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Abstract
The lungs serve as the primary organ for respiration, facilitating the vital exchange of gases with the bloodstream. Given 
their perpetual exposure to external particulates and pathogens, they possess intricate protective barriers. Cellular adhe-
sion in the lungs is robustly maintained through tight junctions, adherens junctions, and desmosomes. Furthermore, the 
pulmonary system features a mucociliary clearance mechanism that synthesizes mucus and transports it to the outside. This 
mucus is enriched with chemical barriers like antimicrobial proteins and immunoglobulin A (IgA). Additionally, a com-
plex immunological network comprising epithelial cells, neural cells, and immune cells plays a pivotal role in pulmonary 
defense. A comprehensive understanding of these protective systems offers valuable insights into potential pathologies and 
their therapeutic interventions.
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Introduction

In humans, the respiratory tract is divided into the upper air-
ways (nasal cavity, pharynx, and larynx) and the lower air-
ways (trachea, bronchi, bronchioles, and alveoli). The lungs 
consist of the bronchi, bronchioles, and alveoli. The primary 
function of the respiratory tract is to efficiently change gas 
between inhaled air and the bloodstream [1]. The lungs 
are constantly exposed to various environmental elements, 
including pathogens, toxins, and allergens, that cause pulmo-
nary infections or inflammation. Therefore, the human body 
needs to defend itself against countless intruders through the 
respiratory tract. Thus, the respiratory system has developed 
highly sophisticated barrier functions through physiological 

and immunological mechanisms. Airway epithelial cells 
(AECs) were originally thought to serve only as a physical 
barrier. However, recent research has elucidated the inter-
play between AECs and immune cells, revealing that AECs 
initiate immune responses [2]. This complex network of 
epithelial and immune cells is involved in the pathogenesis 
of various diseases [3–8]. In fact, inhibitors of thymic stro-
mal lymphopoietin (TSLP), a cytokine mainly produced by 
AECs in the lungs, have emerged as therapeutic agents for 
asthma [9]. Furthermore, there is growing interest in the 
tripartite network of epithelium, immune, and neural cells 
[10–14]. In this review, we summarize how the lungs estab-
lish sophisticated barrier mechanisms.

Multi‑layered lung barriers

The barrier mechanism of the lung is, first, a continuous 
layer lining the respiratory tract composed of AECs, sepa-
rating the body from the environment. Second, mucociliary 
clearance (MCC), consisting of the production of mucus 
and the coordinated movement of cilia, is the defense 
mechanism. Third, antimicrobial peptides and proteins act 
as a chemical barrier. Fourth, various cells, including both 
immune and non-immune cells, work in a coordinated man-
ner to establish an immunological barrier. By summarizing 
the function of AECs and innate immune cells as barriers, 
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we will attempt to understand the defense mechanisms in the 
lung and their involvement in pulmonary diseases.

Physicochemical barriers

Cell adhesion

The respiratory epithelium begins as a pseudostratified 
columnar epithelium in the nasal cavity, trachea, and bron-
chi, transitioning into columnar and cuboidal cells in the 
bronchioles. Finally, it forms a thin single-cell alveolar epi-
thelium in the alveoli. The bronchial and alveolar epitheli-
ums are composed of different cell types (Fig. 1). Bronchial 
epithelial cells consist of basal cells, ciliated cells, goblet 
cells, club cells, tuft cells, neuroendocrine cells, and iono-
cytes [15]. Alveolar cells can be divided into alveolar type 
1 epithelial cells (AT1) and alveolar type 2 epithelial cells 
(AT2) [16].

The effectiveness of the physical barrier is a result of 
the coordinated interaction between neighboring epithelial 
cells through cell–cell adhesion complexes. The connection 
between adjacent airway epithelial cells is facilitated by 
apical tight junctions (TJs), adherens junctions (AJs), 
and desmosomes. They selectively regulate paracellular 

permeability, limit the transport of macromolecules, and 
maintain barrier integrity [17].

TJs are the uppermost intracellular junctions and play a 
pivotal role in regulating paracellular permeability. Using 
TJs, AECs can selectively control the passage of substances, 
particularly ions, water, and macromolecules. TJs comprise 
several essential transmembrane proteins of the claudin fam-
ily, occludin, tricellulin, and junctional adhesion molecules 
(JAMs). The claudin family mainly regulates tight junction 
permeability. Additionally, there are critical cytoplasmic 
proteins associated with TJs, including zonula occludens 
(ZO)-1, ZO-2, and ZO-3, which bind directly to the trans-
membrane proteins, including claudins and occludin, on one 
end and connect to actin cytoskeleton on the other end [18, 
19].

AJs are cadherin-catenin adhesion complexes located 
below TJs. AJs primarily provide mechanical strength by 
mediating adhesion between neighboring cells. In addition, 
AJs are involved in the establishment and maintenance 
of cell polarity in AECs, which is vital for proper tissue 
organization and function. The major component of AJs is 
transmembrane protein E-cadherin: its extracellular domain 
binds homotypically to adjacent cells, while the cytoplasmic 
domain binds to the catenins, linking to actin cytoskeleton. 
Through these networks, AJs regulate cell shape and 

Fig. 1  Bronchial and alveolar epithelial cell types and intercellular 
adhesion in the respiratory epithelium. The bronchial epithelium is 
composed of basal cells, ciliated cells, club cells, goblet cells, pulmo-
nary endocrine cells (PNECs), tuft cells, and ionocytes. Basal cells 
can differentiate into other AECs as well as self-renew. Ciliated cells 
play a major role in mucociliary clearance (MCC) by moving mucus. 
Club cells secrete anti-inflammatory proteins such as Scgb1a1. Gob-
let cells are critical for mucus production. Ionocytes express high lev-
els of CFTR, which is thought to play a role in maintaining the hydra-
tion and pH of the airway. Alveolar epithelium is composed of AT1 
cells and AT2 cells. AT1 cells are essential for gas exchange and bar-

rier function, while AT2 cells produce surfactant and GM-CSF. AT2 
cells also function as progenitor cells. Cell–cell adhesion complexes 
mainly consist of tight junctions (TJs), adherens junctions (AJs), and 
desmosomes. TJs are composed of occludin, claudin, and junctional 
adhesion molecules (JAMs), which adhere cell to cell, and each binds 
to zonula occludens (ZO) proteins intracellularly and then connects to 
actin fiber. TJs primarily regulate paracellular permeability. AJs are 
cadherin-catenin complexes located below TJs, linking to the actin 
cytoskeleton. AJs control cell morphology and kinetics. Desmosomes 
bind intermediate filaments intracellularly to consolidate mechanical 
stability
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movement and transmit mechanical forces between the cells 
[20].

Desmosomes are located around the midpoint of epi-
thelial cells, providing robust mechanical stability. Des-
mosomes consist of transmembrane proteins, including 
desmogleins and desmocollins, that interact with intracel-
lular proteins, such as desmoplakin, to anchor intermediate 
filaments. Hemidesmosomes, on the other hand, assist in 
anchoring the epithelial layer to the basal membrane, con-
tributing to tissue integrity [17].

The robust cell adhesion described above is crucial not 
only as a barrier function but also for maintaining respiratory 
homeostasis. On the contrary, the disruption of this critical 
function is implicated in numerous pathological conditions. 
It has been observed that E-cadherin and ZO-1 expression 
is decreased, and allergen permeability is increased in AECs 
of asthmatic patients [21, 22]. Additionally, cigarette smoke 
may contribute to the pathogenesis of chronic obstructive 
pulmonary disease (COPD) by impairing cell adhesion in 
AECs [23, 24]. However, whether the dysfunction of cell 
adhesion is the etiology or the result of diseases must be 
interpreted with caution.

Mucociliary clearance

In addition to the above barrier mechanism based mainly on 
cell adhesion, there is another defense mechanism mediated 
by mucus production in the respiratory system (Fig. 2). The 
airway epithelium, from nasal to bronchioles, is coated with 
mucus, which is a viscous and gel-like secretion. The charac-
teristic viscous, elastic, and adhesive properties of mucus are 
mainly attributed to mucins. Although many genes encoding 
mucins have been reported, MUC5AC and MUC5B are the 
predominant mucins in the airways [25]. Through its adhe-
sive nature, mucus captures inhaled allergens, pathogens, 
and harmful substances, preventing these particles from 
reaching deeper into the lungs. Furthermore, this mucus 
layer is transported in a coordinated manner towards the oral 
cavity to facilitate the removal of these captured particles 
from the body, a process known as mucociliary clearance 
(MCC). The continuous and synchronized beating of the 
ciliated cells mediates this movement.

MUC5AC is primarily found in the proximal airways, 
including the trachea, bronchi, and bronchioles, but not in 
the distal bronchioles. It is predominantly synthesized by 
goblet cells. MUC5B is the dominant mucin in the super-
ficial epithelium and glands across the respiratory tract, 
including the distal airways. Submucosal glands (SMGs), 
which are beneath the cartilaginous airways of the human 
lung, primarily secrete MUC5B along with a lesser amount 
of MUC5AC. These glands are composed of serous cells, 
secretory cells, myoepithelial cells, and goblet cells. SMGs 
are essential secretory structures that contribute to airway 

defense, mucus production, and antimicrobial protection 
in the lungs. Their dysfunction can have significant impli-
cations for lung health and contribute to the pathogenesis 
of respiratory diseases. In healthy individuals, MUC5B is 
more prevalent than MUC5AC, and maintaining a proper 
balance between MUC5AC and MUC5B is crucial for effec-
tive MCC. Pathological increases in MUC5AC have been 
linked to the onset, progression, and heightened exacerba-
tion risk of COPD [26]. Although controversial results have 
been reported on the increase or decrease of MUC5AC and 
MUC5B due to various methods of assessing mucin, there 
is no doubt that the pathophysiology of cystic fibrosis (CF) 
is related to the viscous mucus secreted from the epithelial 
surface of the respiratory and intestinal tract [27, 28].

Interestingly, it has been reported that the ratio of 
MUC5AC to MUC5B is altered in asthmatic patients with 
increased production of MUC5AC [29]. Furthermore, the 
absence of MUC5B may result in impaired mucociliary 
clearance by persistent inflammation [30]. These findings 
underscore the close relationship between the function of 
the mucus layer and various pulmonary diseases.

The periciliary layer (PCL), distinct from the overlaying 
mucus layer, is a thin, watery layer surrounding the cilia. 
Composed of a low-viscosity fluid containing membrane-
associated mucins (MUC1, MUC4, and MUC16) and other 
molecules, including glycolipids, the PCL allows unimpeded 
ciliary movement. This feature is critical for propelling the 

Fig. 2  Mucus-mediated defense mechanisms. Mucus is mainly pro-
duced by secretory cells such as goblet cells and club cells. Submu-
cosal glands also contribute substantially to the production of mucus. 
Its sticky nature prevents pathogens from invading the airway epithe-
lium. Then, ciliated cells move mucus to extrude the captured foreign 
substances out of the body. This coordinated mechanism of mucus 
and epithelium is mucociliary clearance (MCC). In addition, mucus 
contains antimicrobial peptides and IgA and functions as a chemical 
barrier
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mucus layer and trapped particles out of the respiratory sys-
tem, highlighting its essential role in effective MCC [31]. 
The significance of ciliary movement is apparent when con-
sidering primary ciliary dyskinesia (PCD), a genetic disor-
der characterized by chronic respiratory tract infections and 
abnormal ciliary structure and function. In PCD, these cilia 
are either structurally abnormal or paralyzed, leading to a 
buildup of mucus and bacteria, resulting in frequent infec-
tions of the lungs, ears, sinuses, and throat. Treatment typi-
cally focuses on managing symptoms and preventing lung 
damage, often requiring regular airway clearance, antibiotics 
for infections, and careful monitoring [32].

Chemical barriers

In addition to mucins, the mucus contains water, salts, lipids, 
immunoglobulin A (IgA), and antimicrobial proteins. These 
antimicrobial proteins, including defensin, lysosome, and 
lactoferrin, directly neutralize or destroy bacteria, viruses, 
and fungi by disrupting microbial cell membranes or inter-
fering with essential microbial processes. Beyond their 
direct antimicrobial functions, they modulate the immune 
responses, ensuring a balance between effective defense and 
tissue protection. Moreover, IgA also provides a multifac-
eted defense, balancing effective protection against patho-
gens [33]. IgA is an antibody class present predominantly 
on the surfaces of mucous tissues, including the lungs. It 
exists in its secretory form, secretory IgA (sIgA), whose 
polymeric structure, often dimeric, enhances its avidity and 
functional capacity in mucus. Produced by tissue-resident 
memory B cells, plasmablasts, and plasma cells within the 
respiratory mucosa, IgA is transported across epithelial cells 
into the mucus by the polymeric immunoglobulin receptor 
(pIgR), predominantly expressed on secretory cells [34–36]. 
Dimeric IgA (dIgA) binds to pIgR on the basolateral surface 
of airway epithelial cells. Following binding, the IgA-pIgR 
complex is internalized through endocytosis and transported 
across the epithelial cell to the apical surface in a process 
known as transcytosis. During transcytosis, pIgR undergoes 
proteolytic cleavage, resulting in the formation of the secre-
tory component (SC). Upon release into the mucus layer, SC 
remains bound to dIgA, thus forming sIgA. Once bound to 
pathogens, IgA can neutralize them, preventing them from 
entering cells. Additionally, IgA has anti-inflammatory prop-
erties, ensuring that immune responses do not inadvertently 
damage lung tissue [37].

Associations between sIgA and various respiratory 
diseases, such as COPD, asthma, and COVID-19, have been 
observed. Decreased expression of pIgR and degradation 
of sIgA may lead to loss of sIgA in COPD small airways 
[36]. On the other hand, patients with severe COPD have 
increased IgA expression in lung lymphoid follicles [38]. 
In asthma patients, the expression of pIgR in bronchial 

epithelial cells is reduced due to IL-4Rα-mediated signaling 
[39]. Recent findings indicate that IgA autoantibodies 
targeting pulmonary surfactant B and C in severe COVID-19 
patients may contribute to respiratory failure, suggesting that 
IgA acts not only protectively but also pathologically [40]. 
Elucidating the precise role of IgA in the airways will be 
vital to understanding the pathogenesis of many respiratory 
diseases.

Airway epithelial cell barriers

AECs play a critical role in establishing the physiological 
barrier in the lungs. Recent advances in analytical technol-
ogies have revealed that AECs are a more heterogeneous 
population and constitute a more complex network than pre-
viously assumed [41–45]. Here, we summarize the charac-
teristics of subpopulations of AECs.

Basal cells

Basal cells exhibit a columnar or cuboidal shape and are 
firmly anchored to the basement membrane through spe-
cialized structures known as hemidesmosomes. They can 
be identified based on the expression of p63 and keratin 5 
(KRT5). Functionally, they are stem cell–like and can self-
renew and differentiate into various epithelial cell subtypes, 
playing a crucial role in maintaining the integrity of the epi-
thelial barrier and facilitating repair and regeneration after 
injury.

Recent studies have suggested that basal cell abnormali-
ties may contribute to the development of several respira-
tory diseases. The comparison of RNA-seq data of basal 
cells between smokers and nonsmokers showed that COPD 
risk genes identified in GWAS are upregulated by smoking 
[46]. Other findings suggest that sensing apoptotic cells by 
a TAM receptor tyrosine kinase Axl on basal cells is impor-
tant for tracheal basal cell expansion, cell cycle reentry, and 
symmetric cell division and is involved in the pathogenesis 
of COPD [47]. Meanwhile, single-cell RNA sequencing 
(scRNA-seq) analysis of lungs from IPF patients identified 
an aberrant basal cell population that co-expressed basal epi-
thelial, mesenchymal, senescence, and developmental mark-
ers [48]. Another group used single-cell cloning technology 
to generate a library of basal stem cells from lungs derived 
from IPF patients [49]. Among these clones, a clone that 
transformed normal lung fibroblasts into pathogenic myofi-
broblasts in vitro was identified. Interestingly, this clone 
resembled the genetic profile of the abnormal basal cell 
population identified by scRNA-seq described above [48, 
49]. The relationship between basal cells and allergic pathol-
ogy has also been the focus of interest. Based on scRNA-seq 
data of airway epithelial cells derived from patients with 



Seminars in Immunopathology 

chronic rhinosinusitis or asthma, two populations of basal 
cells with different gene expressions have been reported 
[50, 51]. These two populations correspond to differentia-
tion stages, with the less mature population characterized by 
high expression of TP63. Furthermore, IL-4 and IL-13 have 
been shown to regulate basal cell stem function in vitro [50]. 
In addition, because of their progenitor function, basal cells 
have attracted attention for their application in regenerative 
medicine [52, 53].

Ciliated cells

Ciliated cells are abundant in the large and medium airways 
and are crucial in moving mucus, which traps debris and 
pathogens, out of the airways. Each ciliated cell has numer-
ous cilia that extend into the mucus. These cilia are anchored 
to the cytoskeleton and move in a coordinated manner. They 
are terminally differentiated and can originate from secre-
tory cells or basal cells. Notch signaling pathways regulate 
the differentiation of ciliated cells. When Notch signaling 
is inhibited, it promotes the differentiation of ciliated cells 
[54]. Also, forkhead box protein J1 (FOXJ1) is a master reg-
ulator of ciliogenesis. Its expression is essential for the dif-
ferentiation of ciliated cells and the formation of motile cilia. 
Of clinical importance, ciliated cells have been reported to 
be involved in viral infections and asthma [6, 8, 55]. Rhino-
virus C (RV-C), the predominant cause of the common cold, 
is infectious via cadherin-related family member 3 (CDHR3) 
in the host [56]. The expression of CDHR3 is shown to be 
mainly restricted to ciliated cells [57]. Moreover, CDHR3 
has been identified as a susceptibility gene for asthma, espe-
cially in young children [58]. These findings suggest a strong 
association between rhinovirus infections, CDHR3, and the 
development of asthma [55, 58].

Club cells

Club cells, formerly known as Clara cells, are distinctive 
dome-shaped cubical cells found in the small airways and 
characterized by the expression of secretoglobin family 
1A member 1 (Scgb1a1), also known as Clara cell secre-
tory protein (CCSP). Their differentiation depends on the 
transforming growth factor-b receptor Alk5 (activin recep-
tor-like kinase 5). They secrete a variety of substances, 
the most notable being Scgb1a1. This protein has anti-
inflammatory and immunosuppressive properties by sup-
pressing various pro-inflammatory cytokines [59]. In an 
ALI (air–liquid interface) culture using airway epithelial 
cells derived from COPD patients, the supplementation of 
Scgb1a1 was shown to regulate IL-8 release by cigarette 
smoke extract [60]. Immunostaining for Scgb1a1 in the 
airways was reduced in COPD patients and decreased with 
increasing severity of COPD, suggesting the association 

between club cells and the pathogenesis of COPD [61]. 
It has also been reported that Scgb1a1 in bronchoalveo-
lar lavage (BAL) is decreased in asthma patients [62]. Of 
interest, low mRNA expression levels of Scgb1a1 in air-
way epithelial cell brushings in asthmatic patients have 
been shown to correlate with poor clinical outcomes [63]. 
In addition, club cells possess the ability to differentiate 
into both ciliated cells and goblet cells. Moreover, in cases 
where basal cells are injured or lost, club cells can dif-
ferentiate into basal cells [64]. Thus, because of the high 
plasticity of lung epithelial cells, it was difficult to identify 
the origin cell of the tumor. However, using a lineage-
tracking mouse model and scRNA-seq, it has been shown 
that the causative cells of lung adenocarcinoma are club 
cells and AT2 cells [65].

Goblet cells

Goblet cells are characterized by their densely packed mucin 
granules and surfactant proteins. Their primary function is 
to produce and secrete mucus. In particular, MUC5AC is 
mainly synthesized by goblet cells. With ciliated cells, they 
play a crucial role in facilitating effective MCC. Goblet 
cells are derived from club cells through the activation of 
SAM pointed domain containing ETS transcription factor 
(SPDEF) and forkhead box A3 (FOXA3). In several lung 
diseases, such as asthma and COPD, there is an increase in 
the number of goblet cells, a condition known as goblet cell 
hyperplasia [66, 67]. This can cause coughing and wheezing 
due to excessive mucus production. In particular, allergic 
inflammation and goblet cells are closely related, and IL-13 
induces goblet cell hyperplasia and metaplasia [68, 69].

Pulmonary neuroendocrine cells

Pulmonary neuroendocrine cells (PNECs) can be found 
either as individual isolated cells or organized in small 
clusters known as neuroendocrine bodies (NEBs) throughout 
the conducting airways, especially near the respiratory tree 
branch. While not being neurons themselves, PNECs are 
innervated by both the sympathetic and parasympathetic 
nervous systems. PNECs can monitor airway oxygen and 
respiratory status and quickly release various substances, 
including neurotransmitters such as gamma-aminobutyric 
acid (GABA), calcitonin gene–related peptide (CGRP), 
bombesin, and serotonin [70]. These neurotransmitters 
produced by PNECs have been reported to induce goblet 
cell hyperplasia and ILC2 activation [14, 71]. Thus, PNECs 
are considered to be important in the coordination of the 
epithelial, immune, and nervous systems, facilitating 
respiratory homeostasis.
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Tuft cells

Tuft cells, also known as brush cells, are expressed in vari-
ous tissues, including the respiratory and gastrointestinal 
tracts. Their distinctive morphology, characterized by a 
tuft of microvilli extending into the mucosal lumen, ena-
bles them to sense the extracellular environment. They can 
detect changes in the local chemical composition and trans-
mit signals to nearby cells [72, 73]. While the exact function 
of tuft cells in the lung is still being elucidated, it has been 
reported that they can release IL-25 and cysteinyl leukot-
rienes (CysLTs), which synergistically contribute to type 2 
inflammation in the lung [74].

Ionocytes

Recently, pulmonary ionocytes were identified as a rare 
cell type using scRNA-seq of human bronchial epithelial 
cells and mouse tracheal epithelial cells [41, 45]. Ionocytes 
co-express forkhead box l1 (FOXL1), multiple subunits of 
the vacuolar-type  H+-ATPase (V-ATPase), and cystic fibro-
sis transmembrane conductance regulator (CFTR). One of 
the most notable characteristics is their high expression of 
CFTR, which encodes an anion channel critical for maintain-
ing the hydration and pH of the airway surface liquid. Thus, 
they may play an essential role in MCC by cooperating with 
ciliated cells and secretory cells. Moreover, because muta-
tions in the CFTR gene are responsible for CF, ionocytes 
have attracted attention as a therapeutic target for CF [75]. 
However, it has been recently suggested that the function of 
CFTR in human airways is mainly carried out by secretory 
cells, as ionocytes are a small population [76]. On the other 
hand, the regulatory function of CFTR-mediated chloride 
differs between cell types, with secretory cells involved in 
the secretion of chloride and ionocytes in absorption [77]. 
Analysis using the transgenic ferret models suggests that 
there are at least three subtypes of ionocytes [78]. Further 
analysis of ionocytes is expected to clarify the pathogenesis 
of CF and other airway diseases.

Alveolar cells

The alveolar epithelium consists of two types of epithelial 
cells: alveolar type1 (AT1) cells and alveolar type 2 (AT2) 
cells [16]. AT1 cells are highly specialized for gas exchange 
and barrier function, characterized by their flat, thin, and 
squamous morphology. This distinctive shape allows AT1 
cells to efficiently cover about 95% of the alveolar surface. 
AT1 cells, together with capillary endothelium, form the 
alveolar-capillary barrier, otherwise known as the air-blood 
barrier. This incredibly thin barrier is crucial not only for 

efficient gas exchange between the bloodstream carbon diox-
ide and airborne oxygen but also for separating the blood-
stream from foreign pathogens.

AT2 cells are cuboidal cells with apical microvilli and 
lamellar bodies. Their most important physiological role is 
the synthesis and secretion of pulmonary surfactant. Pulmo-
nary surfactant reduces surface tension within the alveoli, 
preventing alveolar collapse during exhalation and preserv-
ing alveolar structure for efficient breathing. Besides sur-
factants, AT2 cells produce various cytokines, chemokines, 
growth factors, and antimicrobial peptides, which play roles 
in inflammation, immune responses, and tissue repair.

In addition, AT2 cells serve as progenitor cells for alveo-
lar epithelium. When the alveolar epithelium is injured, AT2 
cells can undergo self-renewal and differentiate into AT1 
cells, contributing to tissue repair and regeneration [79]. 
Wnt signaling may be involved in maintaining the stem cell 
properties of AT2 cells [80–82]. Furthermore, their regen-
erative potential is likely to inform the development of novel 
therapies for COPD [83] and pulmonary fibrosis [84, 85].

Two recent reports of scRNA-seq analyses of human dis-
tal airways have identified AT0 cells and respiratory airway 
secretory (RAS) cells. AT0 cells, originated from AT2 cells, 
can differentiate into AT1 cells or terminal and respiratory 
bronchiole secretory cells [43]. In contrast, RAS cells can 
unidirectional differentiate into AT2 cells through Notch and 
Wnt signaling [86]. These cells, which are capable of differ-
entiation, may exhibit phenotypic alterations with age or in 
response to pathological conditions; thereby, their function 
and pathology need to be analyzed under a broader range 
of conditions.

Immunological barriers by pattern 
recognition receptors

The first line of defense in the lungs is not only the physico-
chemical barriers but also the innate immune system. The 
innate immune system provides immediate, non-specific 
responses to threats. Pattern recognition receptors (PRRs) 
on innate immune cells detect conserved structures on 
pathogens, namely pathogen-associated molecular patterns 
(PAMPs). PRRs also recognize damage-associated molecu-
lar patterns (DAMPs) from stressed or damaged host cells. 
Upon recognition, these receptors initiate various immune 
responses, including inflammation, phagocytosis, and the 
production of cytokines and chemokines, thereby induc-
ing the adaptive immune system. Common types of PRRs 
include Toll-like receptors (TLRs), NOD-like receptors 
(NLRs), retinoic acid-inducible gene-I (RIG-I)–like recep-
tors (RLRs), and C-type lectin receptors (CLRs). Notably, 
PRRs are expressed in AECs as well as innate immune cells 
[87].
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TLRs

TLRs, which are membrane-bound receptors, can be 
found on the cell surface or in intracellular vesicles like 
endosomes. In humans, there are ten distinct TLRs (TLR1 
to TLR10), each recognizing specific PAMPs. TLR1, TLR2, 
TLR4, TLR5, TLR6, and TLR10 are localized to the plasm 
membrane, where they can recognize and respond to extra-
cellular pathogens. For instance, TLR4 recognizes lipopoly-
saccharide (LPS) from gram-negative bacteria, and TLR5 
detects bacterial flagellin. On the other hand, TLR3, TLR7, 
TLR8, and TLR9 are localized in endosomes, where they 
can detect intracellular nucleic acids. TLR3 senses double-
stranded RNA, often associated with viral infections. TLRs 
are expressed in a wide range of cell types, enabling a coor-
dinated and broad response to potential threats [88–90].

NLRs

NLRs are a group of cytoplasmic PRRs containing three 
domains: a C-terminal leucine-rich repeat (LRR) domain, 
a nucleotide-binding domain (NBD), and an N-terminal 
effector domain. The LRR domain is involved in ligand 
recognition. NBD is highly conserved among NLRs and is 
crucial in forming NLR complexes or inflammasomes. The 
N-terminal effector domain varies among different NLR 
family members and determines the downstream signaling 
pathway and interactions with other proteins. There are 
different types of effector domains, including caspase and 
activation and recruitment domain (CARD), pyrin domain 
(PYD), baculoviral inhibitor of apoptosis repeat (BIR) 
domain, and transactivator domain (AD). When a ligand 
binds to the LRR domain, it induces a conformational 
change in the NLR. This change leads to the exposure or 
activation of the NBD, initiating the formation of protein 
complexes called inflammasomes. The formation of 
inflammasomes results in the activation of caspase-1 and 
the cleavage of inactive precursor forms of IL-1β and IL-18 
into their active forms [91].

RLRs

RLRs, which are a class of cytoplasmic PRRs, consist of 
three members: RIG-I, melanoma differentiation-associated 
gene 5 (MDA5), and laboratory of genetics and physiology 
2 (LGP-2) [92]. RLRs contain DExD/H box RNA helicase 
domains that are central to their RNA sensing function. 
RIG-I recognizes short double-stranded RNA (dsRNA) with 
5′-triphosphates, often found in RNA viruses, while MDA5 
detects longer dsRNA. When RIG-I or MDA5 binds to RNA 
ligands, they undergo conformational changes that expose 
their N-terminal CARD, initiating downstream signaling 
through interactions with adaptor proteins like mitochondrial 

antiviral signaling (MAVS). This signaling cascade leads to 
the production of antiviral cytokines and the activation of 
immune responses. On the contrary, LGP-2 lacks the CARD 
and cannot directly initiate antiviral signaling but acts as a 
regulatory protein that modulates the signaling of RIG-I and 
MDA5 in a context-dependent manner.

CLRs

CLRs are numerous and include both membrane-bound 
and soluble receptors. They recognize carbohydrate struc-
tures, primarily on pathogens, through their carbohydrate 
recognition domains (CRDs). Membrane-bound CLRs are 
mainly found on myeloid cells, including dendritic cells and 
macrophages. Soluble CLRs, like mannose-binding lectin 
(MBL), circulate in the extracellular environment and can 
activate the complement system. Upon ligand binding, CLRs 
lead to immune responses like phagocytosis and cytokine 
production [89, 93]. Some CLRs, such as Dectin-1, sense 
specific pathogens like fungi [94].

Interactions of epithelial and immune cells 
in the lung barrier

In recent years, deeper analysis of cellular networks, such as 
crosstalk between epithelial and immune cells, has become 
feasible. A contributing factor to this advancement is the 
progress in transcriptome technologies at the single-cell 
level, exemplified by scRNA-seq. Furthermore, initially, 
single-cell transcriptomes had difficulties in data integra-
tion and interpretation due to problems such as batch effect, 
but these problems are being overcome due to large datasets, 
powerful computational resources, and advances in learning 
algorithms.

Single-cell transcriptomics offers significant advantages, 
including the identification of rare cell populations like iono-
cytes and the estimation of cell differentiation processes 
through trajectory analysis [41, 45]. Furthermore, these tech-
niques have enabled the inference of intercellular networks 
by utilizing information on ligand-receptor interactions [43, 
86]. These advancements are being applied to a variety of 
respiratory diseases.

Specifically, scRNA-seq conducted on nasopharyn-
geal and bronchial samples collected from patients with 
moderate to severe COVID-19 has been reported [95]. 
In these patients, secretory cells exhibited significantly 
higher expression of chemokines such as CXCL1, CXCL3, 
CXCL6, and CXCL17 compared to controls, suggesting an 
enhancement in the mobilization of neutrophils, T cells, 
and mast cells. Furthermore, in severe cases compared to 
moderate, there was a stronger interaction between epi-
thelial and immune cells, with immune cells, including 
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inflammatory macrophages, being more activated. Thus, 
this interaction may contribute to the exacerbation of 
infection. Importantly, infected epithelial cells showed 
upregulation of the SARS-CoV-2 entry receptor ACE2, 
which was associated with interferon signaling in immune 
cells. These findings suggest that intercellular links are 
important not only in the severity of infection but also in 
the establishment of infection.

Utilizing a human model of localized asthma exacerba-
tion by bronchoscopic segmental allergen challenge, a com-
prehensive analysis of the lower airway mucosa of allergic 
asthmatics and allergic non-asthmatics using scRNA-seq 
has been conducted [96]. In response to allergens, asth-
matic airway epithelium was highly dynamically upregulat-
ing genes involved in matrix degradation, mucus metapla-
sia, and glycolysis while failing to induce the injury-repair 
and antioxidant pathways observed in controls. The study 
revealed a Th2 cell-mononuclear phagocyte-basal cell inter-
actome unique to asthmatics, driven by interactions between 
TNF family members and type 2 cytokines from Th2 cells. 
This pathogenic cellular network in asthmatics may over-
ride protective injury-repair responses and drive asthma 
pathobiology.

In addition to the single-cell transcriptome, the advance-
ment of three-dimensional (3D) culture systems, represented by 
organoids, experimental models that closely recapitulate human 
physiology, allow further analysis in a coordinated manner [43, 
86, 97]. Fetal lung organoids derived from fetal lung bud tips 
provide significant insights into lung development. In humans, 
SOX2 and SOX9 have been identified as progenitor markers, 
and their maintenance requires EGF, FGF, and WNT signaling, 
as well as the inhibition of BMP and TGF-β [98]. The inter-
action between epithelium and immune cells was also shown 
to play an important role in lung development using fetal lung 
organoids [99]. In immunohistochemistry of fetal lungs, immune 
cells were found surrounding lung progenitor cells. Therefore, 
the expression of cytokine receptors in progenitor cells was 
evaluated, and candidates for interacting cytokines between 
epithelial and immune cells were identified. Among various 
cytokines, the supplementation of IL-1β in fetal lung organoids 
resulted in decreased expression of SOX9 and increased expres-
sion of TP63. These findings suggest that myeloid cells, wide-
spread throughout the lungs, produce IL-1β during early lung 
development, which induces epithelial stem cell differentiation  
into mature basal cells.

Besides organoids, precision-cut lung slices (PCLS) have 
emerged in respiratory research as a 3D culture method 
[100]. PCLS are live tissue preparations that encompass all 
resident cell types, including smooth muscle cells, epithe-
lial cells, and fibroblasts. These cells maintain intercellular 
interactions and cell–matrix relationships within the com-
plex structure of the lung, making them suitable for analysis 
of cellular networks through single-cell transcriptomics.

Recently, the utilization of human PCLS (hPCLS), sin-
gle-cell transcriptome analysis, and deep learning-based 
query-to-reference mapping has been reported as a power-
ful research platform for elucidating the pathogenesis of 
lung fibrosis and facilitating drug development [101]. In 
this study, fibrosis was induced in hPCLS from nonfibrotic 
human lung tissue by adding a pro-fibrotic cytokine mix, 
and the scRNA-seq data obtained from the fibrosis-induced 
hPCLS were merged with single-cell data from a cohort of 
pulmonary fibrosis patients. Furthermore, single-cell archi-
tectural surgery (scArches), which is a deep learning strategy 
for mapping single-cell datasets to a reference atlas, was 
employed to map the obtained data to the Human Lung Cell 
Atlas, thereby validating an ex vivo model of fibrosis. Addi-
tionally, analyses of cell morphology and intercellular net-
works were conducted through micro-CT staging of hPCLS 
and patient tissues. The pathways of fibrogenesis and healing 
processes were evaluated by administering antifibrotic drugs 
to fibrosis-induced hPCLS. As demonstrated by this cut-
ting-edge research, the analysis of cellular networks in lung 
physiology and pathogenesis is expected to accelerate with 
the advancements in transcriptome data analysis, human-like 
experimental systems, and artificial intelligence technology.

Immunological barriers by myeloid cells

The lungs contain numerous immune cells that maintain 
respiratory homeostasis. However, the immune system is 
not solely composed of immune cells but also interacts with 
non-immune cells such as AECs and neural cells. This sec-
tion summarizes the subtypes of innate immune cells in the 
lung, along with their characteristics and contribution to the 
defense mechanisms.

Alveolar macrophages

Alveolar macrophages (AMs) are the most abundant immune 
cells in the airway lumen and are crucial components of the 
respiratory innate immune systems [102]. They express the 
high levels of CD11c, Siglec-F, and CD169 and lack CD11b 
[103]. GM-CSF is required for the differentiation and mat-
uration of AMs. Recently, it has been reported that AT2 
cell–derived GM-CSF plays a nonredundant and critical role 
in establishing the postnatal AM population and maintain-
ing AMs in adult lungs, emphasizing a critical link between 
epithelial and immune cells [104]. AMs have the phagocytic 
function to clear inhaled pathogens, dead cells, and foreign 
airborne particles, maintaining the health of the alveolar 
environment. In addition, they can also produce pro-inflam-
matory cytokines via PRRs and induce adaptive immune 
responses. Concerning these pro-inflammatory properties, 
paralysis of immune function due to poor phagocytosis  
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of AMs has been reported following severe infections. 
Increased SIRP1a expression on AMs during the early stages 
of paralysis directly impairs phagocytosis, and SIRP1a acts 
as a tyrosine kinase receptor, triggering the induction of an 
immunosuppressive microenvironment [105].

On the other hand, they can produce anti-inflammatory 
molecules, such as IL-10 and TGF-β, to prevent excessive 
inflammation and tissue damage. A subset of AMs, forming 
connexin 43 (CX43)–containing gap junction channels with 
the alveolar epithelium, communicates immunosuppressive 
signals to reduce lipopolysaccharide-induced lung inflam-
mation [106]. Besides immune regulation, they contribute to 
the homeostasis of pulmonary surfactants [102]. Pulmonary 
alveolar proteinosis (PAP) is a disease characterized by the 
abnormal accumulation of surfactants in the alveoli, leading 
to respiratory failure. Autoimmune PAP, which constitutes 
the majority of PAP, is initiated by the presence of anti-GM-
CSF autoantibodies in patients’ sera [107]. These antibod-
ies result in the functional impairment of AMs, which is 
the underlying etiology of PAP [108]. Notably, it has been 
reported that the administration of GM-CSF can effectively 
ameliorate respiratory conditions in patients with PAP [109].

Interstitial macrophages

Interstitial macrophages (IMs) are a distinct population of 
macrophages located in the lung interstitium or parenchyma. 
They express high levels of CD11b but lack Siglec-F, which 
distinguishes them from AMs [103]. While they also have 
phagocytic functions, IMs are more involved in modulating 
immune responses and tissue repair. In addition, IMs have 
been shown to produce IL-10 spontaneously [110].

Eosinophils

Eosinophils are involved in immune responses to parasitic, 
bacterial, and viral infections, as well as in the maintenance 
of homeostasis. In response to stimuli, they release granule 
proteins, including cytotoxic major basic protein (MBP), 
eosinophil cationic protein (ECP), eosinophil peroxidase 
(EPX), Galectin-10, lipid mediators, and many cytokines. 
These granule proteins help eliminate parasites, bacteria, 
and viruses, while excessive release may cause damage to 
surrounding tissue and cells. For example, MBP promotes 
histamine release from mast cells and triggers a cascade 
of type 2 inflammation. Furthermore, eosinophils could 
secrete type 2 cytokines, such as IL-4, IL-9, and IL-13. 
Thus, eosinophils are hallmark cells in allergic asthma and 
other allergic lung diseases, contributing to bronchocon-
striction, mucus production, and inflammation [111, 112]. 
Eosinophil-targeted treatments are crucial for managing 
eosinophilic asthma and similar conditions. Corticosteroids 
are commonly used, either inhaled or systemic, to counter 

eosinophilic inflammation. In addition, biologics have been 
developed to reduce eosinophils [113]: mepolizumab and 
reslizumab target IL-5, suppressing eosinophil development 
and activity, whereas benralizumab specifically binds to the 
IL-5 receptor to kill eosinophils by antibody-dependent cell-
mediated cytotoxicity. Dupilumab inhibits IL-4 and IL-13, 
both essential for eosinophils to accumulate in inflamed 
tissues.

Moreover, recent findings have indicated that eosino-
phils are not a homogenous population [114]. In the murine 
lung, resident eosinophils (rEos), characterized by Siglec-
FintCD62L+CD101lo, are present at a steady state. However, 
an additional subset of eosinophils as inflammatory eosino-
phils (iEos), characterized by Siglec-FhiCD62L−CD101hi, 
emerges alongside rEos during allergic inflammation caused 
by allergen inhalation. Importantly, iEos and rEos possess 
different functional profiles: rEos can inhibit allergen-loaded 
dendritic cells’ maturation and pro-Th2 function, whereas 
iEos promotes allergic inflammation [115]. Identifying and 
understanding specific eosinophil subtypes can lead to the 
development of more targeted therapies, minimizing side 
effects and improving treatment efficacy.

Neutrophils

Neutrophils constitute a pivotal component of the innate 
immune system, eliminating pathogens, primarily bac-
teria and fungi. Neutrophils recognize invading patho-
gens and execute their antimicrobial defense functions 
through phagocytosis and the release of diverse cytokines 
and chemokines, thereby orchestrating the recruitment of 
inflammatory immune cells [116]. Moreover, neutrophils 
form neutrophil extracellular traps (NETs), which are com-
posed of DNA, histones, and antimicrobial proteins. NETs 
serve as a physical barrier to trap and kill pathogens. After 
the initial response, neutrophils undergo apoptosis and are 
also removed by macrophages to limit excessive inflamma-
tion. Thus, while neutrophils play an indispensable role in 
immune defense, they can be implicated in the pathogen-
esis of various diseases. For instance, type 2–low asthma 
is associated with pronounced neutrophil infiltration [117]. 
Furthermore, their dysregulated responses can contribute 
to the development of COPD and acute respiratory distress 
syndrome (ARDS) [118]. Therefore, the appropriate regula-
tion of neutrophil activity is essential for maintaining lung 
homeostasis.

Dendritic cells

Dendritic cells (DCs) play a crucial role in the immune 
system by capturing inhaled pathogens and allergens and 
subsequently migrating to lymph nodes, where they present 
intracellularly processed antigens to antigen-specific T cells. 
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These DCs encompass diverse subsets that exhibit special-
ized functions based on their anatomical localization and 
their roles in pathogen recognition, thereby contributing to 
various immune responses. While the categorization of DC 
subsets in the lung remains a subject of debate, they can 
generally be classified into two major categories: plasma-
cytoid DCs (pDCs) and conventional DCs (cDCs), with the 
latter further subdivided into cDC1 and cDC2 [119]. pDCs 
primarily serve as producers of type 1 interferons, primar-
ily upon TLR7 and TLR9 stimulation, which are vital in 
combating viral infections. However, the pathogenicity of 
pDCs deserves attention, as type 1 interferons have also been 
implicated in the pathogenesis of autoimmune diseases such 
as systemic lupus erythematosus and psoriasis [120, 121].

Distinct markers differentiate cDC1 from cDC2, with 
the former expressing CD103 and the latter expressing 
CD11b. During viral infections, cDC1s assume a critical 
role in the induction of effector  CD8+ T cells within the 
lung by facilitating cross-presentation via MHC class I 
molecules. Conversely, cDC2s are pivotal in generating 
central memory  CD8+ T cells. In the context of asthma 
pathogenesis, cDC1s contribute to the suppression of Th2 
and Th17 immune responses through IL-12 production, 
while cDC2s promote Th2 and Th17 immune responses in 
response to challenges with house dust mites (HDM) via 
receptor engagement, such as Dectin-1 [122]. In summary, 
dendritic cells in the lung encompass various subsets that 
perform specialized functions, impacting immune responses 
to pathogens/allergens and their involvement in disease 
pathogenesis, thereby highlighting their significance in 
pulmonary immunology [123, 124].

Immunological barriers by innate lymphoid 
cells

Innate lymphoid cells (ILCs) are a group of innate immune 
cells that are primarily involved in defending the body 
against infections, particularly at mucosal surfaces like the 
lungs, gut, and skin. ILCs lack specific antigen-specific 
receptors like T cell receptors (TCRs) or B cell receptors 
(BCRs), leading to their ability to respond quickly to stimuli, 
particularly cytokines. ILCs can be classified into three dis-
tinct functional groups, namely ILC1s, ILC2s, and ILC3, 
similar to the classification of  CD4+ T cells, with each cor-
responding to Th1, Th2, and Th17 cells, respectively [125].

ILC1s

ILC1s are characterized by the expression of T-box tran-
scription factor 21 and the production of IFN-γ, a key 
cytokine involved in the defense against intracellular patho-
gens. They share some functional similarities with Th1 

cells, which also produce IFN-γ. In mice infected with the 
H1N1 influenza virus, ILC1s are activated and respond 
quickly to release IFN-γ and TNF-α [126]. Additionally, 
during the Sendai virus infection, ILC1s were identified as 
the primary source of IFN-γ production in the early phase 
[127]. Although the roles of ILC1s in the lung are not fully 
understood, the increased percentage of ILC1s in the blood 
of COPD patients suggests that ILC1s are involved in the 
pathogenesis of COPD [128].

ILC2s

The master regulator of ILC2s is a transcription factor 
called GATA-binding protein-3 (GATA3), similar to Th2 
cells. Neuropilin-1 (NRP1), which is induced postnatally 
and sustained by lung-derived transforming growth factor 
beta-1 (TGF-β1), has been reported to be a tissue-specific 
marker of lung ILC2s. ILC2s promote pulmonary inflam-
mation by secreting type 2 cytokines, including IL-5, 
IL-13, and IL-4, in response to epithelial-derived alarming 
cytokines such as IL-33, TSLP, and IL-25 (Fig. 3) [129]. 
Many reports indicate that ILC2s have a pathogenic role in 
allergic inflammation [130]. In a mouse model of asthma, 
Th2 cells and ILC2s are the main sources of IL-5 and IL-13 
production in the lung. In addition to allergic inflammation, 
ILC2s are also involved in tissue repair through amphiregu-
lin production. Recently, the relationship between ILC2s 

Fig. 3  The induction of type 2 inflammation through the interactions 
between epithelial cells, neurons, and immune cells. When allergens 
invade the respiratory epithelium, tuft cells release cytokines such as 
IL-25, and pulmonary neuroendocrine cells (PNECs) produce calci-
tonin gene–related peptide (CGRP), which can activate ILC2s. Epi-
thelial cells release IL-33 and TSLP upon stimulation and/or damage, 
activating ILC2s. In addition, neuromedin U (NMU) and vasoactive 
intestinal peptide (VIP) from sensory neurons stimulate ILC2s to 
release cytokines, leading to type 2 inflammation. The induction of 
type 2 inflammation mobilizes various immune cells, which also act 
on the nervous system and epithelium to enhance inflammation
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and neural cells is an emerging area of research that has 
revealed intriguing connections between the immune and 
nervous systems [10]. Neuropeptides, which are signaling 
molecules produced by neurons, can influence the activity of 
ILC2s. For instance, vasoactive intestinal peptide (VIP) can 
directly activate ILC2s, leading to their production of IL-5. 
Then, IL-5 released from ILC2s stimulates neurons to pro-
duce more VIP, establishing a positive feedback loop [11]. 
Moreover, neuromedin U (NMU), produced by mucosal neu-
rons, has been shown to activate ILC2s [12]. Upon binding 
to its receptor (neuromedin U receptor 1) on ILC2s, NMU 
could stimulate ILC2s to produce cytokines. This relation-
ship between NMU and ILC2s has been reported not only in 
allergic airway inflammation but also in respiratory syncytial 
virus (RSV) infection. In response to RSV, pulmonary neu-
rons secrete NMU in a TLR4- and TLR7-dependent manner, 
activating ILC2s via NMU and thus exacerbating airway 
inflammation [13]. In addition, it has been reported that 
calcitonin gene–related peptide (CGRP) produced by pul-
monary neuroendocrine cells (PNECs) promotes cytokine 
production from ILC2s [14].

ILC3s

ILC3s are characterized by the expression of retinoic acid 
receptor-related orphan receptor γt (RORγt) and release 
IL-17, IL-22, and GM-CSF in response to IL-23 and IL-1b. 
They are the predominant ILC subpopulation in human 
lungs, whereas ILC2s are the most abundant in murine 
lungs. Through the production of IL-22 and IL-17, ILC3s 
are involved in defense against various pathogens. In addi-
tion, they are the main producers of IL-22 in the lung and are 
essential for maintaining epithelial homeostasis and tissue 
repair. On the other hand, it has been reported that ILC3s act 
pathogenically in obesity-related asthma, suggesting diverse 
roles for ILC3s in the lungs [131, 132].

Concluding remarks

The importance of epithelium as a barrier mechanism in 
the lungs has been well established. Their central role was 
thought to be a physical mechanism through cell adhe-
sion and a protective mechanism through mucus produc-
tion. Indeed, it has been demonstrated that dysfunction of 
these barrier mechanisms is involved in many pathological 
conditions, suggesting their importance. Recently, the role 
of AECs as initiators of immune responses has been rec-
ognized. Furthermore, the close relationship between epi-
thelium, neurons, and immune cells is becoming apparent. 
Further studies are needed to determine the physiological 
role of this crosstalk and its involvement in the pathogenesis 
of various lung diseases.
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