
Vol.:(0123456789)1 3

Seminars in Immunopathology (2023) 45:411–425 
https://doi.org/10.1007/s00281-023-00993-5

REVIEW

The role of circulating cell‑free DNA as an inflammatory mediator 
after stroke

Stefan Roth1 · Saskia R. Wernsdorf1 · Arthur Liesz1,2 

Received: 22 February 2023 / Accepted: 3 April 2023 / Published online: 22 May 2023 
© The Author(s) 2023

Abstract
Stroke is the second leading cause of death worldwide and a leading cause of disability. Clinical and experimental studies 
highlighted the complex role of the immune system in the pathophysiology of stroke. Ischemic brain injury leads to the 
release of cell-free DNA, a damage-associated molecular pattern, which binds to pattern recognition receptors on immune 
cells such as toll-like receptors and cytosolic inflammasome sensors. The downstream signaling cascade then induces a rapid 
inflammatory response. In this review, we are highlighting the characteristics of cell-free DNA and how these can affect a 
local as well as a systemic response after stroke. For this purpose, we screened literature on clinical studies investigating cell-
free DNA concentration and properties after brain ischemia. We report the current understanding for mechanisms of DNA 
uptake and sensing in the context of post-stroke inflammation. Moreover, we compare possible treatment options targeting 
cell-free DNA, DNA-sensing pathways, and the downstream mediators. Finally, we describe clinical implications of this 
inflammatory pathway for stroke patients, open questions, and potential future research directions.
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Cell‑free DNA characteristics in health 
and disease

Cell-free DNA (cfDNA) is continuously released across all 
organs. cfDNA was first detected and described in blood 
plasma of healthy and sick individuals in 1948 [1]. cfDNA 
can be found in plasma [1], but also other body fluids includ-
ing urine [2], cerebral spinal fluid [3], pleural fluid [4], and 
also sputum [5].

Previous studies suggest that most of the plasma cfDNA 
is originating from the hematopoietic system in healthy 

individuals [6]. In a number of conditions of altered tissue 
composition, for example, during pregnancy, organ trans-
plantation, or in cancer, additional cfDNA can be released 
by affected tissues into the circulation [7]. Detection of dif-
ferences in blood cfDNA has been proposed as a potential 
non-invasive diagnostic technique. For this, a variety of tech-
nologies have emerged in the past years to use cfDNA for 
non-invasive prenatal testing [8–11], organ transplantation 
[12, 13], immune diseases such as systemic lupus erythe-
matosus [14, 15], tissue injuries such as stroke [16–19], and 
also cancer [20, 21].

Recent studies were able to answer another important 
question, the origin of cfDNA in health and disease (Fig. 1). 
Based on the fact that dying cells release cfDNA, each tis-
sue provides a unique DNA methylation pattern [22]. Two 
methods were used to analyze the methylation pattern: first, 
detection of CpG nucleotides based on bisulfite conversion 
and subsequent arraying on a bead chip [23, 24], which ena-
bled to cover up to 290,000 CpGs locations per sample [25]. 
Second, deep sequencing of cfDNA to generate a genome-
wide map of the in vivo nucleosome. The data correlated 
with the nuclear architecture, suggesting that it could inform 
the cell type of origin [26]. These approaches confirmed that 
cfDNA originates mainly from the hematopoietic system [6] 
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including erythrocytes, granulocytes, monocytes, and lym-
phocytes under healthy conditions [23, 26]. Under patho-
logical conditions, however, affected tissue contributes to 
circulating cfDNA [7], such as hepatocyte-derived cfDNA 
was detected in the plasma samples of patients with septic 
liver damage [23] (Fig. 1).

Independent of the source, all cfDNA have some com-
mon properties that characterize their function and (limited) 
diagnostic use. All can be found non-capsulated in body 
fluids and are highly fragmented single- and double-stranded 
DNA. Plasma cfDNA consists of a mixture of different-sized 
DNA fragments, with fragment sizes mainly ranging in mul-
tiples of 150–170 bp—due to the nucleosome packaging, 
consisting of approximately 150 bp of DNA coiled around 
the histones [32, 33]. Based on quantitative studies, the 
concentration of cfDNA in healthy individuals is in average 
70 ng/ml [34–40].

The concentration of blood cfDNA is mainly regulated 
by its degradation kinetics which can vary greatly between 

physiological conditions. cfDNA is rapidly degraded in body 
fluids; however, the reported half-life of cfDNA varies mas-
sively between conditions. In the context of hemodialysis, 
cfDNA half-life of 4 to 10 min was reported [41]. In the 
context of fetal-derived cfDNA, half-life of 1 h up to 12 h 
was observed [42]. Under healthy conditions, degradation 
and clearance are mainly performed by circulating nucle-
ases, such as the pH-neutral DNase 1, but also active uptake 
by the reticuloendothelial system in liver and spleen [27] 
(Fig. 1).

Cell‑free DNA in stroke

Ischemic stroke is a sterile tissue injury caused by occlusion 
of a brain-supplying artery. The lack of oxygen and glu-
cose leads to a necrotic cell loss and injury to tissue integ-
rity. Inflammation is a key element of the pathobiology of 
stroke and the immune system actively participates in tissue 

Fig. 1  Cell-free DNA in health and disease. Under healthy condi-
tions, cfDNA, with fragment sizes mainly ranging in multiples of 
150–170 bp, is found in the blood circulation. These DNA fragments 
originate mainly from apoptotic erythrocyte progenitors, white blood 
cells, and endothelium. Degradation of cfDNA is achieved by circu-
lating and local nucleases, e.g., DNase 1 and intracellular nucleases, 
or DNase 2 in the lysosome. Spleen, liver, and the urinary system 
facilitate the removal of cfDNA [27]. Under pathological condi-

tions, here exemplified by septic liver damage, the origin of cfDNA 
depends on the organ of disease and the systemic immune response 
to the organ injury. For the given example of septic liver damage, 
cfDNA originates mainly from hepatocytes but also white blood cells 
[23]. Increased levels of cfDNA cannot be degraded sufficiently [28], 
which then leads to innate immune activation via TLR- or inflammas-
ome-signaling [29–31]
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damage caused by the initial ischemia [43]. Stroke does lead 
not only to a devastating inflammatory milieu in the com-
partment of the brain itself but also to a systemic inflamma-
tory response immediately after the ischemic injury [44]. 
Damage-associated molecular patterns (DAMPs) are essen-
tial mediators of this systemic inflammatory response to 
stroke. DAMPs are a heterogeneous group of immunogenic 
molecules including ATP, various proteins, but also DNA 
and RNA [45]. DAMPs are generally secreted by stressed, 
damaged, or dying cells [46]. In stroke, it is supposed that 
DAMPs are mainly released from post-ischemic necrotic and 
apoptotic brain tissue [47]. The initial release of DAMPs 
leads to activation of the cerebral endothelium and the sub-
sequent recruitment of local and circulating immune cells 
which are amplifying the local immune response [48]. Con-
sidering the plethora of different DAMP-molecules released 
to the circulation after stroke, exploiting their value as non-
invasive biomarkers to diagnose stroke and predict its out-
come is still the goal and challenge of a large body of work 
in the field of stroke biomarker research [49–51]. Blood 
biomarkers for stroke should ideally enable to distinguish 
not only between stroke and stroke mimics but also between 
different stroke subtypes and ultimately enable rapid clini-
cal interventions. None of the so far identified biomarkers 
could sufficiently fulfill these criteria and thereby so far not 
in clinical practice.

Since blood cfDNA levels are elevated in a variety of 
physiological and pathological processes [27], it is sur-
prising that blood cfDNA is a fairly specific and accurate 
biomarker in stroke. Several studies were able to not only 
improve methodology to reliably quantify cfDNA [16] but 
furthermore distinguish stroke from stroke mimics [52] 
and even ischemic from hemorrhagic stroke [17, 38] using 
cfDNA-based biomarker analysis. More than 10 observa-
tional trials have quantified blood cfDNA concentrations 
in stroke patients and correlated its blood concentration 
to other blood biomarkers and/or clinical outcome param-
eters (Table 1). In most of these clinical studies, cfDNA 
was considered as a potential predictive marker of chronic 
outcome after stroke. In 2003, Rainer and colleagues were 
the first, using quantitative real-time PCR for the β-globin 
gene, to show that blood cfDNA concentration is increased 
already 3 h after stroke. This quantitative analysis was suf-
ficient for appropriate early risk stratification and prediction 
of 6-month disability and mortality after stroke [16]. Across 
all clinical studies, cfDNA quantification was performed 
using either quantitative real-time PCR (results provided in 
kilogenome-equivalent/L) or by fluorometric/spectrometric 
methods (results provided in arbitrary units or ng/ml). Most 
studies identified a general increase of cfDNA blood con-
centration early after stroke (Table 1). However, sampling 
time between studies varies largely (3–48 h after symptom 
onset) and is also insufficiently described. Correspondingly, 

reported cfDNA concentrations are differing dramatically 
between studies either due to these differences in sample 
acquisition after stroke or because of other unreported tech-
nical differences: healthy control (284.7 ng/ml ± 462.9 // 
1436.9 ± 1326.9 kilogenome-equiv./L in healthy controls and 
658.5 ng/ml ± 883.8 // 3025.3 ± 2589.4 kilogenome-equiv./L 
in stroke patients (Table 1 [16, 17, 19, 28, 37, 38, 53–55]). 
Geiger and colleagues [18] chose a different way and quanti-
fied blood nucleosome cfDNA (On d 3: Barthel Index ≥ 50: 
523 AU vs Barthel Index < 50: 869 AU), for which blood 
concentrations correlated well with the function outcome 
of stroke patients. Yet, only few studies provide informa-
tion about kinetics of cfDNA concentration after stroke. 
One study performed repetitive measurements throughout 
the first 72 h after stroke onset and observed the highest 
concentration of blood cfDNA at 48 h after symptom onset 
[38]. Geiger et al. followed up elevated cfDNA levels for a 
week after stroke [18]. They were able to show a correla-
tion between nucleosome cfDNA and infarct volume 3 days 
after stroke. Moreover, the kinetics of nucleosome cfDNA 
concentration correlated well with the clinical status (Bar-
thel Index).

Tsai and colleagues established the isolation of nucleus- 
versus mitochondrial-derived cfDNA, since it was reported 
that mitochondrial cfDNA can activate different inflamma-
tory pathways than nuclear cfDNA [56]. However, both con-
centrations were elevated 48 h after stroke and the propor-
tion between nuclear and mitochondrial DNA did not change 
[55]. Bustamante et al. [54] used cfDNA to predict short-
term neurological outcome after treating stroke patients with 
tissue plasminogen activator (tPA). They were able to show 
that patients admitted to hospital within 4.5 h after stroke 
onset had increased cfDNA blood concentrations compared 
to healthy controls. Moreover, they observed a trend of lower 
cfDNA levels in patients who had improved neurological 
status after tPA therapy. Grosse and colleagues [28] were 
able to show that higher levels of plasma cfDNA were asso-
ciated with worse 90-day outcome and increased mortality 
after revascularization in stroke patients with endovascular 
therapy [57, 58].

Several studies aimed at correlating blood cfDNA con-
centrations with other blood biomarkers. Geiger and col-
leagues [19] performed a comparison of blood nucleosome 
cfDNA and other potential stroke biomarkers such as neu-
ron-specific enolase (NSE), S100 protein, and C-reactive 
protein in ischemic stroke patients. Correlations were found 
between stroke severity at hospital admission with blood 
concentrations of cfDNA, NSE, and S100 at 3 days and 
6 days after stroke. The same blood biomarkers were also 
correlated with infarct volume and the long-term recovery 
index after 12 months. In contrast, CRP concentrations—a 
widely used biomarker for systemic inflammation in numer-
ous studies—was only correlated with stroke severity at 
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admission but had no predictive value. Although S100 pro-
tein correlated well with a number of clinical parameters, 
only nucleosome cfDNA retained its prognostic value with 
100% specificity for the 12-month outcome [19]. Also, Tsai 
and colleagues compared the predictive value of cfDNA and 
S100 blood concentrations [55]. Blood cfDNA levels were 
increased in patients with severe deficits (mRS 3–6) com-
pared to mild or no deficits (mRS < 2). Although blood was 
only sampled once during admission to the hospital, blood 
cfDNA concentration was a predictor of stroke outcome. In 
contrast, S100 protein concentrations in this study was not 
correlated with stroke outcome.

Taken together, cumulative evidence from a considerable 
amount of studies by now suggests that quantification of 
blood cfDNA concentrations might be at least equivalent in 
its diagnostic value in comparison to much more commonly 
investigated protein biomarkers such as CRP and S100 pro-
teins. Specifically, current data indicates that the analysis 
of cfDNA concentrations might be particularly suitable to 
predict long-term clinical outcome for which blood cfDNA 
concentrations showed a good predictive value while other 
biomarkers correlated mainly to short-term disease sever-
ity or clinical endpoints. While the quantitative real-time 
PCR for β-Globin [16] and TERT [52] provides high sen-
sitivity in detection of cfDNA fragments, meanwhile, more 
common use of (fluoro)spectrometric methods has practical 
advantages considering the speed and broad availability of 
these methods—potentially also as point-of-care devices to 
be used for acute stroke patients to aid rapid diagnosis and 
decision making. Despite this promising results on the value 
of cfDNA as a clinical biomarker, future trials are warranted 
to address key open questions and technical caveats. These 
include the development of more sensitive and standardized 
cfDNA analysis methods, the assessment of its use across 
plasma and serum samples, and, importantly, the description 
of the cfDNA blood concentration kinetics in stroke patients 
after onset of tissue ischemia.

Immune sensing of cfDNA

DNA uptake

The immunogenic properties of nucleic acids are known 
for nearly 60 years [59, 60]. Translocation of DNA to the 
cytosol represents a potent trigger for the immune sys-
tem, driving production, and secretion of proinflammatory 
cytokines such as IL-1β, IL-18, and interferons. DAMP-
induced immune responses include expression of Type I 
and II interferons, transcription of pro-inflammatory genes, 
activation of inflammasome cascades, but also the induc-
tion of autophagy and the initiation of cell death pathways 
(Fig. 2) [29].

Entry of cfDNA into the cytosol is dependent on its char-
acteristics. DNA modifications, such as methylation (CpG) 
and DNA-bound proteins, increase the affinity to pattern rec-
ognition receptors (PRRs) [61]. For example, DNA derived 
from activated neutrophils (NETosis) or necrotic cells pro-
vide DNA-bound proteins. Characteristic NET proteins are 
neutrophil elastase (NE), myeloperoxidase (MPO), histones, 
and the antimicrobial peptide LL37/CRAMP [62]. Also, cell 
death–derived cfDNA is bound to characteristic proteins 
including histones and “HMGB1 [63]. Physiologically, these 
proteins provide nuclear functions such as DNA bending and 
packaging in the nucleus [64].

Lu et al. [65] and others observed that naked cfDNA 
from activated lymphocytes in systemic lupus erythemato-
sus (SLE) binds only with low affinity and induces unspe-
cific macropinocytosis. However, binding of cfDNA to 
extracellular HMGB1 leads to a specific clathrin-/caveolin-
1-dependent receptor-mediated endocytosis of the HMGB1-
cfDNA complex. The enrichment of DNA with histones and/
or HMGB1 leads to binding to cell membrane-located PRRs 
[61, 66]. The DNA uptake pathway is induced by the bind-
ing of HMGB1 to TLR2 and TLR4, ultimately leading to a 
proinflammatory response of the cells releasing TNF-α and 
IL-8 [67]. Another receptor known to bind HMGB1 is the 
receptor for advanced glycation endproducts (RAGE). It was 
shown that RAGE mediates HMGB1 dynamin-dependent 
endocytosis. Moreover, DNA-bound histones can bind to 
Clec2d, a membrane-bound C-type lectin receptor. The bind-
ing of the K-rich histone tail to Clec2d leads to endosomal 
uptake of the histone and its nucleic acids. Furthermore, 
endolysosomal degradation then enables DNA recognition 
via TLR9, which is located in the endolysosome, and other 
DNA sensors [68]. Moreover, LL37, a peptide bound to 
NET-DNA [62], not only provides antimicrobial properties 
but also increases the affinity of DNA to membrane-bound 
receptors [69]. LL37 is described to increase the immuno-
genicity of extracellular DNA into a potent ligand driving a 
TLR9-dependent IFN response [70]. LL37 can bind cfDNA 
from necrotic cells forming aggregates and condensed 
structures. This condensation protects DNA from nuclease 
degradation and can improve the uptake of cfDNA by mac-
rophages and dendritic cells [71]. Also, inhibitory receptors 
affect uptake and sensing of cfDNA. T cell immunoglobulin 
and mucin domain containing (TIM)-3 limit the activation of 
Cyclic GMP-AMP synthase (cGAS), and thereby signaling 
via the stimulator for interferon genes (STING) pathway by 
suppressing endocytosis of extracellular DNA. Blockage of 
TIM-3 led to higher efficacy in cancer immunotherapy trials 
via increased interferon and suppressed tumor growth factor 
expression [72].

In summary, naked cfDNA only binds membrane-bound 
PRRs with low affinity and induces unspecific uptake [65]. 
cfDNA shows high potential to enter (immune) cells, when 



416 Seminars in Immunopathology (2023) 45:411–425

1 3

bound to nuclear proteins such as histones and HMGB1 
[65–67]. Moreover, the modifications of nuclear DNA with 
additional proteins, as seen during NETosis in neutrophils, 
increased its uptake [68]. However, very little is known 
about the detailed mechanisms of DNA uptake and intra-
cellular processing. Specifically, these mechanisms are 
virtually unknown for cfDNA release after stroke. Finally, 
defining the tissue-of-origin of cfDNA and thereby charac-
terizing and understanding its tissue-specific modifications 
will improve the understanding of DNA uptake and its 
immunomodulatory functions after stroke.

TLR9 DNA recognition

Out of the 10 TLRs being expressed in human cells, DNA 
can be sensed via TLR9 in the endolysosomal compart-
ment. TLR9 sensing of DNA was the first nucleic acid sen-
sor being identified [73]. TLR9 is a specific sensor for CpG 
motifs in DNA which is manifold more abundant in bacterial 
(and viral) DNA in comparison to mammalian DNA (Fig. 2). 
Binding of bacterial DNA is species-, sequence-, and DNA 
structure-dependent [74]. Consequently, DNA bending pro-
teins including HMGB1 but also histones modify the TLR9 
binding affinity [75]. TLR9 signaling is dependent on the 
DNA concentration and shows a dose–response function 
[76]. It preferably binds to the phosphodiester backbone 
of DNA, inducing receptor dimerization [77]. During cell 
homeostasis, TLR9 is mainly located in the endoplasmatic 
reticulum, and for its proinflammatory signaling, endosome 
shuttling is required. Similar to intracellular movement of 
CpG DNA, TLR9 transfers to the nucleic acid-containing 
structures, such as endosomes, lysosomes, and endolys-
osomes [78]. The dimerization of TLR9 induces a MyD88-
dependent signaling cascade, leading to Nf-κB-mediated 
transcription of proinflammatory factors and cytokines [79]. 
Alternatively, TLR9 signaling can activate the transcription 
factor interferon regulatory factor 7 (IRF7), leading to IFN-α 
expression [80].

The functional role of TLR9 in ischemic injury is con-
troversial, with some studies in experimental stroke, and 
myocardial ischemia models have suggested a protective 
function of TLR9 through the PI3K/Akt signaling pathway 
[81, 82]. Yet, another study in experimental myocardial 
infarction has shown p38 MAPK activation in response to 
TLR9 aggravated myocardial ischemia-perfusion injury 
[83]. Similarly, a report using inhibitory oligonucleotides 
to block TLR9 activation observed reduced ischemic brain 
damage with this therapeutical approach [84]. Nevertheless, 
blood concentrations of the DNA bending protein HMGB1 
have been shown to increase after stroke and showed pro-
inflammatory functions such as proinflammatory cytokine 
release [44, 85, 86]. Although it was previously described 
to enhance binding of TLR9 to DNA [87], HMGB1 might 

also have inflammation-resolving properties. It was shown 
that cytosolic HMGB1 binding TLR9 improves tissue repair, 
increased wound healing, and angiogenesis [88]. Raucci and 
colleagues [89] showed that protective or harmful effects 
of HMGB1 and TLR9 might finally dependent on the con-
centration of HMGB1. Hence, future studies are required to 
understand the detailed interaction of DNA-binding proteins 
to cfDNA and their impact on the resulting immunological 
function after tissue injury.

AIM2 DNA sensing

The inflammasome is a high molecular weight protein com-
plex initiating cleavage of the effector enzyme caspase-1 
for an instant proinflammatory response [90]. Active cas-
pase-1 initiates the release of the proinflammatory cytokine 
IL-β and membrane pore forming Gasdermin D via cleavage 
into its active form [91]. AIM2 is a cytosolic DNA sensor 
which is part of the pyrin and HIN domain protein family. 
AIM2 activates the inflammasome pathway in response to 
exogenous or endogenous cfDNA (Fig. 2) [92]. It shows 
preference for dsDNA over single-stranded DNA [93]. The 
interaction is mainly electrostatic via lysine and arginine res-
idues matching with phosphate and deoxyribose of the DNA 
backbone. Interestingly, the isolated AIM2 HIN domain was 
found to already bind 20-bp dsDNA efficiently. However, 
full activation of the inflammasome via AIM2 binding 
required dsDNA fragment of > 80 bp sizes [94]. After the 
contact and binding of DNA, AIM2 recruits the Apoptosis-
associated speck-like protein containing CARD (ASC), an 
adaptor protein forming filaments as a binding and cleavage 
platform for caspase-1 [95]. Subsequent recruitment of cas-
pase-1 to this structure activates initial cleavage followed by 
self-cleavage of caspase-1 into active state [96]. Cleavage of 
caspase-1 then leads to release of cleaved proinflammatory 
cytokines IL-1α and IL-1β.

AIM2, together with NLRC4, contribute to inflammation 
and subsequent inflammatory injury after brain ischemia. 
Whereas NLRP3 and NOD2 deficiency did not improve out-
come after experimental stroke, ASC-KO, AIM2-KO and 
NLRC4-KO mice had reduced infarct volumes [97]. Another 
study analyzed the contribution of histone deacetylase 3 
(HDAC3) on inflammasome activation [98]. HDAC3 expres-
sion was increased in microglia of mice 3d after experimen-
tal stroke. This matches also with the expression peak of 
AIM2. In this context, it was shown that the inhibition of 
HDAC3 in mice not only improved the outcome, but fur-
ther inhibited AIM2 inflammasome activation. The authors 
hypothesized that this effect was mediated due to modula-
tion of the STAT1 pathway subsequently decreasing AIM2 
expression [98]. Kim et al. found that aged mice, 6 months 
of age and older, show significantly increased AIM2 expres-
sion in the brain and AIM2 deficiency led to improved 
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cognitive function. Here, AIM2 was mainly expressed in 
Iba-1 + microglia, but also in the endothelium and neurons 
with a peak of AIM2 expression 3 days after experimental 
stroke [40]. A post-stroke increase in AIM2 expression was 
also found after experimental stroke in rats [99]. Interest-
ingly, AIM2-dependent inflammation was ameliorated by 
administration of the neuroprotective steroids 17β-estradiol 
and progesterone. Although no further mechanism for this 
effect is provided, the positive outcome with both gonadal 
hormones might be a possible anti-inflammatory treatment 
after brain ischemia [99]. AIM2 deficiency was shown to 
improve not only infarct volume and functional outcome 
but also the integrity of the blood–brain-barrier. Xu and 

colleagues [100] found more tight junction proteins, such 
as ZO-1 and occludin, and less endothelial adhesion mol-
ecules in the absence of AIM2. Recent results have demon-
strated that AIM2 is also crucial in mediating the systemic 
inflammatory response to stroke. We were able to show that 
the increased levels of cfDNA after stroke correlate with a 
pronounced phenotype of immunosuppression. Binding of 
post-stroke double-strand cfDNA to AIM2 leads to increased 
blood IL-1β concentrations, which results in apoptosis of 
circulating lymphocytes [30].

Taken together, AIM2 plays a pivotal role in the local 
neuroinflammatory as well as the systemic immune response 
to stroke. Expression of AIM2 in neural cells, microglia, 

Fig. 2  Immune sensing of cfDNA. On the cell surface, pattern-rec-
ognition receptors, such as TLRs and RAGE, can sense DNA-bound 
proteins and peptides. It is known that HMGB1, histones, but also the 
antimicrobial peptide LL37 can help mediating active DNA uptake 
via receptor-mediated endocytosis. TLRs and RAGE do not only 
mediate the uptake of DNA but also activate a proinflammatory cas-
cade via IKKα/β or IRAK4 leading to NF-κB or IRF7 translocation to 
the nucleus. A minority of naked DNA can also be uptaken by unspe-

cific micropinocytosis. Endosomal cfDNA will be sensed by TLR9 
or degraded via nucleases from the lysosome and is then sensed by 
the cytosolic DNA sensors cGAS and AIM2. cGAS drives mainly an 
interferon Type I response via TBK-1 phosphorylation. AIM2 leads 
to classical inflammasome assembly. ASC is recruited and cleaved 
caspase-1 in the end leads to secretion of active IL-1β and pore for-
mation via Gasdermin D
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neurons, but also endothelium was increased in response to 
brain ischemia [40, 100]. Interestingly, similar mechanisms 
are observed also in aging and other brain disorders such as 
neurodegeneration, suggesting that DNA-mediated AIM2 
inflammasome activation might represent a common thera-
peutic target to prevent brain pathology of multiple causes.

cGAS DNA sensing

cGAS is another cytosolic DNA sensor with distinct func-
tional properties leading to a rapid interferon response [101]. 
DNA binding of cGAS leads to the enzymatic activation 
of the protein producing cyclic dinucleotide 2′3′-cGAMP 
[102]. This cyclic dinucleotide is the ligand for the adaptor 
protein stimulator of interferon genes (STING), which itself 
can recruit TANK-binding kinase I (TBK-1) [101]. Contact 
of TBK-1 to STING leads to phosphorylation of serin-366 
enabling binding and mobilization of the transcription factor 
IRF3. This interaction then eventually leads to expression 
of Type I interferons (Fig. 2) [29, 103]. In addition to the 
IRF-interferon pathway, cGAS-STING interaction does also 
results in NF-κB activation [104, 105]. As for DNA sens-
ing by AIM2, also cGAS sensing of DNA is dependent on 
DNA length. Similar to AIM2, it was previously reported 
that under conditions with low DNA concentrations, long 
dsDNA species (> 1000 bp) are more stimulatory and have 
a much lower concentration threshold for cGAS activation 
[106]. This argues for long DNA species being the physi-
ological trigger of DNA-induced immune responses [29]. 
A number of studies showed that blocking cytosolic DNA 
sensing via cGAS ameliorates neuroinflammation and 
experimental stroke outcome. Both the inhibition of cGAS 
by using synthetic oligonucleotides (A151) and blocking 
the downstream mediator STING showed similar effects of 
reduced inflammation [87, 107, 108]. Liao and colleagues 
[109] were able to show that the cytosolic cGAS pathway 
was upregulated in microglia after experimental stroke. His-
tone deacetylase 3 inhibition has been shown to ameliorate 
brain injury by reducing cGAS expression [109]. Another 
study showed that tPA-induced release of NETs by brain-
infiltrating neutrophils activates the cGAS-STING pathway. 
This effect leads to increased release of IFN-β and IL-6 dis-
rupting the blood–brain-barrier. Interestingly, cGAS-STING 
activation was inhibited by blocking the NET release (PAD4 
inhibition) or degradation of DNA (via DNase 1) [110]. 
Finally, Shi and colleagues used CXCR4-coated versatile 
nanoparticles carrying A151, a cGAS inhibitor, modulating 
inflammation after stroke [111]. In summary, not only clas-
sical inflammasome activation via AIM2 drives neuroinflam-
mation. The sensing of cfDNA originating from necrotic tis-
sue and also release of NET-DNA from activated neutrophils 
can initiate a cGAS-STING-mediated interferon response.

cfDNA degradation and inhibition of cfDNA 
sensing

Recombinant DNase 1

A potential treatment option to prevent cfDNA-induced 
immunity is the therapeutic use of DNase. The DNase fam-
ily divides into DNase 1 and DNase 2 with each of them 
containing further subtypes which can be separated by 
their different biological and biochemical characteristics 
[112]. Generally, DNase 1 is thought to be the “neutral” 
DNase degrading cell-free DNA in the circulation. DNase 
2 is found in the lysosomes of cells'; the milieu in the lyso-
some implicates it as an “acidophilic” DNase [113].

In the following section, we will focus on DNase 1 as 
this is a compound with potential therapeutic drug use. 
DNase 1 is an endonuclease hydrolysing dsDNA and is 
mainly produced in the pancreas and salivary glands with a 
concentration of approximately 3 ng/ml in healthy human 
plasma and forms a single polypeptide chain of 260 amino 
acids [112, 114–117]. The actin-binding resistant rhDNase 
1 variant shows increased ability to degrade DNA contrary 
to native DNase 1 [118]. The advantage of this DNase 1 
variant is its DNA-hydrolytic activity which is similar or 
increased to native human DNase 1, but unlike the native 
DNase, it shows very low affinity to activity-inhibiting 
actin [118]. The inhalative formulation of rhDNase 1 is 
used for cystic fibrosis patients to improve lung function 
by cleaving extracellular DNA [112, 119, 120]. Concentra-
tions of at least 50–100 ng/ml rhDNase in the serum are 
necessary to degrade cfDNA [121]. The half-life time in 
blood is about 3 to 4 h after intravenous application [115, 
119].

In preclinical studies of burns or ischemic stroke, 
recombinant DNase 1 reduced inflammasome activation 
in splenic monocytes, leading to reduced IL-1β release 
[30]. This resulted in improved immunocompetence with 
reduced incidence of post-stroke infections [30]. Corre-
spondingly, endogenous deoxyribonuclease activity has 
been shown to be inversely correlation with the cfDNA 
concentration after stroke [28]. Therapeutic administration 
of DNase 1 consistently resulted in significant reduction of 
blood IL-6 concentrations within 24 h after experimental 
stroke [122, 123].

In addition to its anti-inflammatory effect, DNase 1 
ex vivo facilitates thrombolysis of platelet-rich thrombi. 
Interestingly, tPA-resistant thrombi with a DNA-scaffold 
of NETs could only be degraded by combined treatment 
with DNase 1 and tPA in vitro [124]. A previous report 
studying the impact of DNase 1 treatment on experimental 
myocardial infarction outcome described reduced inflam-
mation and smaller infarcts in DNase 1 treated animals, 
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resulting in improved left ventricular remodeling and 
endothelial function [125, 126]. Additionally, in preclini-
cal deep-vein thrombosis (DVT)-models, cfDNA concen-
trations increased already after 6 h and DVT occurrence 
could be ameliorated by rhDNase 1 treatment [127].

Taken together, treatment with rhDNase 1 showed two 
potential advantages compared to the recent post-stroke 
therapy. First, degrading circulating cfDNA reduces the 
systemic inflammatory response to stroke (Fig. 3). DNase 
treatment improved susceptibility against infections as well 
as inflammation-induced recurrent ischemic events in an 
atherosclerotic mouse model [31, 128]. Second, combined 
treatment with DNase 1 in addition to thrombolysis can 
improve lysis efficacy and enables to dissolve DNA-rich, 
tPA-resistant thrombi [127, 129]. Clinical trials are in prepa-
ration or already recruiting for both therapeutic concepts. 
Currently, two clinical studies (ClinicalTrials.gov Identifier 
NCT05203224 and NCT04785066) investigate the intrave-
nous effect of rhDNase 1 regarding the recanalization after 
thrombectomy and reperfusion after ischemic stroke.

4‑Sulfonic calixarenes

We have previously demonstrated that AIM2 inflammasome 
activation by cfDNA release after stroke and burn injury 
leads to IL-1β release [30]. This signaling pathway can be 
blocked by the competitive AIM2 inhibitor 4-sulfonic calix-
arenes [130]. 4-sulfonic calixarenes dose-dependently inhib-
ited AIM2-dependent cell death and IL-1 β release but also 
the cGAS-dependent Type I interferon response and TLR9 
signaling were abrogated [130]. Consequently, treatment 
with 4-sulfonic calixarenes attenuates post-stroke immune 
alterations including AIM2-dependent post-stroke immu-
nosuppression [130]. In addition, 4-sulfonic calixarenes 
potently reduced post-stroke atheroprogression and recurrent 
ischemic events in a preclinical study (Fig. 3) [31]. Similar 
effects were found by treating with Suramin — a compound 
used to treat trypanosomias infections — a dose-dependent, 
reversible inhibitor of DNA sensors [130].

Suppressive oligodeoxynucleotides

Certain DNA sequences such as the TTA GGG  repeat motif, 
commonly found in mammalian telomeric DNA, can effi-
ciently suppress innate immune activation [131]. Synthetic, 
suppressive oligodeoxynucleotides (ODN), such as A151 
(a ssDNA species with four repeats of the TTA GGG  motif), 
are competitively binding to AIM2 and other cytosolic DNA 
sensors (Fig. 3). The inhibition was interrupting inflamma-
some assembly and downstream mediator release [131]. 
Preclinically, ODNs showed great potential in suppressing 
inflammation [131]. A151 did not interfere with NLPR3 

and specifically inhibited the sensing of cytosolic DNA by 
AIM2 [131]. A151 treatment resulted in reduced expression 
of cGAS, AIM2, IL-1β and IL-18 after experimental stroke 
and decreased infarct volume and improved neurological 
deficits after stroke [87].

Downstream inhibition of DNA 
sensing‑pathways

Anti‑IL‑1β antibody (Canakinumab) and IL‑1R 
antagonist (Anakinra)

The interleukin-1 family, including 11 cytokines, is primarily 
associated with innate immunity and part of the early immune 
response [134]. Blood concentrations for IL-1α and IL-1β, two 
prototypical members of the IL-1 family and early-released 
cytokines, are increased after stroke [133]. They are binding 
to IL-1 type I and II receptor (IL-1R1 and IL-1R2) activating 
a proinflammatory downstream signaling cascade leading to 
translocation of the transcription factors NFκB and AP-1 [135]. 
In previous studies, high systemic levels of the proinflamma-
tory cytokine IL-1β have been associated with cytokine-induced 
sickness behavior after experimental stroke (Fig. 3) [136].

A clinical trial (CANTOS) for IL-1β neutralization ana-
lyzed the efficacy of this approach to prevent recurrent car-
diovascular events [132]. Patients with myocardial infarction 
and a CRP of ≥ 2 mg/l receiving IL-1β-specific neutralizing 
antibodies presented significantly lower rates of recurrent 
cardiovascular events and non-fatal stroke [132]. However, 
IL-1β neutralization also led to an increased incidence of 
fatal infections [132], raising the need for more specific 
interventions without resulting in a potentially life-threat-
ening immunosuppressive state.

The endogenous IL-1 receptor antagonist (IL-1Ra) acts 
as a competitive inhibitor of IL-1α and IL-1β by specifically 
binding the IL-1 receptor without causing biological effects 
[133]. Although there had been only a limited range of IL-
1Ra studies [137], recombinant IL-1Ra in animal stroke 
models did show positive effects on ischemic lesion size and 
improving neurological outcome [133, 138, 139]. One Phase 
2 trial for intravenous IL-1Ra administration to acute stroke 
patients found a reduction in inflammatory markers includ-
ing neutrophil and total leukocyte counts, IL-6 blood con-
centration, and also led to improved clinical outcome [140]. 
Interestingly, subcutaneous IL-1Ra application in ischemic 
stroke patients within 5 h of symptom onset in the SCIL-
STROKE Phase 2 trial also observed a reduction of IL-6 and 
CRP after treatment without reporting any safety concerns 
[141]. Together, both Phase 2 trials randomized only a small 
number of patients but suggest a potentially beneficial and 
safe use of IL-1Ra for stroke patients [140, 141].
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Clinical implications for stroke patients

Infections through immunosuppression

Major tissue injury, such as stroke, induces a period of 
immunosuppression similar to sepsis-induced immunosup-
pression [30, 142, 143]. Post-injury immunosuppression is 
characterized by a rapid loss of T cells due to apoptosis 
[144]. This phenomenon predisposes the patients with local 
injury to systemic infections [145]. Already during hospitali-
zation, up to 22.7% of patients with ischemic stroke present 
infections, especially urinary tract infections (11.5–24%) and 
pneumonia (10–22%) [146–149]. Finally, these infections 
increase mortality in stroke patients [43]. Current clinical 

strategies to combat stroke-associated infections are based 
on treatment with broad-spectrum antibiotics once the infec-
tion has already developed and been clinically diagnosed. A 
clinical trial (STROKE-INF) tested the paradigm of prophy-
lactic antibiosis in stroke patients with dysphagia; however, 
no improvement in pneumonia outcome after stroke was 
found [150].

Herein, understanding the systemic immunological processes 
after ischemic stroke can provide the chance to switch therapy 
against infections from antibiosis to preventively modulating the 
systemic immunosuppression. We have previously shown that 
the release of cfDNA from dying tissue or activated neutrophils 
leads to a rapid systemic AIM2-mediated inflammasome activa-
tion and subsequent increased levels of circulating IL-1β after 

Fig. 3  Possible treatment approaches against immunogenic cfDNA. 
The cellular signaling cascade of cfDNA provides a number of check-
points for possible treatment approaches. Most upstream, cfDNA can 
be degraded rapidly after release to circulation by using a recombi-
nant (human) DNase 1 [128]. Sensing of cfDNA by AIM2 can be 
reversibly inhibited with either 4-sulfonic calixarenes or Suramin via 
blocking the dsDNA binding site. Higher doses of 4-sulfonic calix-
arenes successfully inhibit cGAS and TLR9 [130]. Other DNA bind-
ing site inhibitors are synthetic oligonucleotides such as A151 car-

ing a hexanucleotide motif suppressing DNA sensor signaling [131]. 
Another possibility is inhibition of caspase-1 with VX-765. VX-765 
blocks the active cleavage site of caspase-1 impeding cleavage and 
secretion of IL-1. Downstream of the DNA-sensing cascade is the 
release of proinflammatory cytokines such as IL-1β [30]. IL-1β can 
be efficiently neutralized with specific monoclonal antibodies [132] 
or a competitive antagonist (IL-1Ra) [133], both preventing binding 
to IL-1 receptors
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stroke. IL-1β drives the induction of substantial T cell death by 
stimulating macrophages to express cell-death receptor ligands 
(FasL/CD95L) and induce extrinsic apoptosis [30]. This newly 
identified pathway includes a multitude of druggable check-
points, such as blockage of IL-1β or the inhibition of caspase-1. 
However, degradation of cfDNA, and thereby an upstream 
inhibition of the initiation of the cfDNA-driven immunological 
cascade, might be a promising treatment approach to restore the 
immune competence after tissue injury.

Atherosclerosis

Large-artery atherosclerosis (LAA) is one of the main causes 
for ischemic stroke. Moreover, risk of recurrent vascular events 
after LAA-caused stroke is high [151]. A systemic review and 
meta-analysis reported a pooled recurrent stroke risk of 11.1% 
at 1 year [152, 153]. Especially in the early phase after stroke, 
recurrence rates were markedly higher in patients with LAA 
compared to other stroke etiologies [31]. It was shown before 
that the systemic inflammatory response after stroke further 
exacerbates atheroprogression [128]. Atherosclerosis itself 
is a chronic inflammatory disease, where immune cells sig-
nificantly contribute to progression and vulnerability [154]. 
Recent studies showed that amelioration of the inflamma-
tory milieu impairs atheroprogression. Anti-IL-1β treatment 
and NLRP3 inflammasome inhibition in atherosclerotic mice 
reduced the invasion of leukocytes to atherosclerotic plaques, 
resulting in reduced overall size of the plaque and reduced 
vulnerability to rupture [155]. Additionally, the deficiency or 
inhibition of cfDNA-sensing by AIM2 improved atheroscle-
rotic plaque stability by reduction of IL-1β expression [156]. 
Consequently, the AIM2 inflammasome is a likely candidate 
for further development as a target for precision medicine in 
atherosclerosis [157]. We have recently demonstrated that the 
release of cfDNA after ischemic stroke is a potent driver of 
rapidly evolving plaque vulnerability and subsequent recur-
rent events [31]. In a newly developed model of rupture-prone 
carotid-plaques in combination with contralateral experimen-
tal stroke, we were able to show that the initial trigger for 
recurrent vascular events is cfDNA. Degradation of cfDNA 
by in vivo administration of DNase 1 significantly decreased 
plaque growth and prevented atherosclerotic plaque rupture 
leading to recurrent ischemic events [31].

Summary

In the last decade, the role of the immune system gained 
significant importance as a key player in pathophysiologi-
cal changes after stroke. Brain ischemia induces not only 
local inflammation but also systemic immune alterations. 
These systemic alterations exacerbate secondary com-
plications such as infections and furthermore recurrent 

cardiovascular events. DAMPs, released from ischemic 
brain tissue, and binding to PRRs initiate a systemic 
inflammatory response to stroke.

Emerging studies suggest cfDNA as a very promising mol-
ecule within the large and heterogeneous group of DAMPs 
released after stroke. Cumulative evidence from clinical studies 
by now suggests that quantification of blood cfDNA concentra-
tions might be valuable diagnostic biomarker for stroke with a 
predictive value for long-term outcome. The rapid release of 
large amounts of cfDNA after stroke presents an interesting and 
novel therapeutic candidate to ameliorate systemic inflamma-
tory consequences after stroke. Various therapeutic approaches 
including cfDNA degradation, blocking its receptor interaction 
and inhibiting downstream signaling, are available and represent 
promising candidates for further translational validation.

In summary, cfDNA provides great potential as an acute 
fluid biomarker after stroke. Further investigations are needed 
to understand the full impact of cfDNA on local and systemic 
inflammation after stroke. Moreover, possible treatment 
approaches need confirmation from preclinical and clinical 
studies.
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