originality and 
boldness of thought, there is no mathematician in his-
tory—from Euclid to Einstein—who surpassed him. He 
created something completely new: set theory. Its con-
ceptual methods and applications have by now become 
the common property of all mathematicians, although I 
believe that it is only in recent decades that the deepest 
thoughts of his theory have had their greatest effects 
[47, p. 326].
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