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Abstract
Neuronal plasticity is critical for the maintenance and modulation of brain activity. Emerging evidence indicates that glial 
cells actively shape neuroplasticity, allowing for highly flexible regulation of synaptic transmission, neuronal excitability, 
and network synchronization. Astrocytes regulate synaptogenesis, stabilize synaptic connectivity, and preserve the balance 
between excitation and inhibition in neuronal networks. Microglia, the brain-resident immune cells, continuously monitor 
and sculpt synapses, allowing for the remodeling of brain circuits. Glia-mediated neuroplasticity is driven by neuronal activ-
ity, controlled by a plethora of feedback signaling mechanisms and crucially involves extracellular matrix remodeling in the 
central nervous system. This review summarizes the key findings considering neurotransmission regulation and metabolic 
support by astrocyte-neuronal networks, and synaptic remodeling mediated by microglia. Novel data indicate that astrocytes 
and microglia are pivotal for controlling brain function, indicating the necessity to rethink neurocentric neuroplasticity views.
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Introduction

Neuroplasticity is a key to understanding brain development, 
learning, and homeostatic regulation in the central nervous 
system (CNS). In a broad sense, the term “neuroplasticity” 
refers to the ability of nervous tissue to change during nor-
mal functioning or in pathology. The mechanisms of neu-
ronal plasticity include modulation of synaptic strength (i.e., 
synaptic plasticity), structural remodeling, and adjustment 
of intrinsic neuronal properties such as excitability or fir-
ing rate. Although neuroplasticity is traditionally associ-
ated with neuron-based pathways, recent experimental data 
emphasize the role of regulatory mechanisms involving glial 
cells and the brain extracellular matrix (ECM). In the mature 

brain, neurogenesis and axonal sprouting are inhibited by 
the ECM [1], but gliogenesis remains active [2]. Ample 
evidence indicates that glia (meaning “glue” in Greek) are 
vividly interacting brain cells that communicate via gap 
junctions and cytokines in health and disease [3]. The four 
major glial cell populations in the CNS are NG2-glia, oligo-
dendrocytes, astrocytes, and microglia. NG2-glia is essential 
for the renewal of glial cells (for review, see [4]), and oligo-
dendrocytes are required for myelin formation (for review, 
see [5]). Neurons and glial cells collectively shape the brain 
ECM [6], which is an important mediator of intercellular 
signaling in the extracellular space [7]. ECM is mainly 
composed of polysaccharides and proteoglycans that act as 
extracellular scaffolds and provide a highly regulated envi-
ronment for intercellular communication by regulating the 
diffusion of metabolites and signaling molecules [8]. ECM 
components regulate the hydrodynamics of the extracellular 
space, compartmentalize cell surfaces, and bind signaling 
mediators. The conventional classification of ECM in the 
brain parenchyma includes synaptic, interstitial, and con-
densed matrices of perineuronal nets [9, 10]. The different 
neuroplasticity-regulating properties of these matrices may 
vary based on their molecular composition and localization. 
While astrocytes produce a major part of ECM components, 
microglia remodel the ECM during neuroinflammation and 
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physiological immune surveillance in the brain. In this 
review, we highlight the critical role of astrocytes, microglia, 
and ECM in the regulation of neuronal activity and plastic-
ity at different organizational levels—from single synapses 
to networks.

Astrocytic cradle of the synapse

Astrocytes received their name in the late nineteenth cen-
tury because of the stellate appearance that was revealed 
by Camillo Golgi and Santiago Ramón y Cajal using the 
silver-chromate and gold chloride-sublimate techniques, cor-
respondingly [11]. Today, immunohistochemical labeling of 
glial acidic fibrillary protein (GFAP), which remains one of 
the most widely used astrocytic marker proteins, shows simi-
lar star-like morphology. However, dye-filling techniques 
and genetic labeling of astrocytic membrane proteins reveal 

a dense pattern of highly ramified branches [12]. Therefore, 
the ground truth is that astrocytes are rather dandelion like 
than stellate. The thin astrocytic processes enwrap presyn-
aptic terminals and dendritic spines of excitatory synapses 
[13], creating the spongiform microdomains [14] that pro-
vide the structural background for local astrocyte-synapse 
communication. Emphasizing the intimate proximity 
between the astrocyte and the synapse, astrocytic perisynap-
tic processes are called astrocytic cradles [15]. The essential 
role of astrocytic cradles for controlling synaptic transmis-
sion is reflected by the tripartite synapse concept [16] and 
summarized in Fig. 1.

In tripartite synapses, astrocytes enhance the adhesion 
between pre- and postsynaptic membranes. While the 
key synaptic adhesion molecules of the neurexin-neurol-
igin complex are predominantly synthesized by neurons, 
astrocytes produce ephrins, integrins, and cadherins, and 

Fig. 1  Graphical summary of neuroplasticity mechanisms mediated 
by glia. Intimate interactions between astrocytes, microglia, and ECM 
allow for dynamic control of neuronal activity and synaptic transmis-
sion. While astrocytes regulate neuronal function by providing meta-
bolic support, modulating neurotransmission, and producing ECM, 
microglia can sculpt neuronal synapses in an activity-dependent man-
ner. Abbreviations: αKG, α-ketoglutarate; ATP/ADP, adenosine tri- 
and diphosphate; AMPAR, AMPA receptor; D-ser, D-serine; EAAT, 
excitatory amino acid transporter; ECM, extracellular matrix; EPSC, 
excitatory postsynaptic current; IPSC, inhibitory postsynaptic cur-

rent; G6P, glucose-6-phosphate; GABAAR, ionotropic GABA recep-
tor A; GABABR, metabotropic GABA receptor B; GAT3, GABA 
transporter 3; Glu, glutamate; Gln, glutamine; GLUT1, glucose 
transporter 1; IL33, interleukin 33; mGluR, metabotropic glutamate 
receptor; MMPs, matrix metalloproteases; MCT, monocarboxylate 
transporter; NMDAR, NMDA receptor; OXPHOS, oxidative phos-
phorylation; P2YR, purinergic P2Y receptor; SNAT, sodium-coupled 
neutral amino acid transporter; SS, succinic semialdehyde; TCA 
cycle, tricarboxylic acid cycle (Krebs cycle)
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promote the expression of other cell adhesion molecules 
of the immunoglobulin superfamily (IgCAMs) including 
SynCAMs and NCAMs to further stabilize the synapse. The 
adhesion molecules released by astrocytes promote the for-
mation and stabilize synapses, which makes them essential 
for maintaining synaptic transmission [17]. Astrocytes also 
produce glypicans, the heparan sulfate proteoglycans that 
induce the formation of functional synapses and modulate 
synaptic plasticity by promoting glutamate receptor cluster-
ing [18]. In addition, astrocytes produce other ECM pro-
teins such as thrombospondins and hevin, which have been 
shown to regulate synapse formation and stability. For a 
more exhaustive review of cell adhesion in the tripartite 
synapse, see [19]. The synaptic ECM components produced 
by astrocytes have long lifetimes [20, 21] and actively mod-
ulate synaptic activity [22]. The implications of ECM in 
synaptic activity regulation have led to the emergence of 
the more recent tetrapartite synapse concept [23].

On a functional level, astrocytic cradles dynamically con-
trol neurotransmitter concentration. Perisynaptic astrocytic 
membranes create diffusion barriers that limit the spillover 
of neurotransmitters [24] and express excitatory amino acid 
transporters (EAATs). EAAT1 (also known as GLAST1 and 
SLC1A3) and EAAT2 (also known as GLT1 and SLC1A2) 
mediate rapid reuptake of glutamate, thereby shaping post-
synaptic current responses [25]. The expression and uptake 
capacity of these transporters depend on neuronal activity 
[26, 27] and are regulated by astrocytic Ca/calmodulin-
dependent kinase CaMKII [28, 29]. Interestingly, EAATs 1 
and 2 can be synthesized locally in the astrocytic processes 
[30], which allows for the fast upregulation of glutamate 
reuptake if necessary.

Inhibitory synapses are predominantly established 
directly on neuronal somas or dendritic shafts and rarely 
localize to dendritic spines [31]. To the best of our knowl-
edge, there is no direct evidence of astrocytic cradle for-
mation around inhibitory synapses. However, astrocytes 
actively sequester GABA from the perisynaptic space via 
the high-affinity GABA transporter GAT3 [32], providing 
a reuptake mechanism similar to those for glutamate. Thus, 
neurotransmitter uptake by astrocytes regulates both excita-
tory and inhibitory signaling in neuronal networks.

Gliotransmission and neuronal activity regulation

Astrocytes regulate neuronal activity not only by remov-
ing neurotransmitters from the extracellular space but also 
by releasing them in an activity-dependent manner. To 
describe this mechanism, the term “gliotransmission” has 
been coined, and the neurotransmitters released from astro-
cytes are commonly called gliotransmitters [33]. Astrocytes 
express membrane receptors for the vast majority of mam-
malian neurotransmitters [34], and, although they do not 

generate neuron-like action potentials, astrocytes respond 
to neurotransmitter application and neuronal stimulation 
(e.g., after sensory stimuli) with transient elevations of 
intracellular  Ca2+ concentrations [35, 36]. Analyzing  Ca2+ 
signals, also called  Ca2+ events, is currently the key method 
for understanding the physiology of astrocyte-neuronal 
interactions [37, 38]. Depending on the strength of neuron-
to-astrocyte stimulation,  Ca2+ events may localize to the 
peripheral astrocytic processes (microdomain activity) or 
spread over the entire cell and its neighbors (global events 
or waves). While the microdomain  Ca2+ activity can be trig-
gered by membrane transporters and ion channels [39], the 
major  Ca2+ events are mediated by inositol triphosphate 
 (IP3) signaling and store-operated  Ca2+ release [40]. In the 
seminal works [41, 42], the  Ca2+ waves were detected in 
cultured astrocytes after norepinephrine (NE) application or 
after prolonged electrical stimulation. More recent in vivo 
experiments identified the critical importance of astrocytic 
calcium signaling for neuronal activity regulation [43–45].

Ca2+ events trigger the release of gliotransmitters, which 
regulate synapse activity locally, heterosynaptically, or 
globally by potentiating or inhibiting synaptic transmission 
and neuronal excitability (for review, see [33, 46]). Interest-
ingly, astrocytes use similar molecular machinery for the 
vesicular release of gliotransmitters [47, 48]. In excitatory 
synapses, the release of astrocytic glutamate and D-serine 
mediates synaptic potentiation [48–50] and stimulates the 
barrage firing of inhibitory interneurons [51]. On the other 
hand, ATP/adenosine release from astrocytes stimulated by 
both excitatory and inhibitory activity induces heterosyn-
aptic suppression of glutamatergic synapses [43, 52]. In 
inhibitory synapses, GABA stimulates astrocytic  GABAB 
receptors, induces long-lasting  Ca2+ oscillations [53], and 
stimulates excitatory neurotransmission via glutamate 
release [54]. Conversely, GAT3 transporter activity follow-
ing GABAergic stimulation induces astrocytic ATP release 
and inhibitory synapse potentiation [55]. Gliotransmission 
therefore can act as a jack of all trades in neuronal activity 
regulation. However, the selection mechanisms determining 
astrocytic responses to neuronal stimulation remain largely 
unknown.

The described mechanisms of neuron-glia interactions 
provide flexible modulation of neuroplasticity and indi-
cate a high capability of brain networks for self-regulation. 
Due to technical difficulties, most experimental studies 
that we reviewed here were conducted on the sub-cellular 
and cellular levels, making it yet challenging to conclude 
how the key neuroplasticity mechanisms mediated by glia 
integrate on the functional network level. Emerging evi-
dence indicates that astrocytic signaling is essential for 
neuronal synchronization and inhibitory network refine-
ment [56, 57]. Astrocytes can modulate the efficacy of 
both excitatory and inhibitory synapses, thereby extending 
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the dynamic range of neuroplasticity and increasing the 
computational power of local circuits [57] by tuning the 
excitation-inhibition balance. Recently, it was shown that 
astrocytes encode spatial information, and the expected 
reward location can be decoded from their activity in an 
awake mouse brain [58]. Based on the available data, we 
propose that multicellular interactions in neuron-glial net-
works promote ranged propagation of inhibition and exci-
tation and support excitation-inhibition balance in local 
neuronal networks (Fig. 2).

Although single astrocytes occupy distinct territories 
and establish non-intersecting islands of synaptic regula-
tion [59], they are functionally connected into a syncytium-
like network by gap junctions [60]. Astrocytic coupling via 
connexin 43 and 30 channels allows for intercellular  Ca2+ 
signaling and metabolic coupling, which is necessary for 
preventing epileptiform activity [61, 62].

Through gap junctions, the traveling  Ca2+ events may 
transfer excitatory or inhibitory stimuli from the territory 
of one astrocyte to another. Thereby, astrocytic networks 
can regulate neuronal synchronization on a slower time scale 
than provided by synaptic neurotransmission. Neurotrans-
mitter release from the astrocytes is less area restricted than 
synaptic release and can therefore affect extrasynaptic recep-
tors of multiple neurons within the astrocytic territory [56], 
thereby regulating the excitation-inhibition balance without 
remodeling synaptic connectivity. Tonic inhibition by astro-
cytic GABA release [63, 64] and the efflux of chloride via 
astrocytic GABAA channels [65] efficiently modulates net-
work inhibition. Similarly, excitatory gliotransmission and 
stimulation of extrasynaptic AMPA and NMDA receptors 
[33, 46] can contribute to spreading excitation.

Potassium buffering in astrocytes and perineuronal 
nets

While the control over neurotransmitter concentrations regu-
lates the amplitude, frequency, and dynamics of postsynaptic 
responses, neuronal excitability, and firing patterns depend 
on the astrocytic capacity for buffering  K+ ions. Extracellu-
lar  K+ concentration changes the equilibrium potential for this 
ion, thereby affecting the repolarization and hyperpolariza-
tion phases of the action potential. In absence of astrocytes, 
accumulation of extracellular  K+ during neuronal activity will 
depolarize the neuronal membrane, inducing tonic spike firing 
and eventually blocking neuronal activity and conductivity. To 
prevent these detrimental effects, astrocytes buffer up to 80% 
of the released  K+ via Kir4.1 channels [66]. Ki4.1-mediated 
 K+ buffering works in concert with astrocytic glutamate trans-
porters and Na+/K+-ATPases [67], thereby maintaining ionic 
homeostasis in the extracellular space.

In a subpopulation of fast-spiking interneurons, the inter-
stitial brain ECM condensates into peculiar structures known 
as perineuronal nets [9]. Neuronal activity consolidates the 
diffusely expressed polyanionic macromolecules into densely 
packed lattice-shaped layers that can sequester  K+ ions extracel-
lularly [68, 69]. The reduced synthesis of hyaluronan, which is 
one of the largest anionic polysaccharides in the extracellular 
space, causes altered neuronal activity and seizures [8]. There-
fore, both astrocytic Kir4.1 channels and polyanionic ECM are 
critical for  K+ buffering and neuronal activity maintenance.

Metabolic regulation of neuronal activity

Neurons are arguably the most energy-demanding cells 
of the body that do not maintain their own consump-
tion of metabolites. Neuronal metabolism is dominated 

Fig. 2  Propagation of excitatory and inhibitory signals in neuron-glial networks. On the mesoscale level of organization, inhibition-excitation 
balance in local brain networks can be orchestrated by calcium signals propagating through adjacent astrocytes
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by mitochondrial oxidative phosphorylation (OXPHOS), 
which has the highest ATP production efficiency among 
known metabolic pathways [70]. Glycolysis is strongly 
downregulated in mature neurons, making them depend-
ent on the import of lactate via the astrocyte-neuron lactate 
shuttle pathway (Fig. 1). In contrast, astrocytes predom-
inantly use glycolysis that supports the biosynthesis of 
lipids, nucleotides, and amino acids, and produce ample 
amounts of lactate [71]. Under normal conditions, astro-
cytic glycolysis is fueled by glucose uptake from the blood 
via glucose transporter GLUT1. Astrocytic glycolysis is 
pivotal for brain function, and, in case of altered glucose 
supply from the blood (e.g., in stroke), astrocytes can tem-
porarily sustain glycolysis by deriving glucose-6-phos-
phate (G6P) from glycogen granules in their cytoplasm 
[72]. At the last step of glycolysis, astrocytes convert most 
of the produced pyruvate into lactate, which is released 
into the extracellular space by the monocarboxylate trans-
porters MCT1 and MCT4. Neurons import extracellular 
lactate using MCT2 and convert it back to pyruvate for 
fueling the mitochondrial tricarboxylic acid (TCA) cycle 
and OXPHOS. Thereby, astrocyte-neuron lactate proves 
the key source of energy for the maintenance of neuronal 
activity.

In postsynaptic neurons, lactate potentiates NMDAR-
mediated currents [73] by increasing NADH/NAD+ ratio. 
NMDAR potentiation by lactate depends on the redox 
sensitivity of the NR1 subunit [74] and is required for 
long-term memory formation [75]. Therefore, the trans-
fer of lactate by the astrocyte-neuron lactate shuttle is an 
essential metabolic mechanism of neuroplasticity.

Neurotransmitters released during neuronal activity 
provide another crucial substrate for astrocytic metabo-
lism. Following the uptake of glutamate via EAATs, glu-
tamine synthase (GS) catalyzes the condensation of glu-
tamate and ammonia to form glutamine. The importance 
of this reaction is evidenced by the ample expression of 
GS in astrocytes. With minor limitations, GS can be con-
sidered an astrocytic marker protein [76]. Astrocytic glu-
tamine can be transferred to neurons by several transporter 
systems (for review, see [77]), of which sodium-coupled 
neutral amino acid transporters SNAT3 and SNAT5 (also 
known as SN1 and SN2, correspondingly) localize on the 
astrocytic membranes, and SNAT1 (also known as SAT1) 
and SNAT7 are predominantly neuronal [78]. In neurons, 
glutamine is converted back to glutamate by phosphate-
activated glutaminase (PAG), thereby creating the astro-
cyte-neuronal glutamate-glutamine cycle [79], as shown 
in Fig. 1. GABA enters the glutamate-glutamine cycle 
via the TCA cycle through conversion to succinic semi-
aldehyde (SS) and succinate in astrocytic mitochondria 
[80]. Glutamate is then synthesized from α-ketoglutarate 
and converted to glutamine by GS. In inhibitory neurons, 

astrocytic glutamine is one of the main precursors of 
GABA synthesis [81].

Glutamine transport supports synaptic plasticity by pro-
viding the essential substrate for neurotransmitter synthesis 
in both glutamate- and GABAergic neurons [82]. Genetic 
disruption of SNAT1 hampered neuronal GABA synthesis 
and impaired neurotransmission, plasticity, and cortical pro-
cessing [83] in mice. Inhibition of GS results in reduced syn-
aptic efficacy and altered long-term potentiation (LTP) [84]. 
Conclusively, the astrocyte-neuronal glutamate-glutamine 
cycle is critical for neurotransmission and neuroplasticity 
regulation.

Remodeling synaptic connectivity in the adult brain

Neuronal networks generate complex activity patterns that 
require not only the adjustment of synaptic strengths but also 
the dynamic remodeling of synaptic connectivity. Essential 
connectivity is established in the juvenile brain before the 
end of the critical plasticity period [85], which is signified 
by the maturation of excitatory and inhibitory neuronal 
networks [86] and the enrichment of plasticity-restricting 
components of the ECM [87]. Removing and establishing 
synapses in the mature CNS is mediated by microglia, the 
immune cells of the brain, and requires their coordinated 
interaction with astrocytes and ECM.

In the adult brain, both interstitial matrix and perineu-
ronal nets contain axon-repelling chondroitin sulfate gly-
cosaminoglycans (CSPGs) and semaphorins, which restrict 
new synapse formation [88, 89]. Thereby, CSPG-rich zones 
such as perineuronal nets compartmentalize neuronal sur-
faces and create permissive and restrictive microdomains 
that allow for highly precise targeting of the newly formed 
synapses. At the same time, ECM integrity is essential for 
maintaining inhibitory control in neuronal networks, and the 
depletion of ECM triggers excessive synchronization of neu-
ronal activity [90]. Therefore, retaining excitation-inhibition 
balance during synaptic reorganization requires restricted 
ECM degradation that is confined by the area of remodeling. 
This locality can be achieved through the controlled release 
of matrix metalloproteases (MMPs) by glial cells [91] and 
highly accurate synapse elimination by microglia [92, 93].

Microglia are brain-resident macrophages [94] that 
continually survey the microenvironment [95] and rapidly 
detect tissue damage [96] or neuronal activity changes [97]. 
Neuronal activity promotes microglial surveillance via nor-
epinephrine [98] and GABA signaling [99]. Microglial pro-
cesses establish intercellular junction contacts with neuronal 
bodies [97]. Within these contacts, microglial purinergic 
receptors are co-clustered with neuronal potassium chan-
nels, creating a specialized nano-architecture optimized 
for purinergic cell-to-cell communication. Since the activ-
ity of a neuron highly correlates with mitochondrial ATP 
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production, the microglia-neuron junctions allow for the 
rapid stimulation of microglia via ATP/ADP signaling. In 
stimulated microglia,  Ca2+ signaling attunes to neuronal 
activity [100]. Neuronal interleukin 33 (IL33) regulates 
microglial activity under physiological conditions and pro-
motes the phagocytosis of ECM components by microglia 
[101]. Neuronal activity regulates microglial phagocytosis 
[92], but, to the best of our knowledge, evidence for activity-
dependent ECM remodeling by microglia is lacking cur-
rently. Although further studies are required to decipher 
the role of microglia-ECM interactions in synaptic remod-
eling, the available data suggests that microglia can locally 
remodel ECM, eliminate synapses, and promote synaptic 
plasticity depending on neuronal activity. Of note, inhibi-
tory synapses are preferentially sculpted by GABA-receptive 
microglia involving  GABABR-mediated signaling [102].

The specificity of activity-dependent synapse elimination 
is ensured by the phagocytic complement components C1q 
and C3 in microglia [92] and by exposure of phosphatidyl 
serine and pentraxins on presynaptic membranes [103, 104]. 
While the expression of microglial C1q/C3 can be induced 
by neuronal and astrocytic IL33 release [101, 105], the regu-
latory mechanisms of presynaptic expression of pentraxins 
and phosphatidyl serine remain to be understood.

As key mediators of synaptic remodeling, microglia cells 
contribute to the maintenance of excitation-inhibition bal-
ance on the network level. The patrolling function of micro-
glia is regulated by extracellular chemokines including ATP 
[106, 107] and fractalkine [108, 109], which allow these 
cells to travel significant distances in the brain parenchyma 
[95, 110]. Due to the high mobility, a single stimulated 
microglia cell can potentially remodel multiple synapses and 
contribute to ranged modulation of excitation and inhibition. 
Microglia shape the developing neural circuits by engulfing 
excessive immature synapses via the complement receptor 
3(CR3)/C3-dependent phagocytosis [92], a mechanism that 
is essential for normal synaptogenesis during brain develop-
ment [111]. Interestingly, a similar mechanism contributes 
to pathological synapse loss due to upregulated microglial 
phagocytosis in Alzheimer’s disease [112]. In a healthy 
brain, microglia can also shape synaptic connectivity using 
complement-independent mechanisms including trogocyto-
sis [93] and TWEAK signaling [113].

While the possibility of establishing new synapses in 
mature neuronal networks can be attributed to the local 
ECM degradation and synapse elimination by microglia, the 
capability of establishing new synapses is defined by the 
regulatory molecules produced by astrocytes [114]. Throm-
bospondin 1 (TSP1) induces the formation of structurally 
complete but functionally silent synapses. The establishment 
of active synapses requires the enrollment of glypicans 4 
and 6 (GPC4/6) and hevin (also known as secreted protein 
acidic and rich in cysteine (SPARC) like 1, or SP1). The 

synaptogenic function of hevin is antagonized by SPARC 
[115], which is locally synthesized in astrocytic processes 
[30], allowing for the dynamic control of new synapse 
formation.

Collectively, the available evidence suggests that synaptic 
remodeling is likely orchestrated in three steps: local ECM 
degradation, synapse elimination by microglia, and astro-
cyte-mediated synapse formation. To support this hypoth-
esis, further research is needed.

Neuroinflammation and neuroplasticity

The mechanisms of homeostatic brain activity regulation 
that we reviewed here can be severely altered by inflam-
matory signaling in multiple neurological diseases. For 
example, in stroke, neuroinflammation contributes to both 
damage and remodeling of brain tissue [116]. In both acute 
and chronic stroke phases, peripheral blood immune cells 
invade the ischemic brain parenchyma [117, 118], and pre-
clinical studies indicate that immunomodulatory treatments 
can promote neurological recovery post stroke [119]. After 
the onset of cerebral ischemia, the release of alarmins [120] 
and cytokines triggers the pro-inflammatory microglia phe-
notype [121], which, in turn, can promote the neurotoxic 
phenotype in reactive astrocytes [122]. A recent study [123] 
has demonstrated that the neurotoxicity of ischemic astro-
cytes involves metabolic switching mediated by STAT3 acti-
vation. Post-stroke reactive gliosis alters interstitial ECM 
composition in the brain, which includes the upregulation 
of short-chain hyaluronan [124] and tenascin-C [125]. As an 
endogenous ligand of toll-like receptor 4 and inflammatory 
regulator, tenascin-C regulates morphological alterations in 
reactive glia [125, 126]. Post-stroke ECM remodeling also 
involves perineuronal nets [127, 128], and their transient 
degradation may support neurological recovery.

Neuroinflammation induces similar alterations in reactive 
glia and ECM in multiple neurodegenerative diseases includ-
ing Alzheimer’s, Huntington’s, and multiple sclerosis. In 
Alzheimer’s disease, the release of amyloid-b induces micro-
glial reprogramming and activation [129], which causes 
synaptic degeneration by complement-mediated microglial 
phagocytosis [112]. Activated microglia upregulate mul-
tiple ECM-degrading enzymes during neuroinflammation 
[130]. Most likely, the release of extracellular proteases 
from reactive microglia contributes to the decomposition of 
perineuronal nets in Alzheimer’s and Huntington’s diseases 
[131, 132]. Multiple studies using the experimental autoim-
mune encephalomyelitis (EAE) model of multiple sclero-
sis demonstrated that the prolonged reactivity in microglia 
and astrocytes induces neurodegeneration [133, 134]. A 
recent study demonstrated that ECM composition in EAE 
altered due to the compromised glycosaminoglycan metabo-
lism [135], showing that multiple sclerosis progression is 
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associated with the reduced expression of 4-sulfated chon-
droitin sulfates and the increased synthesis of hyaluronic 
acid.

The lack of an in-depth mechanistic understanding of 
ECM-glia interactions during neuroinflammation hinders 
the development of novel therapies for neurodegenerative 
diseases. However, we believe that the ongoing studies in 
the field will propose promising translational approaches 
in the future.

Concluding remarks

Interactions between neurons, glia, and ECM allow for 
highly flexible modulation of neuronal plasticity. Ample 
evidence indicates that neuroplasticity is not restricted to 
neurons, and, in certain cases, can be dominated by glia. 
With multiple questions that remain open, future research on 
glia-mediated neuroplasticity will extend the current under-
standing of brain activity regulation.
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