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Wonder Cubes: Theme 
and Variations
Azaria Paz 

Theme: A magic square is an n × n square subdi-
vided into n2 cells inscribed with disjoint inte-
gers arranged in such a way that the sums of the 
integers in all the rows and all the columns and 

the two diagonals are equal to the same constant, which is 
called the magic constant. A famous example, known as the 
Lo Shu square,1 is shown in Figure 1.

The magic constant of the Lo Shu magic square is 15, 
which happens to be the number of days in each of the 
24 cycles (or terms) of the Chinese solar year. The Lo Shu 
magic square is mentioned in a Chinese legend dated 
several centuries before the Common Era. Since then, and 
throughout the following centuries, magic squares have 
been studied by hobbyists, astrologers, alchemists, and 
mathematicians. They have been used as talismans and 
amulets and have stirred the imagination of recreational 
mathematicians.

Magic squares have been generalized in many ways, 
such as multidimensional, with words or geometric figures 
instead of numbers, and with numerous rows and col-
umns. Indeed, there are more than three hundred pa-
pers in the literature of recreational mathematics on the 
subject of magic squares. In this paper, we will generalize 
magic squares in a new way, forming what we shall call a 
wonder cube. We shall consider 3 × 3 squares only and set 
six such squares with the same magic constant on the six 
faces of a cube. The squares will be chosen in such a way 
to create magic properties linking neighboring squares 
(SameSum links).

The Wonder Cube
We begin with some notation and definitions.

Definition 1. 

1. A magic square is positive if all its entries are positive. 
For example, the magic square shown in Figure 1 is  
positive.

2. The magic constant is the constant to which each row, 
each column, and the two diagonals of the magic square 
sum. For example, the magic constant of the magic square 
in Figure 1 is 15.

3. Two magic squares are equivalent if one can be derived 
from the other by rotation or reflection.

4. The pivot is the integer located at the center of the magic 
square. For example, the pivot of the magic square in 
Figure 1 is 5.

This column is a place for those bits of contagious 
mathematics that travel from person to person in the 
community, because they are so elegant, surprising, 
or appealing that one has an urge to pass them on. 
Contributions are most welcome.

Submissions should be uploaded to http://tmin.edmgr.com 
or sent directly to Sophie Morier-Genoud (sophie.morier-
genoud@univ-reims.fr) or Valentin Ovsienko (valentin.
ovsienko@univ-reims.fr).

1For more on this, see the article “Lo Shu Square” in Wikipedia.
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5. An associated pair of integers comprises the two integers 
on either side of the pivot on a line passing through the 
pivot. There are four such pairs in every magic square. For 
example, the pairs (2, 8) and (3, 7) are each an associated 
pair of integers in the magic square shown in Figure 1.

6. A half-diagonal is a pair of integers located on one of the 
lines parallel to one of the diagonal lines of three integers 

passing through the pivot. For example, the pairs (9, 7), 
(7, 1), (1, 3), and (3, 9) in Figure 1 are half-diagonals.

Introducing Wonder Cubes
Figure 2 shows groups of integers on a cube that represent 
SameSum magic links in a wonder cube. Note that in most 
cases, we represent cubes in planar form, so as to retain 
as much of their structure as possible, by unfolding the 
cube and stretching squares into trapezoids or rectangles. 
Figure 3 shows such an unfolded cube. The 3 × 3 square in 
the middle represents the bottom face of the cube, the four 
trapezoids around it represent the four side faces of the 
cube around the bottom face, and the top rectangle repre-
sents the top face of the cube.

Definition 2. A corner triplet is a triplet of integers located 
around the corner of a cube having six inequivalent magic 
squares inscribed on its six faces. For example, the integers 
in the locations m, n, and o in Figure 2 form a corner triplet.

Definition 3. A wonder cube, as exemplified in Figures 3 
and 4, is a cube inscribed with six magic squares on its six 
faces having the following properties: 

4 9 2
3 5 7
8 1 6

Figure 1.  The Lo Shu magic square.

Figure 2.  Groups of integers that show SameSum magic links 
on a cube. m, n, o: corner triplet; m1n1o1 : associated corner 
triplet; p, q, r, s, t, u: corner ring 6-tuple; p1, q1, r1, s1, t1, u1 : 
associated corner ring 6-tuple.

Figure 3.  Unfolded wonder cube with pivot 8. The exem-
plary associated triplet of (9, 12, 3), shown in boldface, is 
(7, 4, 13), also in boldface. The corner ring 6-tuple of (9, 12, 3), 
(1, 13, 7, 1, 12, 14), is underlined. The exemplary complemen-
tary pair 4-tuple (2, 9, 10, 11) is marked with dots.

Figure 4.  Unfolded wonder cube with pivot 10. The exem-
plary associated corner ring 6-tuple for (9, 7, 14) is (17, 11, 5, 
13, 5, 9), all shown in boldface. Two exemplary midedge hoop 
4-tuples are (13, 5, 7, 15) and (9, 11, 2, 18), underlined.

c− b c+ a+ b c− a

c− a+ b c c+ a− b

c+ a c− a− b c+ b

Figure 5.  Eduard Lucas’s formula.
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1. The six magic squares are positive and inequivalent and 
have the same pivot: c.

2. The eight corner triplets of the cube sum to the same 
magic constant (3c) as the magic constant of the six 
magic squares.

For example, in the wonder cubes shown in Figures 3 
and 4, the pivots are equal respectively to 8 and 10, and the 
eight corner triplets of the two wonder cubes sum respec-
tively to 24 and 30.

A wonder cube is different from a magic cube: It 
should be noted that magic cubes have been studied in the 
literature,2 where they have been defined as a three-dimen-
sional analogue of magic squares, or a cube subdivided into 
3 × 3 × 3 cells inscribed with twenty-seven different inte-
gers arranged in such a way that the three integers in every 
row, in every column, in every pillar, and in the four main 
space diagonals sum to the same magic constant. It is clear 
that the magic cube is completely different from the won-
der cube. The wonder cube is, in fact, a two-dimensional 
object consisting of six magic two-dimensional squares 
inscribed on its six faces and includes fifty-four not neces-
sarily distinct integers. So the notion of wonder cubes is a 
new and unique notion.

A Formula for Generating 3×3 Magic Squares
We will consider in this paper 3 × 3 magic squares only. 
For such squares, a mathematician by the name of Eduard 
Lucas developed in the nineteenth century a general 
formula, shown in Figure 5. He proved that every 3 × 3 
positive magic square satisfies this formula or can be 
derived by means of this formula, where the following 
inequalities must hold: For positive squares, one must have 
0 < a < b < c − a , with b not equal to 2a. The restrictions 
imposed on the three parameters a, b, c are dictated by 
the requirement that all nine integers included in a magic 
square be positive and distinct. Thus, if one were to allow 
b = 2a , then the second entry in the last column of Fig-
ure 5, c + a − b , would become c + a − 2a = c − a , which 
is equal to the first entry in that column, violating the rule 
of distinct integers. And if the inequality b < c − a did not 
hold, then the bottom entry of the middle column would 
represent a nonpositive integer.

In addition to the fact that the integers in the square are 
disjoint, it follows from the formula in Figure 5 that the in-
tegers have the following properties: There are three num-
bers (a, b, c in Figure 5) that determine the integers in the 
magic square: c, the pivot, is a free parameter, and a and b 
are bounded by c, which is the average of all the integers 
in the square and is located in the center cell of the square. 
The magic constant is equal to 3c. The maximal integer in 
the square is bounded by 2c − 1.

It is clear that all magic squares with the same pivot 
have the same magic constant, and every pair of associated 
integers sum to 2c. In addition, all magic squares satisfy the 

“half-diagonal property,” namely, that the sum of the two 
integers in a half-diagonal pair is an even integer equal to 
twice the value of the corner integer located on the other 
side of the main diagonal that is parallel to the half-diago-
nal. This property can be verified easily in Figure 5, where 
the half-diagonal formed by the integers in the middle 
of the upper row and the middle of the leftmost column 
(c + a + b, c − a + b) sum to 2(c + b) , which is twice the 
value of the bottom right-hand corner.

Determining the Number of Inequivalent Magic 
Squares
We can now prove the following result.

Theorem 1. For positive magic squares whose pivot c is odd, 
the number of inequivalent magic squares is

where {x} is the greatest integer less than or equal to x. If c is 
even, then this number is

Proof. We prove the case with an even c for positive magic 
squares. The other case is proved in a similar way. It follows 
from Lucas’s formula that the parameters a and b that deter-
mine the square together with c must satisfy the following 
inequalities: a < b < c − a and b ≠ 2a . The first condition 
requires that a + b < c , so we must find how many pairs (a, b) 
satisfy this condition. Clearly, if a = 1 , then b can assume one 
of the values 2, 3,… , c − 2 , and there are therefore c − 3 pairs 
(a, b) with a = 1 that satisfy the first condition.

In the same way, we find that the number of pairs with 
a = 2 satisfying this condition is c − 5 . Then for a = 3 , 
the number of pairs is c − 7 , etc. So the total number of 
such pairs is equal to the sum of the arithmetic series 
1, 3, 5,… , c − 3 . Using the well-known formula for finding 
the sum of this series, we find that the number of such pairs, 
which is equal to the number of inequivalent magic squares 
with pivot equal to c, is (c∕2 − 1)2 , as required. We still have 
to remove from this count the pairs (a, 2a). It is easy to see 
that the number of such pairs with a + 2a = 3a < c is equal 
to the greatest integer that is less than or equal to c/3. This 
completes the proof.   ◻

As an example, we can find by applying the above for-
mula that the number of inequivalent magic squares with c 
equal to 10 is 13.

The number of possible inequivalent magic squares 
with the same pivot on a cube: It follows from the above 
formulas that the number of cubes having their six faces 
inscribed with inequivalent magic squares having the same 
pivot c can be determined as follows.

c − 1
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⋅

c − 3

2
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c − 1

3

}
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2For an introduction to magic squares and magic cubes and suggestions for further reading, see the Wikipedia articles on those and 
related topics as well as the Wolfram MathWorld article on magic cubes, available at https:// mathw orld. wolfr am. com/ Magic Cube. 
html, and the website “Magic Squares, Magic Stars & Other Patterns,” available at http:// recma th. org/ Magic% 20Squ ares/.

https://mathworld.wolfram.com/MagicCube.html
https://mathworld.wolfram.com/MagicCube.html
http://recmath.org/Magic%20Squares/
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Let M(c) be the number of inequivalent magic squares 
whose pivot is equal to c. Then the number of cubes as 
above is calculated as follows: Choose one of the M(c) 
squares for the first face of the cube, then choose one of the 
remaining M(c) − 1 squares for the second face, etc. Then 
every chosen square can be set in one of its eight equiva-
lent forms (four rotations plus four rotations after reflec-
tion). All in all, this amounts to

It can be shown using the above formula that for c as small 
as 10, the number of such cubes exceeds two trillion, so 
if we want to find a cube with special magic properties 
in addition to the magic properties of the magic squares 
inscribed on its faces, an exhaustive search is impractical.

Minimal pivot of magic squares for wonder cubes: 
To create a wonder cube with inequivalent positive magic 
squares inscribed on its six faces, we shall require at least 
six inequivalent positive magic squares. By Theorem 1, we 
shall therefore need a pivot of at least 8.

It also follows from Theorem 1 that the number of positive 
inequivalent magic squares with pivot equal to 8 or more 
grows quadratically with the value of the pivot. So when the 
value of the pivot grows, the number of cubes that satisfy 
the first condition of Definition 3 for wonder cubes also 
grows exponentially, thus increasing the probability that 
there exist wonder cubes with a large pivot. Some examples 
of wonder cubes with various pivots are shown in the se-
quel. However, we do not have an algorithm that enables the 
creation of wonder cubes for a given sufficiently large pivot.

Wonder Properties of Wonder Cubes
Two wonder cubes are shown schematically in Figures 3 
and 4. Let us consider the cube in Figure 3. The pivot of 
each of the magic squares on its faces is equal to 8, so that 
the magic constant of each of the squares is 24. This cube 
is, in fact, an example of the kind of cubes we want to con-
sider in this article. In addition to the fact that its six faces 
are inscribed with inequivalent magic squares, notice that 
its eight corner triplets sum to the magic constant of the 
magic squares on its faces. We defined such cubes as won-
der cubes. As we describe and show in the theorem below, 
they deserve the epithet “wonder” because of the numer-
ous wondrous SameSum properties they exhibit.

We need some additional definitions before proving the 
main property of wonder cubes in Theorem 2.

Definition 4. 

1. An associated corner triplet is a triplet of integers that 
are associated with the three integers in a corner triplet. 
for example, (m1, n1, o1) is the associated corner triplet of 
(m, n, o) in Figure 2, and the associated corner triplet of 
the corner triplet (9, 12, 3), shown in boldface in Figure 3, 
is (7, 4, 13), also in boldface.

M(c) × (M(c) − 1) ×⋯ × (M(c) − 6) ×
(

86
)

.

2. A corner ring 6-tuple is a ring of six integers formed 
by the six integers inscribed in the three half-diagonals 
set around a corner integer. For example, the corner ring 
6-tuple of the corner triplet (9, 12, 3), in boldface in Fig-
ure 3, is (1, 13, 7, 1, 12, 14), underlined in the figure.

3. An associated corner ring 6-tuple is a 6-tuple of inte-
gers that are associated with the six integers in a corner 
ring 6-tuple. For example, for (9, 7, 14) in Figure 4, the 
associated ring 6-tuple is (5, 13, 5, 9, 17, 11), shown in 
boldface.

4. A midedge hoop 4-tuple is the 4-tuple formed by the four 
integers located in the middle of four horizontal edges of 
the cube wrapped around the cube at the same level for any 
orientation of the cube in space. For example, two midedge 
hoop 4-tuples in Figure 4 are (13, 5, 6, 16) and (9, 11, 2, 18).

5. Complementary pairs of integer 4-tuples include two 
pairs of integers located at the same level (top, middle, or 
bottom), on both sides of two parallel edges of the cube, 
edges that are not bordering the same face, for any orien-
tation of the cube in space; (a, b) and (a1, b1) in Figure 6. 
For example, (2, 9) and (10, 11) are a complementary pair 
4-tuple in Figure 3, marked with a dot.

The eight corner triplets of a wonder cube whose pivot 
is equal to c sum to 3c by definition. The next theorem 
states that wonder cubes have many more SameSum 
properties.

Theorem 2. 

1. The eight associated corner triplets of a wonder cube sum 
to 3c.

2. The eight corner ring 6-tuple and the eight associated 
corner ring 6-tuples of a wonder cube whose pivot is 
equal to c sum to 6c.

Figure 6.  Schematic presentation of a wonder cube. A com-
plementary pair of integers 4-tuple is (a, b), (a1, b1) . A midedge 
hoop 4-tuple is (g, d, e, f).
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3. The eighteen complementary pairs of integer 4-tuples of 
a wonder cube whose pivot is equal to c sum to 4c.

4. The nine midedge hoop 4-tuples of a wonder cube whose 
pivot is equal to c sum to 4c.

Proof. 1. As follows from Lucas’s formula, every pair of asso-
ciated integers sum to 2c. Therefore, the three integers in a 
corner triplet together with the three integers in the associ-
ated corner triplet sum to 6c. Since the three integers in the 
corner triplet sum to 3c, it follows that the three integers in 
the associated corner triplet also sum to 3c.

2. By the half-diagonal property, the three half-diagonals 
around a corner that form a corner ring 6-tuple sum to twice 
the value of the corresponding associated corner triplet, which 
sums to 3c by assertion 1 above. Therefore, the corresponding 
ring 6-tuple sums to 6c. Using a similar argument to that used 
in proving assertion 1 above, we can prove that the associated 
ring 6-tuple also sums to 6c.

3. It is easy to see that for every orientation of the cube in 
space, two complementary pairs of integers at the top level or 
the bottom level of the cube can be augmented to two corner 
triplets located on both sides of a top-or-bottom correspond-
ing diagonal of the top-or-bottom face of the cube. Now, the 
two top or the two bottom corner triplets sum to 6c together, 
and the added two integers sum to 2c, since they are associ-
ated corner integers, implying that the two complementary 
pairs sum to 6c − 2c = 4c.

4. For every orientation of the cube in space, the four 
rows around the top or the bottom of the cube sum together 
to 4 × 3c = 12c . Since those rows are edges of magic squares 
with the same pivot c, the twelve integers on those four rows 
can be separated into three sets. One set consists of the four 
integers included in the midedge hoop 4-tuple. The other two 
sets are two complementary pairs of integer 4-tuples located 
around the two pairs of opposite corners of the square made 
by the four edges. So we have the following count: The twelve 
integers in the four rows around the top or bottom of the cube 
sum to 12c. The eight integers forming the two complementary 
pairs of 4-tuples sum to 8c, as proved above, implying that the 
remaining midedge 4-tuple sums to 12c − 8c = 4c , as required.  
 ◻

SameSum tuple groups: It follows from Lucas’s for-
mula that with a pivot equal to c, a cube that satisfies the 
first property of a wonder cube in Definition 3 includes the 
following groups of SameSum tuples:

• four associated pairs that sum to 2c each, on each of its 
faces, a total of 4 × 6 = 24 pairs;

• eight triplets (for three rows, three columns, and two diag-
onals) that sum to 3c each, on each of its faces, a total of 
6 × 8 = 48 triplets.

Figure 7.  Unfolded wonder cube with pivot 11.

Figure 8.  Cross-shaped wonder cube with pivot 11.

Figure 9.  Unfolded 2 × 2 × 3 wonder cube with pivot 
 (hidden) 11.
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This yields a total of 48 + 24 = 72 SameSum tuples.
It follows from Theorem 2 that a wonder cube has many 

more SameSum tuples that link between the faces of the 
cube:

• 16 corner triplets and their associated triplets that sum to 
3c each;

• 18 complementary pairs of 4-tuples that sum to 4c each;
• 9 midedge hoop 4-tuples that sum to 4c each;
• 16 corner ring 6-tuples and their associated corner ring 

6-tuples that sum to 6c each.

Which yields a total of 59 SameSum tuples.
It follows, therefore, that wonder cubes whose pivot is 

equal to c include 131 SameSum tuples over its 54, not nec-
essarily distinct, integers inscribed on its six faces.

Number of wonder cubes for a fixed pivot: It follows 
from Theorem 2 that the eight corners of the cube have the 
same SameSum properties: every corner of the cube is linked 
to a corner triplet and an associated corner triplet that sum 
to 3c each, and a corner ring 6-tuple and an associated cor-
ner ring 6-tuple that sum to 6c each. Also, every set of four 
rows or columns that wrap around the cube, in any of its 
orientations along one of the three dimensions of space, have 
the same SameSum properties: every such set of four rows or 
columns includes two complementary pairs of integer 4-tu-
ples and one midedge hoop 4-tuple that sum to 4c each.

We may ask now how many wonder cubes there are for 
a fixed pivot c. This question is open and will be further 
considered.

However, if we do not fix the pivot, then we can obtain 
an unbounded number of wonder cubes. The wonder cube 
whose pivot is equal to 8 is shown in Figure 3. As previ-
ously mentioned, there is no wonder cube whose pivot is 
less than or equal to 8. But for every integer q ≥ 9 , if we 
add the integer q − 8 to all the integers included in the 
wonder cube whose pivot is equal to 8, we get a wonder 
cube whose pivot is equal to q. So we can create a wonder 
cube with pivot equal to any integer q ≥ 9 . Figure 7 shows 
an additional wonder cube whose pivot is equal to 11.

Variations

The SameSum Family
In this section of the paper we will show how to split a 
wonder cube into two solid complementary bodies in such 
a way that the wonder properties of the cube are inherited 
and distributed between the two bodies. This can be done 
in several ways, and we will show one of them.

Decomposition of a Wonder Cube into Derived 
Bodies
This decomposition is illustrated in Figures 7, 8, and 9. 
Given a wonder cube with pivot equal to c, e.g., c = 11 
in Figure 7, remove first all 24 corner cells from the cube, 
as in Figure 8, resulting in a cube whose six faces are 

cross-shaped. As an alternative, remove from the wonder 
cube’s six faces the middle rows and the middle columns, 
as in Figure 9, resulting in a cube whose faces are 2 × 2 
squares. We will call such a cube a 2 × 2 × 3 cube. We show 
below that the wonder properties of the wonder cube are 
distributed between these two solid bodies and that all the 
integers on the wonder cube are distributed between these 
two bodies.

We will consider now these two bodies one by one.

The Cube with Cross‑Shaped Faces
It is easy to verify that this cube inherits the following 
properties from the wonder cube source: 

1. the six midedge hoop 4-tuples that sum to 4c ( = 44 in 
Figure 8);

2. the six complementary pairs of integer 4-tuples that sum 
to 4c;

3. the eight corner ring 6-tuples that sum to 6c.
4. the eight associated corner ring 6-tuples that sum to 6c.
5. the twelve arms of the six crosses that each sum to 3c.

It is possible to reconstruct the source wonder cube from 
this derived cube using the half-diagonal property, which is 
also inherited by the derived cube. By this property, every 
missing corner in the derived cube is equal to half the sum 
of the two integers forming the half-diagonal on the other 
side of the main diagonal facing the corner.

Cross-shaped wonder cubes can be defined indepen-
dently and not as a derived cube. In order to do this, we 
need first the following definition: for a given pivot c, 
let (a, b) be a pair of positive integers such that a < b , 
a + b < c , and b is not equal to 2a. We will denote by 
(a, b, L) (where L stands for Lucas) the 3 × 3 cross-shaped 
form whose horizontal arm is (c − a + b, c, c + a − b) and 
whose vertical arm is (c + a + b, c, c − a − b) . Note that 
both arms sum to 3c each. Also, the left and right integers 
of the horizontal arm as well as the top and bottom integers 
of the vertical arm sum to 2c; i.e., these two integers in 
each arm are associated.

Definition 5. A C-wonder cube is a cube with the following 
properties: 

1. An (a, b, L) cross-shaped form or a form equivalent to it 
is inscribed on the ith face of the cube, i = 1,… , 6 , and 
the pairs of integers (ai, bi ), i = 1,… , 6 , are distinct.

2. The eight corner ring 6-tuples of the cube sum to 6c each.

We can now prove the following:

Proposition 1. C-wonder cubes have the same properties 1 
through 5 that hold for cross-shaped cubes derived from a won-
der cube by deleting from it its eight corner triplets.

Proof. Properties 3 and 5 follow from the definitions. Prop-
erty 4 follows from the fact that the three half-diagonals that 
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form a corner ring 6-tuple sum to the same value as the three 
associated half-diagonals that form an associated corner ring 
6-tuple.

To prove properties 1 and 2, we proceed as follows: The 
cross-shaped forms on every face of the cube fit, by defini-
tion, the middle rows and columns in the Lucas formula, or in 
an equivalent formula. Therefore, by extending the cross-
shaped cube by inserting at its corners half the sum of the 
corresponding half-diagonals, we get a cube whose faces are 
inscribed with magic squares that fit the Lucas formula, whose 
pivot is c, and whose corner triplets sum to 3c, since the half-
diagonals corresponding to the corner triplets sum to 6c. So 
the resulting cube is a wonder cube, and the cross-shaped 
cube we started with is a derived cross-shaped cube from the 
extended wonder cube. This implies that the derived cross-
shaped cube has properties 1 and 2.   ◻

Corollary 1. The cross-shaped cube derived from a wonder 
cube is a C-wonder cube.

The 2×2×3 Derived Cube
It is well known that it is impossible to find four distinct 
positive integers arranged in a 2 × 2 square such that the 
two rows, the two columns, and the two diagonals sum to 
the same constant. Indeed, at most only one of the three 
pairs can sum to the same constant. We will consider here 
the case that the two diagonals sum to the same constant, 
which will be denoted by 2c, where c is a hidden integer. 
One can define 2 × 2 × 3 wonder cubes independently of 
3 × 3 × 3 wonder cubes as follows.

Definition 6. A 2 × 2 × 3 wonder cube is a cube whose six 
faces are inscribed with 2 × 2 squares having the following 
properties: 

(a) Every square includes four distinct positive integers.
(b) No two of the six squares are equivalent.
(c) All 12 diagonals on the squares sum to the same con-

stant, an even integer to be denoted by 2c, where c is a 
(hidden) pivot.

(d) Each of the eight corner triplets of the cube sums to 3c.

A 2 × 2 × 3 wonder cube whose hidden pivot is equal 
to 11 is shown in Figure 9. One would expect that every 
2 × 2 × 3 wonder cube could be expanded into a 3 × 3 × 3 
wonder cube by inserting proper missing integers into 
the rows and columns of the 2 × 2 squares so as to trans-
form them into 3 × 3 magic squares. This is not the case. 
Consider, for example, the cube shown in Figure 10. 
The locations of the squares we refer to are indicated by 
the numbers 1 through 6 in the diagram of Figure 10(b). 
To expand the 2 × 2 square at location 1 into a magic 
square, we must add in the middle of the first column 
the integer 12 so that the column will sum to 3c = 30 , 
but this will create a column with two equal integers. 
Also, the 2 × 2 square at location 2 cannot be expanded 
into a magic 3 × 3 square, since the two integers in its 
first row sum to more than 3c = 30 , so we will have to 
add in this row a negative integer in order to get a row 
that sums to 3c = 30.

One can prove now, in the same way as was proved for 
3 × 3 × 3 wonder cubes, that 2 × 2 × 3 wonder cubes have 
the following properties: 

(a) Its eight dual corner triplets sum to 3c.
(b) Its twelve complementary pair 4-tuples sum to 4c.

Remark 1. It follows from the above considerations that the 
SameSum tuples that exist in the 3 × 3 × 3 wonder cube in 
Figure 7 are distributed among the cubes shown in Figures 8 
and  9.

It also follows from the above considerations that the set of 
2 × 2 × 3 wonder cubes induced by 3 × 3 × 3 wonder cubes is 
a subset of the set of 2 × 2 × 3 wonder cubes.

Assessing the sizes of the above two sets and that of the 
set of 3 × 3 × 3 wonder cubes are open problems.

The Star of David
We will consider now the SameSum properties of stars of 
David. It has been shown [1, 2] that it is possible to attach 
the integers 1 to 12 to the six vertices of the two triangles 
and the six intersections of the triangles of a star of David 
in such a way that the sum of the four integers along any 
of the six edges of the star sum to the same constant, to 
be called the magic constant of the star, which is 26. It is 
easy to prove, and left to the reader, that it is impossible 
to construct a star of David inscribed with twelve distinct 

Figure 10.  (a) A 2 × 2 × 3 unfolded wonder cube that cannot 
be extended to a 3 × 3 × 3 cube. (b) Location map to the vari-
ous 2 × 2 squares of the cube in (a).
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positive integers whose magic constant is less than 26. We 
now specify this property of stars of David:

Property 1. A star of David can be inscribed with twelve dis-
tinct positive integers on the six vertices of its two triangles and 
on the six intersections of the two triangles in such a way that 
the four integers along each of the six edges of the two triangles 
sum to the same constant (the magic constant of the star).

Definition 7. A magic star of David is a star of David that 
satisfies Property 1.

However, Property 1 is not the only property of magic 
stars of David. Another property, implied by Property 1, is 
the following.

Property 2. The three integers inscribed on the vertices of one 
of the two triangles of a star of David sum to the same constant 
as the three integers inscribed on the vertices of the second tri-
angle of the star.

To prove this property, we notice that by Property 1, the 
12 integers inscribed along the three edges of each triangle 
sum to 3c, where c is the magic constant of the star. This 
sum includes twice the sum of the three integers inscribed 
on the vertices of the triangle, since every vertex belongs 
to two edges, plus the six integers inscribed on the in-
tersection of the triangles. Therefore, removing from the 
total sum the sum of the six integers at the intersection of 
the triangles, we get twice the sum of the integers at the 
three vertices of the triangle. This holds for both triangles, 
implying that the sums of the three integers at the verti-
ces of the two triangles are equal to the same constant, 3c 
minus the sum of the six integers at the intersection of the 
two triangles. However, this constant depends on the sum 
of the six integers at the intersection of the triangles and is 
not necessarily equal to c.

This brings us to another property, which is an exten-
sion of Property 2:

Property 3. The three integers inscribed on the vertices of 
one of the two triangles sum to the same constant as the three 

integers inscribed on the vertices of the second triangle of the 
star, which is the magic constant of the star.

We can now define magic+ stars of David.

Definition 8. Magic+ stars of David are stars of David that in 
addition to Property 1, also satisfy Property 3.

Based on Properties 1, 2 and 3, we can prove the 
following.

Proposition 2. A magic+ star of David has, in addition to 
Properties 1, 2, and 3, the following additional two properties:

Property 4. The six integers inscribed on the intersection of the 
triangles of a star of David sum to the magic constant of the star.

Property 5. An integer inscribed on a vertex of a triangle 
of a star of David is equal to the sum of the two integers 
inscribed in the middle of the edge opposite the vertex.

Proof of Property 4. We use an argument similar to that used 
for proving Property 2. Choosing one of the two triangles form-
ing the star, we can write the following equation with regard 
to the chosen triangle: 3c = 2c plus the sum of the six integers 
inscribed on the intersection of the two triangles, where c is the 

Figure 11.  A formula for creating stars of David with magic 
constant equal to 26 or greater than or equal to 28.

Figure 12.  Star of David with magic constant  equal to 26.

Figure 13.  A formula for constructing magic stars of David 
with magic constant equal to any integer greater than 26.
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magic constant of the star. By Properties 1 and 2, 3c equals the 
sum of the 12 integers inscribed on the edges of the triangle, 
and by Property 3, 2c equals twice the sum of the three integers 
inscribed on the vertices of the triangle. Therefore, the sum of 
the six integers inscribed at the intersection of the two triangles 
is equal to 3c − 2c = c , which equals the sum of the six integers 
inscribed at the intersection of the two triangles.   ◻

Proof of Property 5. Choosing one of the two triangles form-
ing the star, we will denote by a, b, d the integers at the 
vertices of this triangle, and we will denote by p and q the 
integers at the intersection of the two triangles located on the 
edge (a, b). Then by Properties 1 and 2, the integers a, p, q, d 
sum to c. By Property 3, the integers a, b, d also sum to c. 
Therefore, a + b + d = a + d + p + q , and so d = p + q , as 
required.   ◻

Remark 2. Notice that Properties 4 and 5 hold for magic+ 
stars of David, but they do not necessarily hold for all magic 
stars of David.

In Figure 11 we provide a formula for constructing 
magic+ stars of David with magic constant equal to 26 or 
greater than or equal to 28.

It can be shown that the five properties mentioned 
above hold for every magic+ star of David generated by the 
formula shown in Figure 11. An example of such a magic+ 
star of David is shown in Figure 12, in which a, b, d are 
substituted by 12, 6, 8, generating a magic+ star of David 
with magic constant equal to 26.

To see that the formula in Figure 11 can generate magic+ 
stars with any magic constant greater than or equal to 28, 
we observe the following: In the formula in Figure 11, 
substitute for a, b, d the integers 10, 6, 12 + k , where k is 
a nonnegative integer. It is left to the reader to verify that 
this generates a magic+ star of David whose magic constant 
is equal to 28 + k , and the twelve integers inscribed on it 
are positive and distinct.

As for a magic+ star of David with magic constant equal 
to 27, another formula for generating magic+ stars of David 
is shown in Figure 13. Choosing k = 0 results in a magic+ 
star of David with magic constant equal to 27. When k is 
set to any value grater than or equal to −1 in the formula 
shown in Figure 13, the resulting magic+ star of David has 
magic constant equal to 27 + k . The formula in Figure 13, 
however, generates a unique magic+ star of David for every 
k, while the formula in Figure 11 depends on the three 
parameters a, b, d, which for every value of the magic 
constant can be chosen in several ways, so that the integers 
inscribed in the resulting star of David can have a personal, 
traditional, or national significance.

Remark 3. 

1. The formula in Figure 11 is not unique, and there may 
exist other equivalent formulas.

2. For a given magic constant, there may be many corre-
sponding magic+ stars of David generated by the formula 
in Figure 11.

3. It can be shown that it is impossible to find three distinct 
positive integers a, b, d that will generate, by the formula 
in Figure 11, a magic+ star of David with a magic constant 
equal to 27.

4. For the magic constant 26, the corresponding star of 
David must include the 12 consecutive numbers from 1 
to 12.

5. For magic constant equal to 26, a magic+ star of David is 
included in the internet paper on magic stars by Mutsumi 
Suzuki [2]. That star of David is different from the one 
shown in Figure 12 and was constructed by a different 
procedure.

6. Observe that the formula in Figure 11 generates magic+ 
stars of David with magic constant equal to a + b + d for 
any positive integers a, b, d. The three integers inscribed 
at the vertices of each of its two triangles also sum to 
a + b + d , so that such magic stars of David generated 
by this formula satisfy Properties 1, 2, and 3, as required 
by magic+ stars of David. In the same way, the magic+ 
stars of David generated by the formula in Figure 13 
have magic constant equal to 27 + k , where k is an inte-
ger greater than or equal to −1 , and the integers inscribed 
at the three vertices of each of the two triangles sum to 
the same integer 27 + k , so that Properties 1, 2, and 3 are 
satisfied by the magic+ stars of David so generated.

Platonic Dual Solids
A Platonic solid is a regular convex polyhedron having the 
following properties: 

1. All of its faces are identical regular convex polygons.
2. The same number of faces meet at every vertex of the 

polyhedron.

The Platonic solids and their properties have been studied 
extensively, in particular, their combinatorial, geometric, 
algebraic, and symmetric properties. It has been proved in 
several ways that there are only five polyhedra that have 
the above properties. The numbers of faces, vertices, and 
edges of the five Platonic solids are listed in Table 1.

Definition 9. Two polyhedra are said to be dual to each other 
if one can be mapped into the other by interchanging faces 
and vertices.

It is well known that the dual of a Platonic solid is 
another Platonic solid, and in fact, the cube is dual to the 
octahedron, the dodecahedron is dual to the icosahedron, 
and the tetrahedron is self-dual; that is, its dual is another 
tetrahedron.

The Platonic solids were known and studied by the 
ancient Greeks. They were prominent in the philosophy of 
Plato and are mentioned in his dialogue Timaeus. Platonic 
solids were associated with the classical elements (water, 
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fire, earth, and air) and are also described in the Elements of 
Euclid. In the sixteenth century, the astronomer Johannes 
Kepler associated them with the then known extraterrestri-
al planets, and in modern times, they were associated with 
the electron shell in what is known as the moon model. The 
Platonic solids are sketched in Figure 14.

We will expand here on the property of duality between 
pairs of Platonic solids and introduce a new type of duality, 
called arithmetic duality, in which there is a special one-to-
one “magic” correspondence between the vertices of one 
solid and the faces of its dual.

This correspondence is created by inscribing positive 
integers on the faces of each of the two pairs of dual Pla-
tonic solids in such a way such that the following condi-
tions are satisfied: 

1. The integers inscribed on every face of any of the two 
dual Platonic solids sum to the same constant.

2. For each vertex of one of the two dual solids, there is a face 
of the dual solid such that the sum of the integers around 
the vertex in the first solid is equal to the sum of the inte-
gers inscribed on the corresponding face of the dual solid.

The above conditions create a one-to-one correspondence 
between the vertices of one solid to the faces of its dual. As 
for the tetrahedron, which is self-dual, a similar procedure 
will create a one-to-one correspondence between its four 
vertices and its four faces.

We shall now introduce our arithmetic generalization of 
the geometric duality of the Platonic solids. We begin with 
the tetrahedron, continue with the cube–octahedron pair, 
and finish with the dodecahedron–icosahedron pair.

The Arithmetic Duality of the Self‑Dual 
Tetrahedron
Figure 15 includes an unfolded tetrahedron with three inte-
gers inscribed in each of its three faces. To retrieve the full 
tetrahedron, we have to raise the three external triangles 
and join the three vertices labeled A. The self-duality of the 
tetrahedron is suggested by the fact that the number of its 
faces is equal to the number of its vertices. Observe the fol-
lowing properties of this arrangement: 

(a) The three integers in each triangle as well as the three 
integers around each vertex are disjoint, and each such 
triplet of integers sums to 36.

Table 1.  The five Platonic solids

Faces Vertices Edges Shape of Faces

Tetrahedron 4 4 6 equilateral triangles
Cube 6 8 12 squares
Octahedron 8 6 12 equilateral triangles
Dodecahedron 12 20 30 regular pentagons
Icosahedron 20 12 30 equilateral triangles

Figure 14.  The five Platonic solids.

Figure 15.  Unfolded numbered tetrahedron with (hidden) 
magic constant 12.

Figure 16.  A 2 × 2 × 3 unfolded and numbered wonder cube.
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(b) For each of the four triangles, there is a vertex such that 
the three integers in the triangle are the same as the 
three integers around this vertex. Notice that property 
(b) establishes a one-to-one correspondence between 
the faces and the vertices of the self-dual tetrahedron. 
For example, the three integers in the triangle ABC 
(9, 15, 12) are the same as the three integers around the 
vertex B, and those three integers sum to 36. This estab-
lishes the correspondence between the triangle ABC and 
the vertex B.

In this way, an arithmetic one-to-one correspondence is 
established between the vertices and the faces of the tetra-
hedron, showing its self-duality. Also, the distinct triplets 
inscribed in the four triangles distinguish the two triangles 
from each other.

Notice also that this choice of the twelve numbers in-
scribed on the faces of the tetrahedron is not unique, and 
there may be other sets of twelve positive integers that 
achieve the same goal.

The Arithmetic Duality of the Cube–Octahedron 
Dual Pair
Figure 16 shows an unfolded 2 × 2 × 3 wonder cube with 
(hidden) pivot equal to 10. There are 24 integers inscribed 
on the cube, four integers on each of its six faces. Figure 17 
shows an unfolded octahedron.

There are 24 integers inscribed on its eight triangular 
faces, three on each of its eight faces. The integers inscribed 
on its faces are exactly the same as those inscribed on the 
cube including their multiplicities. Observe the following: 

(a) The four integers on every face of the cube are disjoint 
and sum to 40. The three integers around each corner of 
the cube are disjoint and sum to 30.
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Figure 17.  An unfolded octahedron that is dual to the cube in 
Figure 16.

Figure 18.  A numbered and unfolded dodecahedron split into two parts.

Figure 19.  A numbered and unfolded icosahedron split into 
two parts.
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(b) The three integers on any face of the octahedron are dis-
joint and sum to 30. Each set of four integers around one 
of its eight vertices is disjoint and sums to 40.

(c) Every face of the cube has a corresponding vertex on the 
octahedron, and the four integers on the face of the cube 
are the same as the four integers around the vertex of the 
octahedron.

(d) Every vertex of the cube has a corresponding face on the 
octahedron, and the three integers around the vertex of 
the cube are the same as the three integers on the face of 
the octahedron.

For example, the four integers on the face ABCD of the 
cube (5, 6, 14, 15) in Figure 16 are the same as the four 
integers around the vertex C of the octahedron. The three 
integers around the vertex C of the cube in Figure 16 
(14, 9, 7) are the same as the three integers on the face COB 
of the octahedron in Figure 17.

A one-to-one correspondence between the cube and 
the octahedron is established in this way, thus creating an 
arithmetic concrete duality between the two solids. Notice 
that the integers inscribed in the two solids to induce their 
arithmetic duality are not unique.

The Arithmetic Duality of the  
Dodecahedron–Icosahedron Dual Pair
Figures 18(a) and 18(b) show an unfolded dodecahedron 
split into two parts including six pentagons each.

To get the full dodecahedron, one must bend the five 
pentagons around the central pentagon of the dodecahe-
dron’s two parts and then join the three vertices labeled 
A, the three vertices labeled B, etc. The dodecahedron is 
inscribed with 60 integers, five integers on each vertex of 
each pentagon. It is easy to verify that the five integers 
in every pentagon are positive and distinct and sum to 65 
( = 5 × 13 ). The three integers around any one of the 20 ver-
tices are positive and distinct and sum to 39 ( = 3 × 13 ). One 
can create an icosahedron that is arithmetically dual to this 
dodecahedron. Such an icosahedron is shown in Figure 19, 
split into two unfolded parts. To get the full icosahedron, 
one has to join the vertices A, B, C, etc., in Figure 19(a) to 
the corresponding vertices A′,B′,C′ , etc., and restore the 
solid form of the icosahedron.

The full icosahedron has 60 integers inscribed in it that 
are identical, including multiplicities, to the 60 integers in-
scribed in the dodecahedron. Every face of the icosahedron 
includes three integers that sum to 39 and are the same as 
the three integers around a corresponding vertex of the 
dodecahedron. And the five integers around every vertex 

of the icosahedron sum to 65 and are identical to the five 
integers in a corresponding pentagon of the dodecahedron. 
An arithmetic duality is established in this way between 
the two solids. For example, in Figure 19b, the five integers 
around the central vertex (23, 2, 11, 26, 3) sum to 65 and 
are the same as the five integers in the central pentagon 
in Figure 18b. Also, the three integers in the rightmost 
triangle of Figure 19b (11, 23, 5) are distinct and posi-
tive and sum to 39 and are the same as the three integers 
around the lower rightmost vertex of the central pentagon 
in Figure 18b.

Open Problems

1. As we remarked in the section defining the wonder cubes, 
the number of wonder cubes with a variable pivot is 
unbounded. However, a formula for the number of won-
der cubes with the same pivot is an open problem.

2. Find a way to generalize wonder cubes to cubes with 
inscribed 4 × 4 , 5 × 5 , etc., magic squares on their faces.

3. Find an algorithm for creating 3 × 3 × 3 wonder cubes.
4. Find an algorithm for generating 2 × 2 × 3 wonder cubes.
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the article's Creative Commons licence and your intended use is not 
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