Teaching the Kepler
Laws for Freshmen
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mathematical derivation of the three experi-

mentally observed Kepler laws of planetary
motion from Newton’s laws of motion and of gravita-
tion. Newton published his theory of gravitation in 1687
in the Principia Mathematica [13]. After two short
introductions, one with definitions and the other with
axioms (the laws of motion), Newton discussed the
Kepler laws in the first three sections of Book 1 (in just
40 pages, without ever mentioning the name of
Kepler)).

Kepler's second law (motion is planar and equal areas
are swept out in equal times) is an easy consequence of the
conservation of angular momentum L = r x p, and holds
in greater generality for any central force field. All this is
explained well by Newton in Propositions 1 and 2.

On the other hand, Kepler’s first law (planetary orbits
are ellipses with the center of the force field at a focus) is
specific for the attractive 1/7° force field. Using Euclidean
geometry, Newton derives in Proposition 11 that the
Kepler laws can hold only for an attractive 1/ force field.
The converse statement, that an attractive 1/7° force field
leads to elliptical orbits, Newton concludes in Corollary 1
of Proposition 13. Tacitly he assumes for this argument
that the equation of motion F = ma has a unique solution
for given initial position and initial velocity. Theorems
about existence and uniqueness of solutions of such a
differential equation were formulated and mathematically
proven only in the 19th century. However, there can be
little doubt that Newton did grasp these properties of his
equation F = ma [1].

Later, in 1710, Jakob Hermann and Johan Bernoulli gave
a direct proof of Kepler’s first law, which is still the standard
proof for modern textbooks on classical mechanics [14].
One writes the position vector r in the plane of motion in
polar coordinates » and 0. The trick is to transform the
equation of motion ma = —kr/7’ with variable the time ¢
into a second-order differential equation of the scalar
function # = 1/r with variable the angle 0. This differential

‘ } ne of the highlights of classical mechanics is the
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equation can be solved exactly, and yields the equation of
an ellipse in polar coordinates [4].

Another popular proof goes by writing down the so-
called Runge-Lenz vector

K=pxL— kmr/r

with p = mv the momentum and F(r) = —kr/7> the force
field of the Kepler problem. The Runge-Lenz vector K turns
out to be conserved, i.e., K = 0 . This result can be derived
by a direct computation as we indicate in the next section.
An alternative geometric argument is sketched in the fol-
lowing section. Working out the equation r - K = 7K cos 0
yields the equation of an ellipse in polar coordinates [4].
The geometric meaning of the Runge-Lenz vector becomes
clear a posteriori: it is a vector pointing in the direction of
the major axis of the ellipse. But at the start of the proof,
writing down the Runge-Lenz vector seems an unmotivated
trick.

For an historical account of the Runge-Lenz vector, we
refer to Goldstein [5, 6]. Goldstein traces the vector back to
Laplace’s Traite de Mecanique Celeste from 1798. Actually, the
Runge-Lenz vector already appeared in a paper by Lagrange
from 1781 [9], which as far as we know was the vector’s first
use. Lagrange writes the vector down after algebraic manip-
ulations and without any geometric motivation.

It is more than clear by now that the name Runge-Lenz
vector is inappropriate, but with its widespread use in
modern literature it seems too late to change that.

The purpose of this note is to present in the first section
a proof of the Kepler laws for which a priori the reasoning
is well motivated in both physical and geometric terms.
Then, in the following section, we review the hodographic
proof as given by Feynman in his “Lost Lecture” [7], and
finally we discuss Newton’s proof from the Principia [13].
All three proofs are based on Euclidean geometry, although
we do use the language of vector calculus in order to make
the text more readable for people of the 21st century. We
feel that our proof is really the simplest of the three, and at
the same time it gives more refined information (namely



the length of the major axis 2a = —k/H of the ellipse £). In
fact we think that our proof in the next section can compete
both in transparency and in level of computation with the
standard proof of Jakob Hermann and Johann Bernoulli,
making it an appropriate alternative to present in a fresh-
man course on classical mechanics.

We thank Alain Albouy, Hans Duistermaat, Ronald
Kortram, Arnoud van Rooij, and the referee for useful
comments on this article. Note: Maris van Haandel’s work
was supported by NWO.

A Euclidean Proof of Kepler’s First Law

We shall use inner (or scalar, or dot) products u-v and
outer (or vector, or cross) products u x v of vectors u and v
in R?, the compatibility conditions

u-(vxw)=(uxv) w
ux (vxw)=(u-w)v—(a-v)w,
and the Leibniz product rules
(w-vy=u-v+u-v
(uxv)=uxv4+uxv

without further explanation.

For a central force field F(r) = f(rr/r the angular
momentum vector L =r x p is conserved by Newton’s
law of motion F = p, thereby leading to Kepler’s second
law. For a spherically symmetric central force field
F(r) = finr/r, the energy

H=p)2m+ V() V(r)=— / F(r)dr

is conserved as well. These are the general initial remarks.

From now on, consider the Kepler problem f() = —k/7*
and W(r) = —k/r, with &> 0 a coupling constant. If m is
replaced by the reduced mass p = mM/(m + M) then the
coupling constant becomes & = GmM, with m and M the
masses of the two bodies and G the universal gravitational
constant. Using conservation of energy, we show that the
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motion for fixed energy H < 0 is bounded inside a sphere
with center 0 and radius —k/H. Indeed, V(r) <H, and so
k/r> — H or equivalently » < — k/H.

Consider the following picture of the plane perpendic-
ular to L.

The circle C with center 0 and radius —k/H is the
boundary of a disc where motion with energy H < 0 takes
place. Points that fall from the circle C have the same
energy as the original moving point, and for this reason C is
called the fall circle. Let s = —kr/#H be the projection of r
from the center 0 onto the fall circle C. The line £ through r
with direction vector p is the tangent line of the orbit £ at
position r with velocity v. Let t be the orthogonal reflection
of the point s in the line £. As time varies, the position
vector r moves along the orbit £, and likewise s moves
along the fall circle C. It is good to investigate how the point
t moves.
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THEOREM. The point t equals K/mH and therefore is
conserved.

PRroOOF. The line N spanned by n = p x L is perpendic-
ular to £. The point t is obtained from s by subtracting twice
the orthogonal projection of s — r on the line N, and therefore

t=s—2((s—r) -n)n/n’
Now

s = —kr/rH

(s—r)-n=—(H+R/r)r-(pxL)/H=—(H+k/r)*/H

n? = p*I* = 2m(H + k/r)L*,
and therefore
t=—kr/rH +n/mH = K/mH,

where K = p x L — kmr/r is the Runge-Lenz vector. The
final step K = 0 is derived by a straightforward computa-
tion, using the compatibility relations and the Leibniz
product rules for inner and outer products of vectors in R?.

COROLLARY. The orbit € is an ellipse with foci 0 and t,
and major axis equal to 2a = —k/H.

PRrRoOF. Indeed we have
t—r|+r—0=|s—r/+|r—0=|s—0 = —k/H.

Hence £ is an ellipse with foci 0 and t, and major axis
2a = —k/H.

The above proof has two advantages over the earlier
mentioned proofs of Kepler’s first law. The conserved vector
t = K/mH is a priori well motivated in geometric terms.
Moreover we use the gardener’s definition of an ellipse. The
gardener’s definition, so called because gardeners some-
times use this construction for making an oval flowerbed, is
well known to (Dutch) freshmen. In contrast, the equation of
an ellipse in polar coordinates is unknown to most fresh-
men, and so additional explanation would be needed for
that. Yet another advantage of our proof is that the solution
of the equation of motion is achieved by just finding enough
constants of motion (of geometric origin), whose integration
is performed trivially by the fundamental theorem of calcu-
lus. The proofs by Feynman and Newton in the next sections
on the contrary rely at a crucial point on the existence and
uniqueness theorem for differential equations.

We proceed to derive Kepler’s third law along standard
lines [4]. The ellipse £ has numerical parameters (the major
axis equals 2a, the minor axis 2b and &’ = b* + ¢
a,b,c>0 given by 2a=—k/H, 4" =K/mH =
QmHL* + m*k>/m*H?. The area of the region bounded by
& equals

nab = LT /2m,

with 7'the period of the orbit. Indeed, L/2m is the area of
the sector swept out by the position vector r per unit time.
A straightforward calculation yields
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T?/a® = 4n*m/k.

The mass m we have used so far is actually equal to the
reduced mass u = mM/(m + M), with m the mass of the
planet and M the mass of the sun, and this almost equals m
if m <« M. The coupling constant £ is, according to
Newton, equal to GmM with G the universal gravitational
constant. We therefore see that Kepler’'s (harmonic) third
law, stating that T%/a’ is the same for all planets, holds only
approximately for m < M.

It might be a stimulating question for the students to
adapt the arguments of this section to the case of fixed
energy H > 0. Under this assumption, the motion becomes
unbounded and traverses one branch of a hyperbola.

Feynman’s Proof of Kepler’s First Law
In this section we discuss a different geometric proof of
Kepler’s first law based on the hodograph ‘H. By definition
‘H is the curve traced out by the velocity vector v in the
Kepler problem. This proof goes back to Mobius in 1843
and Hamilton in 1845 [3] and has been forgotten and
rediscovered several times, by Maxwell in 1877 [2] and by
Feynman in 1964 in his “Lost Lecture” [7], among others.
Let us assume (as in the picture in the previous section)
that son/n = v, with 7 the counterclockwise rotation around
0 over n/2. So the orbit £ is assumed to be traversed
counterclockwise around the origin 0.

THEOREM. The hodograph H is a circle with center
¢ = iK/mL and radius k/L.

PRrROOF. We shall indicate two proofs of this theorem. The
first proof is analytic in nature, and uses conservation of the
Runge-Lenz vector K by rewriting

K =p x L — kmr/r =mvin/n — kmr/r

as
on/n=K/mL+ kr/rL,

or equivalently
v = iK/mlL + ikr/7L.

Hence the theorem follows from K = 0.

There is a different geometric proof of the theorem,
discussed by Feynman, which, instead of using the
conservation of the Runge-Lenz vector K, yields it as a
corollary. The key point is to reparametrize the velocity
vector v from time ¢ to angle 6 of the position vector r.
It turns out that the vector v(0) is traversing the hodograph H
with constant speed /L. Indeed we have from Newton’s laws

av dt kr dt
mao = " a0 T P an
and Kepler’s second law yields
r*d0/2 = Ldt/2m.
Combining these identities yields
av

% = —kr/VL,



so indeed v(0) travels along ‘H with constant speed k/L. Since
r = r¢", a direct integration yields

v(0) =c+ikr/rL, ¢=0,

and the hodograph becomes a circle with center ¢ and radius
k/L. Comparison with the last formula in the first proof gives

c=iK/mlL,

and K = 0 comes out as a corollary.

All in all, the circular nature of the hodograph H is more
or less equivalent to the conservation of the Runge-Lenz
vector K.

<

Now turn the hodograph H clockwise around 0 by /2
and translate by ic = —K/mL. This gives a circle D with
center 0 and radius k/L. Since

kr/rL+K/mL=uvn/n = —iv,

the orbit £ intersects the line through 0 and kr/7L in a point
with tangent line £ perpendicular to the line through kr/7L
and —K/mlL. For example, the ellipse F with foci 0 and
—K/mL and major axis equal to &/L has this property, but
any scalar multiple AF with 4 > 0 has the property as well.
Because curves with the above property are uniquely
charcterized after an initial point on the curve is chosen, we
conclude that £ = AF for some 4 > 0. This proves Kepler’s
first law. A comparison with the picture in the previous
section shows that £ = AF with 4 = —L/H. Indeed, £ has
foci 0 and —AK/mL = K/mH = t, and its major axis is
equal to Ak/L = —k/H = 2a.

It is not clear to us whether Feynman was aware that he
was relying on the existence and uniqueness theorem for
differential equations. On page 164 of [7] the authors quote
Feynman: “Therefore, the solution to the problem is an
ellipse - or the other way around, really, is what I proved:
that the ellipse is a possible solution to the problem. And it
is this solution. So the orbits are ellipses.”

Apparently Feynman had trouble following Newton’s
proof of Kepler’s first law. On page 111 of [7] the authors
write, “In Feynman’s lecture, this is the point at which he
finds himself unable to follow Newton’s line of argument
any further, and so sets out to invent one of his own”.

Newton’s Proof of Kepler’s First Law

In this section we discuss a modern version of the original
proof by Newton of Kepler’s first law as given in [13]. The
proof starts with a nice general result.

THEOREM. Ler £ be a smooth closed curve bounding a
convex region containing two points ¢ and d. Let r(1) tra-
verse the curve £ counterclockwise in time t, such that the
areal speed with respect to the point ¢ is constant. Likewise
let x(s) traverse the curve £ counterclockwise in time s, such
that the areal speed with respect to the point d is equal to the
same constant.

Let L be the tangent line to £ at the point x, and let e be
the intersection point of the line M, which is parallel to L
through the point ¢, and the line through the pointsr and d.
Then the ratio of the two accelerations is given by

O T oo (=] [ —d?).
PRrROOF. Using the chain rule, we get
dr_dr di
ds dt ds
d’v _ d°r dr d*t

dt 2+
ds2  drr \ds

Because d’r/dt’ is proportional to ¢ —r and likewise
d*r/ds* is proportional to d — r, we see that

d’r d*r di\?* d?v dr d* /[/d\*® d°r
Fslilsl =) et oz /) s
ds?' " tdrr' T \ds dr " dr ds? “ldr?
dr\?
= (%) '|I'— e| :

ds
Since the curve & is traversed with equal areal speed
relative to the two points ¢ and d, we get

drdst

e = e = ] e —
dr = s

and therefore also

dt

%:\r—e|:|r—d\.

In turn this implies that

|d2r .|d2r _(dt 2 el
a2 Tar' T \ds el
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which proves the theorem.

We shall apply this theorem in case £ is an ellipse with
center ¢ and focus d. Assume that r(?) traverses the ellipse £
in harmonic motion, say

d’r
dt?

=c-r,

so the period for time ¢ is assumed to be 27.

Let b be the other focus of £, and let f be the inter-
section point of the line A, passing through b and parallel
to £, with the line through the points d and r. Then we
find

[d—e|=le—f],[f—r|=|b—1|,

which in turn implies that |e — r| is equal to the half major
axis a of the ellipse £. We conclude from the formula in the
previous theorem that the motion in time s along an ellipse
with constant areal speed with respect to a focus is only
possible in an attractive inverse-square force field. The
converse statement, that an inverse-square force field (for
negative energy H) indeed yields ellipses as orbits, follows
from existence and uniqueness theorems for solutions of
Newton’s equation F = ma and the previously mentioned
reasoning. This is Newton’s line of argument for proving
Kepler’s first law.

Conclusion
There exist other proofs of Kepler’s law of ellipses from a
higher viewpoint. One such proof by Arnold uses complex
analysis, and is somewhat reminiscent of Newton’s previ-
ously described proof by comparing harmonic motion
with motion under an 1//* force field [1]. Apparently
Kasner had discovered the same method already back in
1909 [12]. Another proof, by Moser, is also elegant, and
uses the language of symplectic geometry and canonical
transformations [8, 10, 11]. However our goal here has
been to present a proof that is as basic as possible, and at
the same time is well motivated in terms of Euclidean
geometry.

It is difficult to exaggerate the importance of the role
of the Principia Mathematica in the history of science.
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The year 1687 marks the birth of both modern mathe-
matical analysis and modern theoretical physics. As such,
the derivation of the Kepler laws from Newton’s law of
motion and law of universal gravitation is a rewarding
subject to teach to freshmen students. In fact, this was
the motivation for our work: we plan to teach this
material to high-school students in their final year. Of
course, the high-school students first need to become
acquainted with the basics of vector geometry and vector
calculus. But after this familiarity is achieved, nothing
else hinders the understanding of our proof of Kepler’s
law of ellipses.

For freshmen physics or mathematics students in
the university, who are already familiar with vector
calculus, our proof given here is fairly short and geo-
metrically well motivated. In our opinion, of all proofs,
this proof qualifies best to be discussed in an introduc-
tory course.
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