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TT
he Bernoulli numbers were named after the Swiss
mathematician Jacob Bernoulli (1654–1705;
Figure 1), whose posthumous book Ars Conjectandi

(1713) demonstrated the calculation of sums of integer
powers.1 The same sequences of numbers were also
published in the Japanese capital, Edo (today Tokyo), also
as a posthumous publication, by Takakazu Seki (?–1708;
Figure 2), appearing one year prior to Bernoulli’s book,
and so these numbers might just as well have become
known as Seki numbers. This paper introduces the parallel
development of mathematics in Basel, Switzerland, and
Edo, Japan, and highlights the global conditions that
allowed for multiple origins of mathematical discoveries.

It is of particular interest to look at the case of the
Bernoulli numbers, because both Bernoulli and Seki had
taken steps to extend algebraic methods in similar ways
while working in two places remote from each other that
had no exchange of mathematical knowledge. It is thus an
early example in modern mathematics in which a particular
technical advancement was made independently and
simultaneously in two different parts of the world. The
concept of ‘‘circulation of knowledge’’ cannot be applied in
this case as an explanation. Introducing the two stories
together, this study contributes to a reconstruction of the
history of mathematics that moves away from the Euro-
centric view; it proposes that we take into account the
parallel trajectories of European and Asian mathematics in
the early eighteenth century, thereby producing a more
balanced narrative of a global history of mathematics.

The Bernoulli Numbers
Let us begin by describing the Bernoulli numbers. For
specialists, the Bernoulli numbers are commonly defined as
the coefficients of x in the expansion of the function
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�
in powers of x:
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where Bk is the kth Bernoulli number.2

But in the early eighteenth century, the number e that
came to be known as Euler’s constant had not yet come
into existence [7]. Let us turn, therefore, to the original
formulation, in which the Bernoulli numbers arise as
coefficients in the sum of the first n consecutive kth pow-
ers. Here are the first thirteen Bernoulli numbers:

1Jacob Bernoulli’s name appears in the literature with several different spellings. This article follows the way he signed his name: Jacob. A portrait with his signature

appears as the frontispiece of [4].
2For more on the Bernoulli numbers, see the Bernoulli number page, https://www.bernoulli.org, accessed July 23, 2020. There are thousands of research papers

related to the Bernoulli numbers; see, for example, Karl Dilcher’s website https://www.mscs.dal.ca/ dilcher/bernoulli.html, accessed July 23, 2020.
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B0 ¼ 1; B1 ¼ 1

2
; B2 ¼

1

6
; B3 ¼ 0; B4 ¼ � 1

30
;

B5 ¼ 0; B6 ¼ 1

42
; B7 ¼ 0; B8 ¼ � 1

30
;

B9 ¼ 0; B10 ¼
5

66
; B11 ¼ 0; B12 ¼ � 691

2730
:

Starting from the Taylor series, the Euler–Maclaurin
formula, and the Riemann zeta function, the importance
and usefulness of the Bernoulli numbers have been widely
acknowledged among contemporary mathematicians. As
for its history, historian of mathematics Janet Beery has
provided this chronological summary of the development
of the formula for sums of integer powers [3]:

Formulas for sums of integer powers were first given
in generalizable form in the West by Thomas Harriot
(c. 1560–1621) of England. At about the same time,
Johann Faulhaber (1580–1635) of Germany gave
formulas for these sums up to the 17th power, far
higher than anyone before him, but he did not make
clear how to generalize them. Pierre de Fermat
(1601–1665) often is credited with the discovery of
formulas for sums of integer powers, but his fellow
French mathematician Blaise Pascal (1623–1662)
gave the formulas much more explicitly. The Swiss
mathematician Jakob Bernoulli (1654–1705) is per-
haps best and most deservedly known for presenting
formulas for sums of integer powers to the European
mathematical community. His was the most useful

and generalizable formulation to date because he
gave by far the most explicit and succinct instructions
for finding the coefficients of the formulas.

In Beery’s paper, the developments related to sums of
powers are listed in chronological order, and the history is
dominated by some ‘‘big names’’ such as Harriot, Fermat,
Pascal, and Bernoulli. The geographical scope of this
approach, however, is limited to Europe, and the simulta-
neous development of mathematics outside of Europe has
been entirely left out of the picture.

Jacob Bernoulli’s Ars Conjectandi (1713)
We begin with a review of the discovery of the Bernoulli
numbers in Basel, Switzerland.

Jacob’s father expected his son, who had been given a
theological education, to become a minister in Basel. Two
events in Jacob’s life, however, changedhis career path. First,
he traveled to France in 1677. At the age of twenty-three,
Jacob studied with the followers of Descartes and was fas-
cinated by mathematics and astronomy. Second, he was
transfixed by the appearance of the great comet of 1680.
Jacob believed that there must be a way to predict the
occurrence of comets. Deeply absorbed in the study of
mathematics and astronomy, he decided to abandon the
clergy, following the motto Invito Patre, Sidera verso (against
my father’s will, I will turn to the stars). He then embarked on
his second European trip, this time to the Netherlands and
England, acquainting himself with important scientific
intellectuals, including Robert Hooke and Robert Boyle.3

Figure 2. A portrait of Takakazu Seki (d. 1708). (Courtesy of

the Ichinoseki City Museum.)
Figure 1. Portrait of Jacob Bernoulli (1686, around 32 years

old), painted by his brother Nikolaus (1662–1716).

3For a biographical sketch of Jacob Bernoulli, see [30, pp. 248–250] or [25, pp. 3–5].
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Upon his return to Basel (see Figure 3) in 1682, Jacob
began lecturing in experimental physics at the University of
Basel, and in 1687, he became a professor of mathematics
there. Although the university itself, failing to attract many
students, was not thriving,4 Jacob’s talent was widely rec-
ognized in Europe, mainly thanks to contacts outside of
Switzerland.5 He continued to correspond with mathe-
maticians whom he had met, and one of his most frequent
contacts was Gottfried Wilhelm Leibniz (1646–1716).6

Through correspondence, Jacob and his brother Johann
Bernoulli (1667–1748) studied Leibniz’s papers. As a result,
they were up to date on the recent development of Leib-
niz’s calculus, which was at the cutting edge of the
mathematics of the time.7

The idea of calculating the sum of integer powers did
not begin with Jacob Bernoulli. As Beery has noted, there
were mathematicians prior to Jacob8 who had studied the

sum over n; n2; n3; . . .; n7. The German mathematician
Johann Faulhaber (1580–1635) in particular had already
tried to compute the sums of odd powers in his 1631
Academia Algebræ [11].9

Faulhaber analyzed the pattern that appears in the sums
of integer powers, and he presented a table of binomial
coefficients in his book that showed the result of his cal-
culations on these sums. In the table (Figure 4) there
appears the word Coß in relation to the integer power.10

For Faulhaber, the word meant unbekannte, aber auch
Gleichungslehre (unknowns, but also the theory of equa-
tions) [26, p. 51].

Faulhaber was a ‘‘cossist,’’ one who adopted symbols
and words to express mathematical concepts. The term

derives from the Italian word cosa, meaning the ‘‘thing’’
that mathematicians used to represent an unknown quan-
tity, so that a cossist might be seen as roughly equivalent to
a contemporary algebraist [14, p. 51]. By the fifteenth cen-
tury, the practice of solving algebraic equations came to be
described in Germany as ‘‘the cossick art.’’ For example, the
abbreviations R, Z, and C, written in elaborate Gothic
script, replaced the words res. zensus (or census) and
cubus, and they were combined to express ZZ for the
fourth power, RZZ for the fifth, ZZZ for the sixth, CZZ
for the seventh, and so on [29, p. 58]. Subsequently, the
cossists in the German-speaking countries, such as Michael
Stifel (1487–1567), Johannes Scheubel (1494–1570), and
Christoff Rudolff (1499–1545), adopted the use of symbols
for arithmetic operations such as those for equality and
extraction of roots [8].

Assigning the new symbols was not an easy task, but
they were very helpful in solving some of the more com-
plicated problems in algebra. By Faulhaber’s time, the
standardized symbols, ß, bß, cß, ... were used to represent
fifth, seventh, eleventh powers, etc. [29, p. 38]. In adopting
them, Faulhaber became a notable cossist, using new
symbols wherever applicable. Eventually, as Knuth asserts,
Faulhaber ‘‘may well have carried out more computing
than anybody else in Europe during the first half of the 17th
century’’ [18, p. 2]. Faulhaber, for example, represented the
formulas for sums of odd powers as shown in Table 1.11

What is novel in this table is Faulhaber’s cossist
approach—assigning symbols to a set of ideas. Here, he
expresses the formulas in terms of a symbol N that

Figure 3. Copperplate engraving of Basel, Switzerland,

Bernoulli’s hometown, and the Rhine River, by Mattäus Merian

(1593–1650).

Figure 4. Table in the appendix of Faulhaber’s Academia

Algebræ, which the author claims is a wunderbarliche Inven-

tion (amazing invention).

4According to [12, p. 35], enrollment had declined significantly, and the university was not as active as it had been in the previous century.
5During this period, France became a great power in Europe. Switzerland was independent of the Holy Roman Empire and became the Swiss Confederacy after the

Treaty of Westphalia, which came into effect in 1648. Intellectuals often traveled in Europe and communicated via networks of correspondents.
6Some of the correspondence can be found in [5]. Ian Hacking also studies the correspondence in [13].
7Stillwell states that the brothers equaled Leibniz himself in the brilliance of their discoveries [30, p. 250].
8See Knuth’s article [18, pp. 7–8]. Dubeau’s paper [9, p. 596] includes key writings regarding sums of powers of integers.
9Though the title is in Latin, this book was written in German. See also [22] and [2].
10The word Coß appears in a 1524 work by Adam Ries (1492–1559). There, the word referred to unknown variables. For a more detailed study of the word Coß, see

[17].
11Masanobu Kaneko pointed out to me that the coefficient 10 of N 2 in the sixth row of Table 1 is given incorrectly in [18] as 5.

48 THE MATHEMATICAL INTELLIGENCER



represents
�
n2 þ n

�
=2, not with a lowercase n representing

an odd number, as in all previous attempts.
Although Jacob Bernoulli studied Faulhaber’s work, a

more direct source of information on sums of powers of
integers was the work of Ismaël Boulliau (1605–1694), a
French astronomer and polymath.12 Boulliau was an active
correspondent, exchanging letters with contemporary
astronomers, mathematicians, and philosophers, including
Galileo, Mersenne, Huygens, and Fermat, as well as Faul-
haber himself. The year in which Boulliau and Faulhaber
discussed the sum of powers is unknown, but Boulliau
published his Opus novum ad arithmeticam infinitorum
(Arithmetica Infinitorum thereafter) in 1682 at the age of
seventy-seven.13 Here he devoted many pages to explain-
ing a formula concerning sums of powers of integers.

Jacob Bernoulli began his computations by studying
Boulliau, believing that there must be an easier and faster
method. He made the table shown in Figure 5, called
Summae Potestatum (sums of powers), stating:

With the help of this table it took me less than half of
a quarter of an hour to find that the tenth powers of
the first 1000 numbers being added together will
yield the sum

91;409;924;241;424;243;424;241;924;242;500 :

From this it will become clear how useless was the
work of Ismaël Boulliau spent on the compilation of
his voluminous Arithmetica Infinitorum in which he
did nothing more than compute with immense labor
the sums of the first six powers, which is only a part
of what we have accomplished in the space of a
single page.14

Posthumous Publication of Ars Conjectandi
Jacob did not publish the Bernoulli numbers immediately;
they appeared only in his book Ars Conjectandi, published
in 1713, eight years after his death.

Table 1. Faulhaber’s representation of the formulas for the sum of the first n odd powers in terms of N ¼ 1
2

�
n2 þ n

�

11 þ 21 þ � � � þ n1 ¼ N;

13 þ 23 þ � � � þ n3 ¼ N2;

15 þ 25 þ � � � þ n5 ¼ 1
3

�
4N3 � N2

�
;

17 þ 27 þ � � � þ n7 ¼ 1
5

�
12N4 � 8N3 þ 2N2

�
;

19 þ 29 þ � � � þ n9 ¼ 1
5

�
16N5 � 20N4 þ 12N3 � 3N2

�
;

111 þ 211 þ � � � þ n11 ¼ 1
6

�
32N6 � 64N5 þ 68N4 � 40N3 þ 10N2

�
;

113 þ 213 þ � � � þ n13 ¼ 1
105

�
960N7 � 2800N6 þ 4592N5 � 4720N4 þ 2764N3 � 691N2

�
;

115 þ 215 þ � � � þ n15 ¼ 1
12

�
192N8 � 768N7 þ 1792N6 � 2816N5 þ 2872N4 � 1680N3 þ 420N2

�
;

117 þ 217 þ � � � þ n17 ¼ 1
45

�
1280N9 � 6720N8 þ 21120N7 � 46880N6 þ 72912N5 � 74220N4 þ 43404N3 � 10851N2

�
:

Figure 5. Page 97 of Ars Conjectandi (1713). The symbols do

not correspond to modern notation. For example, the integral

symbol means a sum (�). There is one error on this page. In

the last term of the sum of ninth powers, the coefficient should

read not � 1
12 nn but � 3

20 nn. The second, fourth, sixth, and

eighth Bernoulli numbers are given as A ¼ 1
6, B ¼ � 1

30, C ¼ 1
42,

and D ¼ � 1
30.

12Boulliau published on a wide range of topics from the fields of mathematics, astronomy, theology, and history.
13He published his most influential book, Astronomia philolaica, in 1645, in which he claimed the ‘‘inverse-square law’’ for the calculation of intensity of illumination or

gravitational force in inverse proportion to the square of the distance from the source. Additionally, he stated a hypothesis, known as the conical hypothesis, in which he

assumed that the planetary orbits are circular. He was also a collaborator of Johannes Kepler (1571–1630).
14Translation by Jekuthiel Ginsburg in [28, p. 90]. The spellings of some words have been changed for consistency.

� 2021 The Author(s), Volume 44, Number 1, 2022 49



Ars Conjectandi was a study of the mathematics of
probability.15 Analyzing how chance operates in games and
applying such methods to broader concepts such as
‘‘judgments in civil, moral, and economic affairs,’’ the book
focuses on developing the analytical tools needed to apply
probability to real-life problems.16 The section on the
Bernoulli numbers (a segment in Part II of the book) was
somewhat out of place, since it discussed a completely
different topic, namely shorter and more efficient methods
of calculating sums of powers.

As for the statement Jacob made regarding Ismaël
Boulliau’s method, it was not unusual to claim to have
discovered a better method and brag about it. After all,
Bernoulli lived in an era of priority disputes. Newton’s
followers and those of Leibniz fought over credit for the
invention of calculus. Johann, Jacob’s younger brother, was
involved in this controversy, which became most intense in
1713.17 Nor were Jacob and Johann bystanders. Between
them, they initiated a fierce public feud that raged for
decades prior to this. Historian Jeanne Peiffer traced the
tensions leading up to their rivalry and determined that
their ‘‘split became definite in the summer of 1694’’ [25,
p. 12].18 The rivalry between Jacob and Johann was public
knowledge, as was the later split between Newton and
Leibniz.

This rivalry between the brothers prevented the rapid
dissemination of the work left by Jacob. After his death, the
manuscript of Ars Conjectandi was not immediately pub-
lished. According to Martin Mattmüller, of the Bernoulli-
Euler-Zentrum at the University of Basel, the delay in its
publication was rooted in the discord in the Bernoulli
family, and he explains the course of events in the fol-
lowing way.19

Johann claimed that Jacob’s heirs would not let him
access the unpublished document, and he was also busy
with the publication of his own discovery. Jacob’s widow,
Judith Stupanus, first passed the task of editing the
unpublished work to their son, allowing him to bring the
manuscript to the mathematician Pierre Varignon (1654–
1722) in Paris. But that plan did not bear fruit. Jacob and
Johann’s nephew Nikolaus (1687–1759) had studied
mathematics with Jacob at the University of Basel and
become a mathematician. He went to Groningen, where
Johann worked as a professional mathematician. Both
Nikolaus and Johann were aware of Jacob’s unpublished
work, but both of them were kept away from it by the
surviving members of Jacob’s family.

In 1711, Nikolaus convinced Jacob’s son not to delay
publication further. Because the surviving members of

Jacob’s family still opposed Johann and Nikolaus having
access to Jacob’s manuscript, two editors were selected to
take charge of compiling the work. They were not math-
ematicians: one, Franz Christ (1688–1744), was a recent
recipient of a doctoral degree in law (Dr. jur. 1711), and the
other was an unemployed minister, Samuel Bringolf (1678–
?).20 They had no training in mathematics, and thus they did
not understand the contents. Finally, in March 1713, Var-
ignon urged Johann and Nikolaus to help them; Nikolaus
‘‘reluctantly’’ compiled an errata list and added a pref-
ace [21, pp. 286–287].

For Jacob and for his mathematician contemporaries, the
discovery of a general pattern for calculating sums of
integer powers was of only passing interest. Jacob made no
further use of it, nor did he claim that his method was an
important contribution to mathematics. There was no
widespread discussion of this sequence,21 and the result
was somewhat haphazardly inserted into a book on prob-
ability theory, which did not have an examination of the
characteristics of integers as a primary goal.

Takakazu Seki and Mathematics in Japan
Takakazu Seki’s situation was very different from Jacob
Bernoulli’s. Takakazu Seki was not a mathematician
teaching at a university. Indeed, there were no higher
academic institutions in Japan that resembled the contem-
porary universities of Western Europe. Mathematical
education was textbook-based and pursued individually or
in an informal study group.

Seki’s birth year has been estimated as lying between
1640 and 1645. He succeeded to his adoptive father’s job in
Kōfu (today Yamanashi prefecture) and served as a mem-
ber of the guards of the Kōfu domain from 1665. Seki then
lived in Edo (Figure 6) with his wife. They had two
daughters, but both died in childhood, and the couple
adopted two sons [20, pp. 3–4]. Seki was promoted several
times in his career. Most notably, when his master, Ienobu
Tokugawa (1662–1712), was called to be the shogun-des-
ignate (the next head of the government) in 1703, Seki
entered Edo Castle with him as his close vassal and was
appointed chief accountant of the palace (nando kumi-
gashira); see [16, p. 104] and [20, p. 5].

Seki belonged to the warrior class, serving his master in
exchange for an annual salary.22 Having a day job as an
administrator of finance, Seki taught mathematics only to a
handful of disciples in his spare time. His knowledge of
mathematics came from the sources available within Japan.
He did not travel abroad, for Japan was under a national

15Edith Dudley Sylla states in [6, p. xiii], ‘‘Not only did Ars Conjectandi prove rigorously the first limit theorem in probability, it also founded the field of mathematical

probability conceptually.’’
16Jacob Bernoulli himself used these terms. See his letter to Leibniz of October 3, 1703, in [5].
17The Royal Society took Newton’s side by publishing a report, Commercium Epitolicum, in 1713.
18See also [15, pp. 73–93]. Sepideh Alassi discusses the case of Jacob and Johann’s priority dispute in discovering the velaria curve in [1, p. 150]. John Stillwell also

presents different evidence and claims that the rivalry became open hostility in 1697 [30, p. 251].
19For details, see [21, pp. 286–288].
20I am grateful to Martin Mattmüller for this information. The source is a letter from Johann Bernoulli to Nikolaus dated July 15, 1712.
21Although it might be anticipated that Jacob’s notebook Meditationes would contain a trace of his thoughts on the application of Bernoulli numbers, such is not the

case.
22In Seki’s era, the samurai class was the ruling class of society. There were no wars in Japan during Seki’s lifetime.
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seclusion policy whereby travel outside the country was
forbidden, and foreigners, except for some Dutch, Korean,
and Chinese merchants, were not allowed to enter the
country. The central government maintained this policy
from 1639, at which time most Westerners were expelled
from the Japanese archipelago. Even the foreign books that
were not censored by the central government were
unavailable, and the Dutch, who were allowed to reside in
a designated area remote from Edo, were never more than
twenty in number [16, p. 100]. Some Chinese mathematics
books, however, were available to Seki. From the ancient
mathematical canon, Nine Chapters on the Mathematical
Arts (Ky�ush�o sanjutsu, first century or later), Seki read Yang
Hui’s Methods of Mathematics (Y�oki sanp�o, c. 1378), Zhu
Shijie’s Introduction to Mathematics (Sangaku keim�o,
1299), and Cheng Dawei’s Systematic Treatise on Arith-
metic (Sanp�o t�os�o, 1592) [23, p. 119].

Among those Chinese mathematics texts, not only did
Seki transcribe Yang Hui’s Methods of Mathematics, but he
also corrected some errors that he found in the original. He
then copied the entire book in 1661 [16, p. 107].23 Most
notably, this thirteenth-century book contained the Chinese
version of Pascal’s triangle, which shows the binomial
coefficients in the shape of an actual triangle, with one
vertex at the top (see Figures 7, 8, 9).24

After learning the basics, Seki published one manuscript,
answering the challenge questions posed by the mathe-
matician Kazuyuki Sawaguchi (dates unknown) in 1671 in
his book Kokin sanp�oki (Old and New Mathematics). In
Japan, mathematical problems were posed widely to an
interested audience, and the race to solve them created
clusters of local amateur mathematicians who studied
problems together. In his lifetime, Seki published only one
book containing answers to challenge questions, and his

other works were either written in collaboration with his
disciples or published posthumously in edited volumes by

Figure 7. The chart in Yang Hui’s Methods of Mathematics

showing a triangular array of binomial coefficients. The

numbers were written in rod numerals.

Figure 8. Positive and negative integers expressed by rods.

The first row gives the units digit, from one to nine (left to

right), and the second gives the tens place, representing

10; 20; . . .; 90 (left to right).

Figure 6. The town Edo, where Seki lived. This painting

depicts Edo in the late seventeenth to early eighteenth century.

The capital of Japan was flourishing, and mathematics was

studied privately. (Courtesy of Edo-Tokyo Museum.)

23Majima claims that there are two extant copies of Seki’s work, one at the Shinminato Museum of Toyama (1661), and the other owned by Kiyoshi Yabuuchi

(1673) [20, p. 14]. Seki was not the first to study Yang Hui’s Methods of Mathematics, but it is worth noting that he transcribed and copied the text. His annotations

were studied by his disciples. As a result, this Chinese textbook was widely circulated after Seki’s death.
24For the history of Pascal’s triangle in the Chinese context, see [19].
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them.25 Seki had two talented disciples who studied
mathematics with him. They were brothers, both actively
engaged in mathematical studies in the 1680s, and because
of their contribution, mainly those of the younger brother,
Katahiro Takebe (1664–1739), it is often difficult to draw a
line between Seki’s and Takabe’s work.

The work by Seki that he published himself was Math-
ematical Treatise Revealing the Hidden Meaning (Hatsubi
sanp�o, 1674). In the preface, Seki set forth his views on
mathematics as follows:

Mathematics is practiced in excess in the world
nowadays. One can no longer count the number of
those who open their own school or publish their
own textbook. Thus there is the Treatise of Ancient
and Modern Mathematics [kokon sanp�oki] where,
without any consideration for the student, fifteen
difficult problems are proposed. Since its publication,
the mathematicians of this world take this textbook
into their hands in vain, and suffer from not being
able to elucidate its principle because it is too ele-
vated. What is more, I have not yet seen any work
that gave the answers to it. For my part, having
formed long ago the wish to devote myself to this
path, I could extricate its profound sense and com-
pile the procedures and configurations. But I had put
them aside, fearing to make them known. The stu-
dents of my school unanimously begged me to print

them in order to pass them on to a larger number,
and they assured me that I had to bring some
minimal help to future students. Hence, without
thinking any more about my mediocrity, I complied
with their request, and I gave the work the name
Hatsubi Sanp�o [Mathematical Treatise Revealing the
Hidden Meaning]. The full text of it, involving the
most refined details of method (endan), is long and
overloaded, and including it would have obscured
the discussion. For this reason I omit it here [16,
p. 140].26

It is striking that Seki deliberately took out the ‘‘procedures
and configurations’’ from his book and kept them secret,
and he omitted his method. But the methods used to solve
the problems in his book became controversial and drew
criticism from other study groups. Katahiro Takebe then
decided to publish annotations, presenting detailed steps to
solve the problems, as Commentaries of Operations in the
Mathematical Treatise Revealing the Hidden Meaning
(1685). In Takebe’s book, Seki’s point of view in doing
mathematics is said to be much clearer. The afterword of
Takebe’s book was written by Seki himself:27

What is mathematics for? Either the problem is easy
or difficult, we need to study it to know the proper
methods for solving them. No matter how sophisti-
cated the principle may be, it is unorthodox if the
method is complicated.

Amateur mathematicians began to gather and form factions.
Much like the ‘‘master institutions’’ existing in many other
avocations, such as the tea ceremony and flower arrange-
ment, these mathematics enthusiasts created study groups.28

As a result of repeated competitions among those factions,
the methods used to obtain Seki’s answers in 1674 were
eventually challenged, and Seki’s disciples had to claim their
authenticity while defending them as orthodox.29

Seki’s posthumous publication Compendium of Mathe-
matics (Katsuy�o sanp�o, 1712) was compiled by his disciples
Yoshimasa Otaka (dates unknown) and Murahide Araki
(1640–1718). By this time, Takebe was serving the shogun
and had become, as his brother wrote, ‘‘a very busy official
who was no longer in a position to go more thoroughly
into [mathematics]’’ [16, p. 109]. The page where Seki tried
to formulate the sum of powers was titled ‘‘sum of powers’’
(dasekijutsu), and this is the place where Seki expressed
the formula for the sum of powers (Figures 10 and 11).
Since he had often omitted the methods, he did not explain
how he had obtained the numbers, which appear in the
left-hand column.30 How did this chart work and where do
we see the Bernoulli numbers?

Figure 9. For comparison with Figure 7, Pascal’s drawing

displaying the binomial coefficients is pictured here; from

Trait�e du triangle arithm�etique avec quelques autres petits

traitez sur la mesme matière (1665). (Courtesy of Cambridge

University Digital Library.)

25The exact number of Seki’s disciples as well as the ways he taught mathematics are unknown. For a list of Seki’s works, see [27, pp. 2–3].
26The original can be found in [27, p. 105].
27The book’s title was Hatsubi samp�o endan-genkai, published by Katahiro Takebe. The ‘‘principle’’ is li, referring to the Confucian principle. It is not the same as the

method (or h�o), which means solving mathematical problems.
28For a cultural explanation as to why factions emerged in traditional Japanese mathematics (wasan), see ‘‘Master Institution—Wasan as a Hobby,’’ available online at

https://www.ndl.go.jp/math/e/s1/3.html (accessed January 2, 2021).
29The group in Kyoto, for example, became an immediate rival to the Edo-based mathematicians, including the Seki school.
30Ogawa explored the possible methods of obtaining the numbers, but there are no records [24].
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In Figure 10 and its translation in Figure 11, the Bernoulli
numbers appear in the left-hand columns:

1;þ 1

2
; þ 1

6
; 0; � 1

30
; 0;

1

42
; 0; � 1

30
; 0;

5

66
; 0:

The right part of this figure is ‘‘Pascal’s triangle,’’ that is, a
list of the binomial coefficients. The second column from

the right shows the numbers of repeated operation(s) of
multiplication. One means the second power. Thus, this
column shows the sum of second powers, i.e.,

12 þ 22 þ � � � þ n2. Reading the column from the bottom

as the numbers 1, 2, 0 yields 1 � n2 þ 2 � n þ 0 � 1

¼ n2 þ 2n. But the left-hand column notes, ‘‘take 1
2 and

add,’’ and thus an additional operation is needed for 2n.

Figure 10. The table in Compendium of Mathematics (1712). The numbers were written using rod numerals.

Figure 11. Translation of Figure 10. Notes: (a) The number 1 should be 2. (b) The number 2 should be 3. (c) The number 992

should be 924.
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This yields n2 þ 1
2 � 2n ¼ n2 þ n. Finally, the denominator

of this should be 2, whence the final formula is 1
2

�
n2 þ n

�
.

Similarly, repeating the multiplication seven times indi-
cates a power of eight. For the sum of eighth powers,
column 7 gives 1, 8, 28, 56, 70, 56, 28, 8. Thus, one can
first derive the following formula:

1 � n8 þ 8 � n7 þ 28 � n6 þ 56 � n5 þ 70 � n4

þ 56 � n3 þ 28 � n2 þ 8 � n:

On including the operations as well as the Bernoulli
numbers mentioned in the left-hand column, we have

1 � n8 þ 1

2
� 8 � n7 þ 1

6
� 28 � n6 þ 0 � 56 � n5

þ�1

30
� 70 � n4 þ 0 � 56 � n3 þ 1

42
� 28 � n2 þ 0 � 8 � n

¼ n8 þ 4n7 þ 14

3
� n6 � 7

3
� n4 þ 2

3
� n2 :

Finally, the denominator is 8. Thus the formula for the sum
of eighth powers is

1

8
n8 þ 4n7 þ 14

3
n6 � 7

3
n4 þ 2

3
n2

� �

¼ 1

8
n8 þ 1

2
n7 þ 7

12
n6 � 7

24
n4 þ 1

12
n2 :

Expression of Zero and Counting Board Algebra
One notable feature of Seki’s chart (Figure 10) is the
descriptions of ‘‘zero.’’ The place where one would usually
write a zero in the contemporary notation was represented
in three different ways. The first zero was on the number 1
at the top of each column. There is a circle written on top of
each one. Placing the circle on top changes the number to
zero. The second place where zero appears is at the

beginning of the pattern called ‘‘base’’ . The word

‘‘base’’ actually meant zero, since it meant 10 (i.e., no

multiplication has to be done). The row after the base

begins with 1 , and continues with 2 and 3 ,

which record the number of multiplications done

(11; 12; 13, respectively). The third type of zero in Seki’s
chart appears in the left-hand columns, written as ‘‘void’’

. It means that no operations are needed: neither

addition nor subtraction. Instead of writing zero in those
three places, Seki used the relevant Japanese expressions.
All three are unique in their use in mathematics, demon-
strating Seki’s originality as well as mastery of his methods.

What made Seki try to calculate the sum of powers of
integers in the first place? Since Seki himself decided not to
write down a detailed description of his calculations, we do
not know what motivated him to work on such sums. One
thing is clear: Seki was interested in solving algebraic
problems on the counting board. Just as the cossists in
German-speaking countries began to use letters of the
alphabet in their notation, Seki used Chinese characters to
denote all of the coefficients [16, p. 187]. By doing so, he
was encoding an algorithm for computing patterns, such as
the length of an arc, which had never been done in the
Chinese mathematical tradition [16, p. 187].

Thus, an important context in obtaining the Bernoulli
numbers is Seki’s use of rod numerals to solve algebraic
equations. It was similar to the development we saw in Faul-
haber’s method. In the manuscript that Seki and his disciples
had edited in 1683, Seki developed ‘‘counting board alge-
bra’’ [23, p. 129]; seeFigure 12. It is remarkable to see that Seki
was writing the coefficients using counting rods and trying to
find the solutions for ‘‘self-multiplication’’ (or integer powers).

Similarities and Originality
A comparison of Bernoulli’s and Seki’s methods shows a
similarity in the endpoint of their calculations; Bernoulli
stopped at þ6=55, and Seki stopped one after þ6=55. If
they had continued their calculations, the numerators and
denominators would have become large (the next Ber-
noulli number is �691=2730), and they knew the general
pattern by completing their calculations up to þ6=55. Other
than that, their methods do not have much in common. The
shape of Seki’s chart (Figure 10) looks much more like that
of Faulhaber’s version (Figure 4) than the one in the Chi-
nese text (Figure 7). Japanese mathematics is thought to be
intuitively closer to Chinese than Western mathematics, but
such an assumption does not apply to this case. Did Seki
and Bernoulli know of Faulhaber’s or Pascal’s table of
binomial coefficients?

Both Jacob and Johann Bernoulli knew of Faulhaber’s
work. Thus, it would not be a surprise if they had seen the
table of binomial coefficients in Faulhaber’s book (Fig-
ure 4). But according to the statistician A. W. F. Edwards,
the Bernoullis had not seen Pascal’s version [10, p. 123]. In
1695, Johann received a letter from Leibniz, stating:

I have conceived then of a wonderful rule for the
coefficients of the powers not only of the binomial
ðx þ yÞ, but also of the trinomial ðx þ y þ zÞ, in fact,
of any polynomial; so that when given the power of

Figure 12. (a) A page from the Methods of Solving Implicit

Problems. The polynomial a0 þ a1x þ a2x2 can be expressed

on the counting board in the boxed symbols. (b) Represen-

tation of a polynomial with a translation into Arabic numerals.

The symbols 2;�3; 7 represent 2 � 3x þ 7x2. Note that

Japanese is read from top to bottom. (Courtesy of National

Diet Library of Japan.)
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any degree say the tenth, and any term contained in it
... it should be possible to assign the coefficient [10,
p. 113].

He received this letter on May 16, 1695, and replied with
enthusiasm on June 8, stating, ‘‘It would be a pleasure to
see your rule and it would be well to test whether they
agree; yours is possibly simpler’’ [10, p. 113]. Soon there-
after, in 1698, the multinomial coefficient was published in
England by the French mathematician Abraham de Moivre
(1667–1754). Leibniz also drew Jacob’s attention to the
binomial coefficients in 1705, shortly before his death. But
he was not aware of Pascal’s work [10, p. 123]. Thus it was
likely that the table in Faulhaber’s manuscript was the
reference to binomial coefficients available to the Bernoul-
lis and that they did not see Pascal’s version.

Did Seki have access to Faulhaber’s 1631 book Acade-
mia Algebræ, written in German? Silke Wimmer-Zagier and
Don Zagier investigated the possibility that Seki, Takebe,
and other Japanese mathematicians had been influenced
by the Dutch who had been permitted to reside in a des-
ignated area of Japan, but they found no evidence of this,
let alone a book written by a German [32].31

Neither the Bernoulli numbers nor the methods of cal-
culating the sum of integer powers were to be found in the
Chinese books published up to Seki’s time. Historian of
Japanese mathematics Osamu Takenouchi [31] argues that
Seki was initially unaware of a method for obtaining sums
of powers, and he had therefore to calculate such sums
meticulously by hand without the benefit of a formula. But
at some point, Seki either discovered a pattern or read
about it somewhere. Wimmer-Zagier and Zagier are correct
in their assertion that Seki’s mathematics made a ‘‘quantum
jump’’ from what had been done before his time; his
originality suggests a good probability that Seki discovered
the Bernoulli numbers on his own.

The placement of words to solve algebraic equations was,
however, similar to what the cossists had achieved in Europe.
Therefore, what we can confirm at least is the following:
computing sums of integer powers has been a common
concern, and the Bernoulli numbers were destined to appear
naturally in investigations of such sums. Although two centers
of mathematical investigation in the world were thousands of
miles apart with little communication between them, it was
time for the Bernoulli numbers to appear in mathematical
work as an outgrowth of the development of methods for
solving algebraic equations. It is thus no accident that the
Bernoulli numbers were discovered in two disparate places at
around the same time; they were a natural discovery that
arose in the process of investigating algebraic equations.
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