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Abstract
Cancer survival and progression depend on the ability of tumor cells to avoid immune recognition. Advances in the under-
standing of cancer immunity and tumor immune escape mechanisms enabled the development of immunotherapeutic 
approaches. In patients with otherwise incurable metastatic cancers, immunotherapy resulted in unprecedented response 
rates with the potential for durable complete responses. However, primary and acquired resistance mechanisms limit the 
efficacy of immunotherapy. Further therapeutic advances require a deeper understanding of the interplay between immune 
cells and tumors. Most high-throughput studies within the past decade focused on an omics characterization at DNA and 
RNA level. However, proteins are the molecular effectors of genomic information; therefore, the study of proteins provides 
deeper understanding of cellular functions. Recent advances in mass spectrometry (MS)-based proteomics at a system-wide 
scale may allow translational and clinical discoveries by enabling the analysis of understudied post-translational modifica-
tions, subcellular protein localization, cell signaling, and protein–protein interactions. In this review, we discuss the potential 
contribution of MS-based proteomics to preclinical and clinical research findings in the context of tumor immunity and 
cancer immunotherapies.
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Introduction

Over the last decade, immunotherapy has revolutionized 
the field of cancer treatment. Immunotherapy exploits the 
patient’s immune system as a natural defense against can-
cer. The breakthrough of immunotherapies came with the 
introduction of immune checkpoint inhibitors (ICIs), such as 
anti-CTLA4, anti-PD1, and anti-PDL1 that block inhibitory 
immune molecules, unleashing T cell activation [1]. The 

main mechanism of this treatment relies on boosting poten-
tially tumor-reactive T cells directly in the patient’s body. As 
an alternative, adoptive cell therapy (ACT), utilizing either 
tumor-infiltrating lymphocyte (TIL)-derived T cells or T 
cells genetically engineered to express tumor recognizing 
receptors (known as CAR-T, Chimeric antigen receptor T 
cells), is emerging as a powerful tool [2].

Clinical efficacy of immunotherapies has been extraordi-
nary in many cancer diagnoses, most prominently malignant 
melanoma, where more than half of patients obtain objec-
tive tumor regression to combination ICI therapy [3]. Still, 
in many patients, successful immunotherapy is hampered 
either due to initial lack of response (primary resistance) or 
development of resistance after initial response (acquired 
resistance) [4, 5]. Acquired resistance is emerging as a grow-
ing problem in solid tumor oncology, affecting at least 25% 
of patients who initially obtain a response [6].

Both primary and acquired resistance mechanisms can 
be attributed to tumor-intrinsic and extrinsic mechanisms. 
Tumor-intrinsic mechanisms are driven by the prevention 
of immune recognition [7]. The best example of a tumor-
intrinsic mechanism of immune resistance is the expression 
of PD-L1, which is also targeted by ICI therapy with either 
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anti-PD1 or PD-L1 antibodies. PD-L1 is a natural occur-
ring checkpoint that induce T cell anergy after binding to 
its ligand, PD-1 [8]. Other mechanisms include downregu-
lation of the antigen-presentation machinery and major his-
tocompatibility complex (MHC) presentation; alterations 
in the interferon (IFN)-ɣ pathway; de-regulation of onco-
genic signaling pathways, such as β-catenin, p53, and RAS/
RAF/MAPK signaling [5]. Tumor-extrinsic mechanisms are 
properties in the tumor microenvironment (TME) affecting 
immunotherapy response. The presence of immune cells, 
also described as immune infiltration, is not only a good 
prognostic biomarker but also predictive of the effect to ICI 
therapy [9]. Other TME-mediated mechanisms include col-
lagen alterations, secretion of immunosuppressive cytokines 
(such as IL-10 and transforming growth factor beta, TGF-β), 
and the depletion of essential T cell nutrition (such as tryp-
tophan and L-arginine) [10].

Omics-based strategies have contributed in multiple 
ways to the fundamental understanding of anti-cancer 
immunity mechanisms. For instance, bulk RNA sequenc-
ing of melanoma patient samples has uncovered a pri-
mary anti-PD1 resistance (IPRES) signature [11]. Fur-
thermore, bulk RNA sequencing of cancer cell cultures 
under T cell attack has revealed conserved transcriptomic 
changes across different cancer histological types that 
were shown to predict the clinical outcome after anti-
PD-1/anti-PD-L1 therapy [12]. Nonetheless, transcrip-
tomics remains limited to the detection of expressed 
genes that does not necessarily translate to functional 
differences. In addition, translational control and post-
translational modifications (PTMs) can influence the 
gene-to-protein information process. Although initial 
progresses have been made [13], the study of the “trans-
latome” in cancer immunity is still at its infancy, but 
in extension of genomic and transcriptomic research, 
advances in the proteomics field offers an even better 
approximation of functional changes [14]. The ability of 
measuring whole proteomes and the PTMs of proteins 
allows more accurate understanding of phenotypic cel-
lular functions and is in the coming years likely to have 
a substantial impact on our understanding of anti-cancer 
immunity, predictive biomarkers, and drug development.

Proteomics to study tumor immunity

Proteins are one of the main building blocks from which 
cells are assembled. In addition to providing the cell with 
shape and structure, proteins also execute nearly all its 
numerous functions [15]. Proteomics is the large-scale 
study of proteins by revealing the identity and quantity of 
proteins in a biological sample — cells, tissues, or body 
fluids.

Given that both tumor antigens and immune checkpoints 
molecules are peptides and proteins, respectively, it is not 
surprising that mass spectrometry (MS)-based proteomics 
has been applied to the study of tumor immunity (Fig. 1).

In this context, proteomics analysis can be performed on 
several types of biological material: tumor biopsies, TME-
derived fluorescence activated cell sorting (FACS)-sorted 
cells, patient-derived cell cultures, peripheral blood mono-
nuclear cells (PBMCs), plasma, and other biofluids (Fig. 2). 
Proteomics profiling of these sample types can help iden-
tify new protein biomarkers that can predict immunotherapy 
response. Furthermore, it can contribute to deciphering the 
properties of a certain biological system, for instance, by 
understanding the molecular and biological mechanisms 
induced by a therapeutic molecule or known extra-cellular 
molecules. Finally, proteomics analysis can also be used to 
identify new potential drug targets to be tested in pre-clinical 
studies.

MS‑based proteomics technology 
applications to cancer immunotherapy

MS-based proteomics was introduced for the first time in 
1988 [16] and is now the most comprehensive approach for 
quantitative profiling of proteins [14], their interactions [17], 

Fig. 1  Relative comparison of three MS-based proteomics strategies 
that have been or can potentially be applied to the study of tumor 
immunity. Three different MS-based proteomics strategies are com-
pared: single-cell and deep visual proteomics; tissue and cell culture 
proteomics; plasma proteomics. The comparison is based on the need 
of specialized instrumentation, the potential to resolve single-cell 
proteomes, the possibility to discover new disease biomarkers, the 
preservation of spatial tissue information, and the compatibility with 
post-translational modification (PTM) analysis. The outer the point, 
the better that method scores for a given trait
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and sub-cellular localization [18], and for the identification 
of protein PTMs [19–21].

The basic MS-based proteomics workflow, also called 
“shotgun” proteomics, includes the following steps. Fol-
lowing lysis and protein extraction from biological samples, 
proteins are digested into shorter peptides by cleavage with 
trypsin or other proteolytic enzymes. The peptide mixture is 
then separated through high-performance liquid chromatog-
raphy (HPLC) and analyzed in the MS. The peptide mixture 
is transferred from the liquid phase to the gas-phase by soft 
ionization in an electrospray ionization (ESI) source. In ESI, 
the sample is sprayed out of a narrow nozzle in a high poten-
tial field, which generates multiply charged ions and almost 
no fragmentation [22]. The peptide ions are then analyzed 
in the MS by a detector, known as mass analyzer, that meas-
ures their mass-to-charge ratio (m/z) and abundance. This 
analysis is known as precursor or full scan (MS1 scan) and 
provides snapshots of peptide precursor species co-eluting 
at a specific time point of the LC gradient. However, the 
m/z ratio is not enough to univocally identify the peptide 
sequence. To this end, peptide ions (referred to as precur-
sor ions) are isolated in turn and fragmented in a dedicated 
collision cell by collisions with inert gas molecules such 
as nitrogen. The obtained amino acid sequence fragments, 
referred to as fragment ions, are then analyzed in the mass 
analyzer to obtain a second spectra (MS2 or MS/MS scan). 
This sequential scan approach is known as MS/MS analysis 
or tandem MS.

For typical data-dependent acquisition (DDA) meas-
urements, the N precursor ions of highest abundance are 
selected for MS/MS analysis. In the data-independent acqui-
sition (DIA) approach, all precursor ions are sequentially 
isolated [23]. Consequently, each MS/MS spectrum will 
contain co-fragmentation information from multiple pep-
tides, resulting in extremely complex spectra.

Finally, the sequences of peptides and associated proteins 
are identified by peptide search engines/algorithms, which 
match the precursor ion mass and its fragment ions with 
predicted peptide masses and their corresponding fragments 
derived from in silico digested protein databases [24].

Deep proteome profiling of tumor tissue biopsies: 
prediction of clinical outcomes

A pioneering study from Harel et al. represented the first 
deep proteomic analysis of immunotherapy response [25]. 
The authors analyzed the proteome of 116 formalin-fixed 
paraffin-embedded (FFPE) tissue biopsies from stage IV 
melanoma patients undergoing either TIL-based or anti-PD1 
immunotherapy. Bioinformatic analyses revealed higher oxi-
dative phosphorylation and lipid metabolism in responders 
than non-responders in both treatments. High mitochondrial 
metabolism led to higher antigen presentation and IFN sign-
aling, thereby increasing sensitivity to T cell mediated kill-
ing both in vitro and in vivo.

Proteomic analysis of FFPE tissues [26] has the advan-
tage that samples are analyzed retrospectively, but this also 
bears several disadvantages. First, in FFPE tissues, PTM 
profiles are not fully preserved. Second, the biopsies are bulk 
samples which have lost all information on the complexity 
of the TME.

To overcome the first limitation, tissue specimens can 
be snap-frozen right after collection and further cryo-pul-
verized. This strategy would allow deep phosphoproteome 
profiling that can be subsequently integrated with immune 
profiling.

To overcome the second limitation, bioinformatic decon-
volution approaches can be used to identify different cell 
populations within a bulk tumor. For example, xCell is a 
gene signature-based method that can infer up to 64 immune 

Fig. 2  LC–MS/MS work-
flow for proteomics in tumor 
immunity studies. Proteins are 
extracted from snap-frozen or 
formalin-fixed paraffin-embed-
ded (FFPE) tumor biopsies, 
patient-derived cell lines 
in culture, peripheral blood 
mononuclear cells (PBMCs), or 
plasma isolated from peripheral 
blood. For snap-frozen tissues, 
a preliminary pulverization 
step is necessary. After dena-
turation, proteins are digested 
into shorter peptides, further 
transferred on C18 evotips, and 
analyzed by liquid chromatogra-
phy-tandem mass spectrometry 
(LC–MS/MS)
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and stromal cell types [27]. It has been successfully used 
for transcriptomics data to identify four immune-based 
glioblastoma multiforme (GBM) subtypes [28], and could 
potentially be applied to deep proteome data. A similar 
strategy has recently been employed on proteomics data by 
Lehtiö et al. who applied previously described immune sig-
natures to proteome data of 141 non-small cell lung cancer 
(NSCLC) tumors to evaluate which immune cell populations 
infiltrated the tumor site [29].

Proteomics analysis of FACS‑sorted cells and cells 
in culture

Another potential approach to deal with TME complexity 
and intra-tumor heterogeneity is the proteomic analysis of 
FACS-sorted cells. Multiple sample preparation protocols 
have been proposed. Myers et al. used a streamlined work-
flow that enables quantitative proteome profiling from 2 µg 
of protein, collected from 300,000 sorted cells per experi-
mental condition. Utilizing a combination of facile cell col-
lection from cell sorting, isobaric labeling for multiplexing 
of peptides, and small-scale fractionation, the authors pro-
filed the proteomes of 12 freshly isolated, primary murine 
immune cell types [30]. Amon et al. lowered the peptide 
input amount to 300 ng, corresponding to 25,000 sorted 
cells, by using a DIA-based label-free proteomics workflow 
[31].

Alternatively, cells derived from TME can be cultured 
ex vivo before proteomic analysis. For instance, Tsai et al. 
successfully isolated human pancreatic primary cells and 
matched stromal and immune cells [32]. Andersen et al. iso-
lated and expanded TILs from metastatic melanoma lesions 
and from the same lesions, they also generated primary 
melanoma cell lines. By co-culture assays, they were able 
to show that the expanded TILs recognize autologous tumors 
[33]. Such ex vivo experimental systems might be exploited 
to reduce the TME complexity and increase the protein input 
amount to perform deep proteomics profiling.

Primary cells could be stimulated with known cytokines 
or growth factors produced in the TME (e.g., IFN-γ and 
TNF-α). To uncover key cell signaling players, phosphopro-
teomics could be an interesting application approach [34]. 
Similar experiments can also be performed on commercial 
tumor cell lines. Agami’s group analyzed MD55A3 mela-
noma cells after IFN-γ exposure and identified numerous 
out-of-frame, trans-frame, and tryptophan-to-phenylalanine 
atypical peptides that lead to increased immune recognition. 
These events were induced by ribosomal frameshift follow-
ing IFN-γ induced tryptophan depletion [35, 36].

Another potential proteomics application involves the 
study of protein–protein interactions. Purified primary 
murine T cells have been used to study protein–protein 
interactions. Celis-Gutierrez et al. performed quantitative 

interactomics, also known as affinity purification coupled 
with MS (AP-MS), to define the composition and dynamics 
of the PD-1 and BTLA co-inhibitory signalosomes in pri-
mary effector T cells, and at the T cell-antigen-presenting 
cell interface [37].

Otherwise, 2D co-cultures [33] or 3D spheroid or orga-
noid models [38] can be established from primary cells 
derived from the TME. The different cell types could 
potentially be separated before proteomics analysis by using 
antibody-based magnetic separation or FACS-sorting after 
fluorescent cell tracer labelling.

Immunopeptidomics for identification of targets 
for the T cell response

One of the most promising MS-based proteomics applica-
tions in the study of tumor immunity is the identification of 
tumor antigens by immunopeptidomics, which is the MS 
analysis of the human leukocyte antigen (HLA)-bound pep-
tides expressed on the surface of tumor cells (extensively 
reviewed in [39]). The discovery of tumor antigens is essen-
tial to develop patient-tailored immunotherapies, like CAR 
T cell therapy and cancer vaccines.

Recognition of tumor cells by T cells requires presenta-
tion of tumor antigens on the surface of antigen-presenting 
cells (APCs) by HLA molecules. HLA class I (HLA-I) mol-
ecules present peptides derived mainly from proteasomal 
degradation of endogenous cytosolic proteins and interact 
with CD8 + T cells. HLA class II (HLA-II) molecules pre-
sent peptides from extracellular proteins, as well as from 
cellular proteins degraded via the endosomal pathway, and 
interact with CD4 + T cells. The immunopeptidome primar-
ily consists of peptides derived from “normal” self-proteins, 
with a small fraction of tumor specific peptides. Tumor 
antigens can be classified in canonical and non-canonical, 
depending if they derive from coding or non-coding regions, 
respectively [39]. Tumor antigens can also be classified in 
tumor-associated antigens (TAA), aberrantly expressed 
tumor-specific antigens (aeTSA), cancer-germline antigens 
(CGA), and mutated tumor-specific antigens (mTSA) [40]. 
TAAs are antigens that show superior abundance on tumor 
cells but are nonetheless present on normal cells and, there-
fore, may be subjected to central immune tolerance, leading 
to the inability to be recognized as “non-self” by the immune 
system. aeTSAs result from epigenetics-driven aberrant 
expression of unmutated transcripts that are not expressed 
in any normal somatic cell. CGAs are a sub-class of aeT-
SAa encoded by canonical exons normally expressed only 
by germ cells. mTSAs derive from mutated DNA sequences 
that can be either exonic or non-exonic and are believed to 
play a critical role in the rejection of mutated/precancerous 
cells by the immune system [41].
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Most preclinical and clinical studies so far have employed 
a combination of DNA/RNA sequencing only, followed 
by prediction of mTSA binding based on a patient’s HLA 
phenotype. These methods rely on the ability of prediction 
algorithms to identify non-immunogenic versus immuno-
genic mutations, with the potential, but not experimental 
validation, to generate mTSA reaching the cell surface in 
association to HLA molecules. In contrast, pioneering stud-
ies with proteomics coupled with genetic information from 
Bassani-Sternberg et al. resulted in the direct identification 
of mTSA on the surface of cancer cells [42]. Therefore, cur-
rent proteomics approaches may provide additional impor-
tant information on the antigen landscape of a tumor.

To increase immunopeptidomics sensitivity, MS-based 
proteomics is often coupled with next-generation DNA 
sequencing [42], RNA sequencing (RNA-seq) [40], and 
ribosome-sequencing (Ribo-seq) [43] techniques. Finally, 
high-quality immunopeptidomics datasets can be used to 
improve the above-mentioned computational models for 
prediction of HLA-bound peptides [44].

Plasma proteome profiling for biomarker discovery

Effective cancer immune therapy stimulates an anti-cancer 
immune response that is usually confined to the TME or 
to the organs affected by therapy toxicity. Tissue samples 
are inaccessible to continuous monitoring and biased by 
structural heterogeneity. Biological fluids are less prone to 
heterogeneity and provide a physiological averaging includ-
ing systemic signs of activated or ongoing immune activity. 
Blood-based biomarkers that correlate to a successful anti-
cancer immune response or other immunological outcomes, 
such as immune-related toxicity, would be highly desirable 
to fine-tune immunotherapy-based treatments to the indi-
vidual patient.

Plasma is an attractive source for discovery of biomarkers 
due to its accessibility and relative stability. In fact, it is the 
preferred sample type for measuring most proteins related 
to host immunity including cytokines, chemokines, comple-
ment proteins, and immunoglobulins [45]. Plasma measure-
ments are routinely used in the setting of infections, where 
C-reactive protein (CRP) or the precursor of calcitonin (Pro-
calcitonin) are routinely used to monitor systemic inflamma-
tion as a surrogate of antibiotic efficacy [46]. Conversely, 
in the setting of ICIs, high CRP levels are generally linked 
to poor prognostic outcome and to immune-related toxic-
ity [47, 48]. Individual cytokines, most notably interleukin 
(IL)-6 and leukemia inhibitory factor (LIF), have been cor-
related to clinical outcomes of therapy but can be difficult 
to distinguish from immune-related toxicity [49–53]. The 
complexity is further increased by the fact that immune-
related toxicity and anti-tumor clinical efficacy are corre-
lated outcomes [54].

To detect and monitor anti-tumor immune responses, sys-
tem-level strategies are likely needed to encompass the het-
erogeneous dynamics and complexity of the immune system.

Plasma proteomics is the large-scale study of proteins in 
the plasma. Targeted protein measurement is the most com-
mon method to analyze plasma proteins. Traditionally, this 
has included antibody-based enzyme-linked immunosorb-
ent assay (ELISA) or radioimmunoassay (RIA) techniques, 
where single proteins are measured by specific antibody 
binding. The methods can be multiplexed by using elec-
trochemiluminescence or enzyme-conjugation achieving 
10–20-plex assays, or even up to 500-plex when using bead-
conjugated antibodies [55, 56]. Advances in next-generation 
sequencing (NGS) technology has also improved the ability 
to multiplex immunoassays. The proximity extension assay 
(PEA) offered by Olink can measure up 92 proteins in a 
panel, and it has since then been expanded to 384 proteins. If 
running 4 assays in parallel, this can even further increase to 
1500 proteins [57, 58]. Protein-binding aptamers, offered by 
SomaLogic, can reportedly quantify up to 7000 proteins [59, 
60]. Despite their immense potentials, targeted proteomics 
assays have so far not provided usable biomarkers for cancer 
immune therapy validated for clinical practice.

MS-based proteomics offers a different approach to 
plasma proteomic immune monitoring. With routine 
workflows (Fig. 2), around 300 proteins can be quantified 
in plasma whereof approximately half of the proteins are 
annotated to immune system processes. The main appeal 
of this approach is the unbiased detection and quantifica-
tion of the proteins found in a plasma sample. In a recent 
study, plasma from 109 melanoma patients was analyzed 
with LC–MS/MS proteomics and identified 43 biomarker 
candidates including an inverse relationship of inflamma-
tion markers to favorable clinical outcomes [61]. The study 
identified 592 proteins across all patients but only 272 were 
identified across 50% of the patients. The major challenge 
of applying MS to analyze plasma samples is an extreme 
dynamic range in protein abundance. High abundant proteins 
(like albumin, fibrinogens, and immunoglobulins) take up 
99% of the protein mass and effectively block the signal of 
low abundant proteins [62].

Different strategies have been used to reduce the 
dynamic range and increase the identification of low abun-
dant proteins in plasma (Fig. 3). Selective depletion of 
high abundant proteins, e.g., albumin and immunoglobu-
lins, will increase the measurable number of proteins but 
will affect sample integrity, as many soluble proteins are 
bound to albumin [63–65]. Another approach to increase 
the plasma proteome depth is the enrichment of extracel-
lular vesicles (EVs) [66]. With this strategy, detection of 
intracellular and membrane proteins located in the EVs 
are possible, providing a new biological compartment for 
analysis. EVs are a heterogeneous group of cell-derived 

245Seminars in Immunopathology (2023) 45:241–251



1 3

membranous structures comprising exosomes and micro-
vesicles that originate from the endosomal system or 
which are shed from the plasma membrane, respectively 
[67]. The main role of EVs are within intercellular com-
munication, and they have numerous functions in immune 
signaling [68, 69].

The limitation of the above-mentioned strategies is the 
need of a relatively high amount of sample for analysis. 
An alternative approach is a selective enrichment of low 
abundant proteins by unspecific binding to nanoparticles 
[70]. When combining different nanoparticles with differ-
ent surface chemistry, up to 2000 proteins can be quanti-
fied from plasma samples [71]. Finally, sample pooling 
followed by off-line fractionation techniques has been used 
to reduce plasma proteome complexity [72]. The obtained 
fractions have been used to identify MS1 spectra lacking 
the corresponding MS2 information through the match-
between-runs algorithm implemented in MaxQuant [73]. 
This, combined with a special MS acquisition method 
known as BoxCar [74], led to the identification of more 
than 500 proteins per patient from only 1 µl of plasma 
[72]. Fractionated samples have also been used to generate 
spectral libraries. With this approach, reference spectra 
are used to deconvolute complex DIA spectra [75]. This 
approach led to the identification of more than 1,200 pro-
teins in cerebrospinal fluid from 40 µl.

Single‑cell protein expression by mass 
cytometry

Flow cytometry is an ideal platform for evaluating the 
immune system at the single-cell level and is currently 
used to quantify labeled proteins on the surface and inte-
rior of single cells and study the immune system on the 
single-cell level [76]. However, conventional flow cytom-
eters are unable to analyze the number of markers required 
to fully explore a single-cell proteome. This is primarily 
due to the limited number of fluorescently tagged mark-
ers which can be evaluated in a single tube. Instead, mass 
cytometry (MC) combines immunolabeling with metal-
tagged antibodies together with mass spectrometry, ena-
bling an increase in the number of markers that can be 
measured simultaneously up to 300–400 [77].

Withing the field of cancer immunity, two separate stud-
ies used MC to profile PBMCs from patients with mela-
noma before and after anti-PD-1 immunotherapy allowing 
the identification of pretreatment monocyte and natural 
killer subsets that correlated with ICI response [78, 79]. 
MC has also been applied to dissociated tumor tissues. To 
identify immune subpopulations associated with response 
to ICIs, Wei et al. applied mass cytometry on surgically 
resected melanoma tumors from patients being treated 
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Fig. 3  Strategies to increase sensitivity in plasma proteome profiling 
by MS-based proteomics. After separation of plasma from peripheral 
blood, several strategies can be used to increase plasma proteome 
depth: enrichment of extra-cellular vesicles (EVs), depletion of the 
most abundant proteins, or the addition of nanoparticles. Proteins are 
then denatured and digested into shorter peptides, which are analyzed 
through liquid chromatography-tandem mass spectrometry (LC–MS/
MS). Data independent acquisition or BoxCar are advanced MS 

acquisition methods that can be used to overcome the high dynamic 
range of plasma samples and therefore increase plasma proteome 
depth. Off-line peptide fractionation can be exploited to generate deep 
spectral libraries to deconvolute complex DIA spectra. Alternatively, 
precursor information in the library can be compared to unidentified 
peaks in individual MS runs by using the match between runs (MBR) 
algorithm
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with anti-CTLA4, anti-PD1, or the combination of both, 
showing that anti-CTLA4 and anti-PD1-induced immune 
responses are driven by distinct cellular mechanisms [80]. 
Similarly, Gide et al. analyzed baseline melanoma dissoci-
ated tissue from patients treated with anti-PD1 monother-
apy or combined immunotherapy (anti-PD1 + anti-CTLA4) 
identifying the subset EOMES + CD69 + CD45RO + of 
effector memory T cells associated with greater tumor 
shrinkage in both therapies [81].

In recent years, the development of commercial instru-
mentation that takes advantage of full spectrum fluorescence 
has provided the ability to increase the number of potential 
fluorochromes that can be effectively combined in a single 
panel [82]. Full spectrum flow cytometry (FSFC) can measure 
the entire fluorochrome emission spectrum, across multiple 
lasers and using many more detectors than a conventional 
flow cytometer, allowing a specific spectral fingerprint to be 
defined for each fluorochrome, allowing to combine 30–40 
fluorescently labeled antibodies in a single tube. This contrasts 
with using a fluorochrome’s maximum emission wavelength, 
which defines a fluorochrome on a conventional flow cytom-
eter. FSFC was recently benchmarked against MC and proven 
as an easy-to-use and high-throughput option for monitoring 
complex immune responses [83], which might one day replace 
MC in most laboratories.

The main limitation of both single-cell MC and FSFC is the 
inability to capture spatial information. Imaging mass cytom-
etry (IMC) is a high dimensional tissue imaging system that 
allows the comprehensive and multiparametric in situ explora-
tion of the TME at a single cell level [84]. This technique has 
been recently used to profile the melanoma microenvironment 
at various stages of disease and across different melanoma 
subtypes. Specifically, Moldoveanu characterized FFPE tis-
sue from a commercially available cohort of 42 melanocytic 
neoplasms. Moreover, to identify TME features correlating 
with ICI response, they also profiled pretreatment melanoma 
samples from 30 patients with advanced disease who subse-
quently received ICI therapy (anti-PD1, anti-CTLA4 or the 
combination). They found that within pretreatment melano-
mas, the abundance of proliferating antigen-experienced cyto-
toxic T cells (CD8 + CD45RO + Ki67 +) and the proximity of 
antigen-experienced cytotoxic T cells to melanoma cells were 
associated with positive response to ICIs [85]. Similarly, Hoch 
et al. used IMC to study the chemokine landscape and immune 
infiltration in metastatic melanoma, highlighting major differ-
ence between “cold” and “hot” tumors [86].

Future perspectives: towards single‑cell 
analysis by mass spectrometry

Immunotherapy has revolutionized cancer treatment, but 
there are still many patients who do not obtain any benefit, 
or only a short-term benefit, from this type of therapy. 
To gain a deeper understanding of cancer immunity, new 
promising MS-based proteomics technologies may soon 
be applied to the study of the TME at the single cell level.

RNA-sequencing technologies have undergone a revo-
lution in recent years and are now routinely applied to 
profile transcriptomes of single cells. High-throughput sin-
gle-cell RNA-sequencing has provided important insights 
into cancer immunity. For example, by profiling tumor and 
immune cells in primary breast cancer [87], by revealing 
the cell type hierarchies in acute myeloid leukemia (AML) 
relevant for disease progression and immunity [88], and by 
identifying cytotoxic T cell populations associated with a 
positive to anti-PD1 therapy in melanoma [89]. Likewise, 
MS-based single-cell proteomics is now emerging as a 
powerful technology to study global protein expression 
profiles in single cells. However, contrary to genomics 
where DNA and RNA can be amplified by polymerase-
chain reaction (PCR), MS-based proteomics is challenged 
by detection limitations as protein and peptide signals can-
not be multiplied in a similar manner. Consequently, the 
MS instrumentation used to analyze single cell proteomes 
needs to have exquisite sensitivity to detect proteins of low 
cellular abundance. Proteins are typically present in copy 
numbers ranging from few hundred to tens of millions per 
cell [90]. Proteins are therefore present in about 10,000-
fold higher copy numbers per cell compared to mRNAs, 
which typically are expressed at a few thousand copies per 
cell at best. This higher dynamic range of protein abun-
dance distributions compared to mRNA transcripts also 
poses an additional challenge, which the MS technologies 
employed in single-cell proteomics must handle.

To overcome some of these challenges in single-cell 
proteomics, analytical strategies based on multiplexing 
techniques such as tandem mass tags (TMT) [91] have 
been devised. The isobaric TMT reagents are chemical 
labels that enable sample multiplexing of proteome sam-
ples by quantification and identification in tandem mass 
spectra. The TMT reagents have the same mass but gener-
ate reporter ions of different masses in MS/MS, which can 
be used for relative quantitation. Besides the possibility 
of analyzing up to 18 single cells in the same MS experi-
ment, the main advantage of the TMT-based multiplexing 
for single-cell proteomics is possibility to boost the MS 
signal by an order of magnitude by introducing a carrier 
proteome consisting of hundreds of cells in one of the 
TMT channels [92]. However, although the introduction of 
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a carrier proteome increases the overall number of protein 
identifications, it also dictates which proteins are identified 
[93] and therefore has to be used with caution. Single-cell 
proteomics is advancing rapidly [92, 94, 95], thanks to 
the continuous development of new MS instrumentation 
with increased sensitivity and specialized lossless sample 
preparation workflows. Nevertheless, protein adsorption 
loss during sample preparation still remains the main bot-
tleneck for of single-cell proteomics [96], and optimized 
single-cell proteomics workflows therefore involves 
miniaturization to decrease interactions with hydropho-
bic surfaces, work in smallest possible volumes to keep 
samples as concentrated as possible and minimize buffer 
evaporation for sensitivity and reproducibility. Nowadays, 
with optimized single-cell proteomics workflows, it is pos-
sible to analyze ∼1000–3000 proteins from a single cell 
using label-free quantification [97] and isobaric labeling 
approaches [98], and up to 6,000 proteins from a few hun-
dred cells [99].

An alternative strategy to single-cell proteomics is the 
recently introduced deep visual proteomics (DVP), which 
elegantly integrates microscopy and digital pathology with 
single-cell MS-based proteomics and deep learning algo-
rithms. DVP is particularly promising for characterization 
of cancer tissue heterogeneity and the study of TME. It 
combines artificial intelligence-driven image analysis of 
cellular phenotypes together with automated single-cell or 
single-nucleus laser microdissection and high-sensitivity 
MS, enabling the analysis of thousands of proteins from 
single cell types while preserving spatial context informa-
tion [100].

These novel technologies will soon be ready to become 
powerful tools for biomedical and translational research, 
including the field of cancer immunotherapy. Single-cell 
proteomics technologies together with the concept of deep 
visual proteomics is likely to revolutionize clinical prot-
eomics and its application to study cancer immunity in 
the future.
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