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implications for the development of biomarkers in patients treated 
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Abstract
First-line immunotherapy in non-small-cell lung cancer largely improved patients’ survival. PD-L1 testing is required before 
immune checkpoint inhibitor initiation. However, this biomarker fails to accurately predict patients’ response. On the other 
hand, immunotherapy exposes patients to immune-related toxicity, the mechanisms of which are still unclear. Hence, there 
is an unmet need to develop clinically approved predictive biomarkers to better select patients who will benefit the most 
from immune checkpoint inhibitors and improve risk management. Single-cell technologies provide unprecedented insight 
into the tumor and its microenvironment, leading to the discovery of immune cells involved in immune checkpoint inhibi-
tor response or toxicity. In this review, we will underscore the potential of the single-cell approach to identify candidate 
biomarkers improving non-small-cell lung cancer patients’ care.
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Biomarker identification in advanced 
non‑small‑cell lung cancer (NSCLC): a crucial 
need

Lung cancer is the leading cause of cancer death worldwide 
[1]. In the last decade, the development of immune check-
point inhibitors (ICI) has significantly improved clinical 
outcomes in advanced NSCLC [2–5]. Unfortunately, the 
pattern of ICI response is extremely heterogeneous, from 
hyper-progressors [6] to durable responders, [7] with the 
majority of patients not deriving significant benefits from 
ICI therapy [8]. Furthermore, ICI have a broad spectrum 
of toxicity and significant cost [9, 10]. Consequently, iden-
tifying robust predictive biomarkers is crucial but remains 
challenging despite numerous efforts.

Tumor programmed death ligand 1 (PD-L1) immuno-
histochemistry assay is used to determine the proportion of 
PD-L1 expressing tumor cells. PD-L1 expression was the first 
ICI biomarker to be published [2] and is currently the only 
one used in clinical routine. Multiple prospective trials have 
demonstrated a correlation between the level of tissue PD-L1 
expression and clinical efficacy [11], notably KEYNOTE-001 
[2], KEYNOTE 024 [12] and PACIFIC trial [13]. The Blue-
print PD-L1 IHC Assay Comparison Project evaluated the 
diagnostic performances of 4 commercially available assays 
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used in clinical trials, since each assay uses a specific clone 
for their monoclonal primary antibody: 22C3 for pembroli-
zumab, 28–8 for nivolumab, SP263 for nivolumab and SP142 
for atezolizumab. 22C3, 28–8 and SP263 assays had similar 
performances but SP142 showed a decreased sensitivity [14]. 
However, the optimal nature of IHC staining (tumor cells, 
immune cells or both) and the cut-off value of PD-L1 stain-
ing positivity is still being debated. Moreover, some studies 
showed that PD-L1 expression failed to predict clinical out-
comes under ICI therapy [15] and some patients with < 1% 
PD-L1 expression have substantial response rates [16]. For 
these reasons, PD-L1 expression is considered an imperfect 
biomarker that needs to be challenged. On the other hand, 
tumor mutational burden (TMB) quantifies the number of 
somatic mutations per coding area of a tumor genome using 
whole exome sequencing (WES) or FoundationOne CDx 
assay. TMB at the 10 mut/mb cut-point was approved by 
FDA in 2020 as a biomarker for pembrolizumab benefit across 
tumor types in the USA [17]. However, TMB faces several 
limitations in NSCLC such as the arbitrary threshold [18] or 
the absence of a consistent survival benefit of the TMB high 
phenotype [19, 20]. Notably, TMB failed to demonstrate its 
predictive value in NSCLC patients from the Checkmate 227 
trial treated with nivolumab plus ipilimumab [21].

To date, PD-L1 expression and TMB are the only bio-
markers used to stratify patients in prospective phase 3 clini-
cal trials, whereas other biomarkers are still investigational. 
For instance, PD-L1 expression on tumor-infiltrating lympho-
cytes (TILS) was found to be strongly associated with outcome 
[22]. Despite being associated with objective response rate 
(ORR) and progression-free survival (PFS) in patients treated 
with pembrolizumab, lymphocyte infiltration did not substan-
tially add to the predictive value of PD-L1 expression alone 
for overall survival (OS) [23]. In the blood, baseline Lung 
Immune Prognostic Index, combining derived neutrophil to 
lymphocyte ratio and lactate dehydrogenase level was associ-
ated with OS in NSCLC patients treated with ICI [24]. Finally, 
numerous potential predictive biomarkers of ICI efficacy are 
currently being studied: (i) T-effector and INF-γ-related gene 
signature [25]; (ii) peripheral blood markers such as proliferat-
ing PD-1+CD8 T cells [26] or serum interleukin-8 [27]; (iii) 
circulating tumor cells [28] or miRNAs/exosomes [29]. Most 
of these biomarkers still need a prospective validation to chal-
lenge PD-L1 expression in clinical routine.

Relevance of single‑cell technologies 
in the identification of predictive biomarkers 
for immunotherapy in NSCLC

PD-L1 expression remains the only biomarker used to pre-
dict ICI response in clinical routine. However, the increas-
ing knowledge on immune checkpoints shed the light on 

the complexity of their regulation [30], and accumulating 
evidence highlights the weakness of relying on one single 
molecule to predict treatment responsiveness. Thus, the ideal 
biomarker is still to be discovered and might result in a com-
binative approach [31] with more robustness to predict clini-
cal benefits from immunotherapy. Over the years, the rising 
era of single-cell technologies [32, 33] unveiled the possibil-
ity to dissect a tumor and its microenvironment, including 
immune cells, with surgical precision by targeting multiple 
parameters at once. Multiple layers of information, spanning 
from surface protein expression to transcriptomic changes, 
can be integrated to have a comprehensive understanding 
of the mechanisms driving immunotherapy responses and, 
therefore, offering an opportunity to identify future biomark-
ers. Hereinafter, we will pinpoint the relevance of single-cell 
technologies in the identification of predictive biomarkers 
for immunotherapy in NSCLC (Table 1).

Mass cytometry

Deep immunophenotyping of a large number of cells at a 
single-cell resolution was made possible by mass cytom-
etry. The samples are stained with antibodies conjugated 
to heavy-metal isotopes, which prevents spectral overlap 
observed with flow cytometry. Furthermore, the number of 
parameters that can be monitored considerably increased, 
up to 40–60 markers in daily practice [34], allowing for 
both identification and functional characterization of mul-
tiple cell subtypes at the protein level. These technologi-
cal advances substantially improved our understanding of 
immune responses and provided the opportunity to uncover 
pathological alterations affecting the immune system in 
cancer and resistance mechanisms limiting the success of 
immunotherapies.

T cells expressing inhibitory immune checkpoints are 
hyporesponsive upon antigen stimulation and classified as 
exhausted [35]. Datar et al. [36] phenotyped the infiltrated 
leukocytes from 20 primary resected NSCLC to assess the 
biological implications of the expression of three negative 
immune checkpoints PD-1, LAG-3 and TIM-3. A panel of 
35 markers enabled the monitoring of 9 different immune 
populations:  CD8+ T cells,  CD4+ T cells, regulatory T cells 
(Tregs), natural killer (NK) cells, NKT cells, B cells, granu-
locytes, macrophages and dendritic cells. PD-1 was mostly 
expressed on  CD8+ T cells,  CD25−FOXP3−CD4+ T helper, 
 CD25+FOXP3+CD4+ Tregs and  CD3+CD56+ NKT cells, 
LAG-3 on  CD8+ T cells and TIM-3 was broadly expressed 
with macrophages, NK and NKT cells showing the high-
est expression. Regarding their coexpression, 5.4% of the 
 CD3+ TILs were positive for the three markers, 9.1% were 
PD-1+LAG-3+, 21% were PD-1+TIM-3+ and 10.3% were 
LAG-3+TIM-3+. Interestingly, it was demonstrated that 
PD-1 and TIM-3 coexpression favoured the persistence 
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of exhausted T-cells [37]. As the panel contained markers 
indicative of cell functions, they investigated the functional 
characteristics of the T cells expressing the above-mentioned 
immune checkpoints and observed that their coexpression 
was associated with higher expression of functional markers. 
PD-1+LAG-3+TIM-3+ T cells showed the highest expres-
sion of activation markers CD69 and 4-1BB, cytotoxicity 
marker granzyme GZMB, proliferation marker Ki67, apop-
totic receptor FAS and pro-apoptotic protein BIM. Finally, 
they evaluated the impact of the three immune checkpoints 
on the survival of 90 patients treated with PD-1 inhibitors. 
Neither high PD-1 nor high TIM-3 T cell expression was 
predictive of an improved PFS; however, patients express-
ing high LAG-3 showed a significantly poorer outcome and 
patients with low expression of LAG-3 and high expression 
of PD-L1 had an improved PFS. These results suggest that 
LAG-3 could be involved in resistance to immunotherapy 
and could be targeted to improve ICI response. Accordingly, 
combined therapy of anti-LAG-3 relatlimab and anti-PD-1 
nivolumab had greater results on PFS in treatment-naïve 
patients with advanced melanoma compared with nivolumab 
monotherapy [38].

The large panels used in mass cytometry give the pos-
sibility to map the relationships between different cell 
populations and shift the focus on other cell types that 
enhance anti-tumor response such as  CD4+ T cells. Tay 
et al. [39] reviewed the multiple lines of evidence sug-
gesting their implication in anti-tumor immunity. Blood 
samples from NSCLC patients treated with nivolumab 
revealed that Tregs were more present in the blood of non-
responders [40], consistent with Kamada et al.’s [41] study 
that demonstrated the dampening effect of Tregs on anti-
PD-1 response. Besides, responders had higher frequen-
cies of  CD62Llow  CD8+ and  CD4+ T cells [40], the latter 
containing effector and effector memory T cells crucial 
for the establishment of an effective and sustained anti-
tumor response [42]. The authors performed mass cytom-
etry to better characterize this population and identified 
 CD62Llow  CD4+ T cells as T-bet+CD27−FOXP3−CXCR3+ 
Th1 cells that correlated with cytotoxic  CD8+ T cells and 
PD-1 expression on  CD8+ T cells.  CD62LlowCD8+ T cell 
subset was significantly increased in responders, although 
not as robustly as the  CD62LlowCD4+ T cell population. 
The monitoring of the  CD62LlowCD4+ T cell popula-
tion before and after nivolumab treatment showed that 
long-term responders without disease progression in the 
500 days after immunotherapy had higher frequencies 
of  CD62LlowCD4+ T cells before treatment compared to 
short-term or non-responders. In addition, patients with an 
ongoing response between 12 to 92 weeks post-nivolumab 
had significantly higher frequencies of  CD62LlowCD4+ T 
cells compared to patients who acquired treatment resist-
ance. Notably, Liu et al. [43] also found evidence of Th1 

expansion in responders after immunochemotherapy. The 
authors translated their findings into a predictive score, 
which could be used in a clinical setting. This predic-
tive score was based on the percentages of  CD62Llow and 
 CD25+FOXP3+ among  CD4+ T cells and significantly 
discriminated responders from non-responders after 
nivolumab treatment with a sensitivity of 92.9% and a 
specificity of 72.1% in a validation cohort of 86 patients. 
Hence, this study demonstrated the implication of  CD4+ 
T cells in the maintenance of a sustained response after 
nivolumab. Immunomonitoring the  CD62Llow  CD4+ T cell 
subset in the clinic could be a useful tool to predict long-
term responses.

It can be objected that mass cytometry is still expensive 
and time-consuming for routine use. Nevertheless, this tech-
nique can be used in exploratory studies before clinically 
validated methods in transitional research settings, as exem-
plified recently. Newel’s team demonstrated the heterogene-
ity of TILs, containing bystanders and tumor-specific  CD8+ 
TILs characterized by high CD39 expression using mass 
cytometry. Notably,  CD39+CD8+ T cells were predictive of 
response to immunotherapy in NSCLC patients [44, 45]. 
Therefore, they compared this technique to other clinically 
relevant methods for an accurate quantification of this popu-
lation. Frequencies found with multiplex immunohistochem-
istry (mIHC) significantly correlated with mass cytometry 
data. Among patients treated with PD-1/PD-L1 inhibitors, 
responders had higher proportions of  CD39+CD8+ T cells 
compared with non-responders whereas neither  CD39+ cells 
nor  CD8+ T cells retained significance.

scRNA‑seq

scRNA-seq made possible the investigation of tumor het-
erogeneity in an unbiased manner as it does not require the 
‘markers selection’ step of mass cytometry. With the iden-
tification of patterns of expression programs, not only do 
we access cell-type information but also cell-state across 
patients [46].

Cytotoxic  CD8+ T cells are thought to be the main driv-
ers of anti-tumor immunity and the cornerstone of cancer 
immunotherapy response [47]. Gueguen et al. [48] ques-
tioned the origins of  CD8+ TILs in NSCLC and conducted 
a pseudotime analysis. Trajectory inference algorithms 
use single-cell data to predict cell fate over time, giving 
insights into a dynamic process that can hardly be wit-
nessed [49]. They identified blood circulating memory-
like precursor states  GZMK+ and  KLF2+  CD8+ T cells 
recruited at the tumor site and tissue-resident precursors 
 XCL1+CD8+ T cells. Results suggested that these pre-
cursors converted into a transitional state  GZMH+CD8+ 
T cells to become terminally differentiated  CD8+ T cells 
with a dysfunctional/exhausted phenotype. The late  CD8+ 
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T cells were found to be the most cycling cells compared 
with precursors. PD-1+TIM-3+CD39+CD8+ T cells were 
 Ki67+ and comprised a  CD103+ fraction that expressed 
PD-L1 whereas PD-1−TIM-3− or PD-1+CD8+ T cells 
were  Ki67low. These results were consistent with the TCR 
sequencing analysis where precursors shared many TCRs 
with  GZMH+ and terminally differentiated  CD8+ T cells. 
Besides, cycling cells TCRs preferentially overlapped with 
late  CD8+ T cells, suggesting that the latter expand in 
response to tumor-antigen stimulation. Interestingly, they 
applied response signatures from Sade-Feldman et al. [50] 
that focused on melanoma patients treated with immuno-
therapy.  KLF2+ and  XCL1+  CD8+ T cells had an increased 
score for the good response signature; meanwhile,  GZMH+ 
and terminally differentiated  CD8+ T cells had an increased 
score for the poor response signature, consistent with the 
study of Guo et al. [51]. A similar model has since been 
proposed by Liu et al. [43] based on patients treated with 
immunochemotherapy. They developed the ‘clonal revival’ 
theory where pre-existing precursors locally expand and 
additional peripheral T cells are recruited at the tumor site 
to actively participate in the anti-tumor response follow-
ing treatment as hypothesized in Wu et al.’s [52] paper, 
providing an explanatory mechanism of response to immu-
notherapy. Their results suggested that the tumor microen-
vironment promoted CXCL13 expression on  CD8+ T cells 
whereas Banchereau et al. [53] described tissue-resident 
memory T cells  (TRM) expressing high levels of CXCL13 
transcript.  TRM are characterized by CD103 surface protein 
expression and their accumulation is promoted by TGF-β1 
in mice [54]. Their presence in tumor infiltrate is asso-
ciated with improved prognosis [54]. Inflamed NSCLC 
were shown to overexpress CD103-encoding gene ITGAE 
compared with desert or immune-excluded tumors and 
its expression on  CD8+ T cells was positively correlated 
with PD-L1 expression [53].  TRM expressed CXCL13, the 
immune checkpoints LAG3, PDCD1 (PD-1), HAVCR2 
(TIM-3), TIGIT, CTLA4, a regulator of tissue-residency 
ZF683 and markers of tumor-specific response TOX [55] 
and ENTPD1 (CD39), consistent with Simoni et  al.’s 
[44] study. These results strongly suggest that previously 
labelled exhausted  CD8+ T cells were  TRM. Additionally, 
single-cell TCR clonality analysis revealed that  TRM shared 
most clonotypes with  MKI67+ cluster, suggesting that it 
could result from a proliferation of  TRM. Based on OAK 
trial data [56], they could demonstrate the predictive value 
of high ITGAE expression with improved OS for patients 
treated with atezolizumab compared with patients receiv-
ing docetaxel. Interestingly, CXCL13 is also involved in 
the formation of tertiary lymphoid structures (TLS). TLS 
arise around inflamed tissues and resemble secondary lym-
phoid organs [57]. They participate in anti-tumor immunity 
by increasing antigen presentation and cytokine-mediated 

signalling and improve ICI response in melanoma [58], 
which was also recently demonstrated in NSCLC [59]. 
Besides, Patil et al. [54] identified a plasma cell signature 
that could significantly predict increased OS in patients 
receiving immunotherapy. mIHC revealed that plasma cells 
were located at the vicinity of TLS, which presence was 
also associated to improved survival. Importantly, com-
pared to known biomarkers such as PD-L1 or tissue TMB, 
the plasma cell signature still had the strongest impact on 
survival. It must be noted that MS4A1 (CD20) expression 
correlated with PDCD1 (PD-1) and CD274 (PD-L1) in the 
study of Chen et al. [60]. However, B cell signatures did 
not statistically improve the OS of atezolizumab-treated 
patients in the study of Patil et al. [54].

One major pitfall of scRNA-seq data analysis is the 
annotation of cell populations. Multiple datasets are often 
combined and transcriptomic findings are complemented 
by mass cytometry to validate protein expression levels 
on specific cell populations. However, it requires addi-
tional work and technical issues of combining two dif-
ferent approaches make it more complex. To circumvent 
this limit, multimodal single-cell technologies have been 
developed. Notably, CITE-seq allows simultaneous single-
cell profiling of both transcripts and surface proteins by 
using sequenceable DNA oligonucleotides conjugated to 
antibodies that can bind to epitopes displayed on the cell 
surface [61]. Leader et al. [62] identified a ‘lung cancer 
immune activation module’ (LCAM) predictive of immu-
notherapy response. Based on the POPLAR trial results 
[25], they could determine that patients with increased 
frequencies of PD-1+CXCL13+ activated T cells,  SPP1+ 
monocyte-derived macrophages,  IgG+ plasma cells and 
a high TMB had an improved OS when treated with 
atezolizumab compared with docetaxel-treated patients. 
PD-1+CXCL13+ T cells could overlap with previously 
described subsets in studies by Banchereau et al. [53] and 
Gueguen et al. [48]. Notably, Chen et al. [60] found high 
expression of IgG encoding transcripts in plasma-like B 
cells which toxicity varied according to disease stage in 
culture with lung cancer A549 cell line. Activated T cells, 
including  CD4+ and  CD8+ T cells, were found to over-
express PD-1 and CD39 proteins and had an increased 
percentage of tumor-specific TCR clones. Interestingly, 
mIHC revealed that samples with high LCAM scores had 
plasma cells distributed around PD-1+ T cell aggregates 
or TLS made of PD-1+ T cells and  CD20+ B cells, in line 
with other publications [59, 60]. It is possible to predict 
ligand-receptor interactions to better understand cell-to-
cell communication within the tumor microenvironment. 
The study by Leader et al. [62] unveiled probable crosstalk 
between  CXCL13+ T cells and  CXCR5+ B cells,  41BBL+ 
B cells and  41BB+ T cells. Therefore, the presence of 
LCAM could translate an increased anti-tumor immune 
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response that supports patients’ response to immunother-
apy. CD274 (PD-L1) gene expression poorly correlated 
with LCAM score contrarily to TMB, underscoring the 
necessity to select better predictive tools that include both 
tumor intrinsic and immune cell infiltrate features.

Lau et al. [63] demonstrated that NSCLC tumor cells 
expressed human leucocyte antigen (HLA)-II transcripts, 
mainly HLA-DRB1. Besides, they identified a cluster of 
cytotoxic GZMB  CD4+ T cells that expressed high levels of 
PDCD1 and CTLA4, suggesting that this population could 
be involved in the anti-tumor response after immunotherapy. 
PD-L1 and HLA-II expression in classic Hodgkin’s lym-
phoma (cHL) were predictive of an improved outcome after 
immunotherapy [64]. As cHL expresses little HLA-I mol-
ecules, it emphasizes the possibility of an anti-tumor immu-
nity independent from HLA-I antigen presentation. In Lau 
et al.’s [63] study, mIHC analysis indicated that cytotoxic 
 CD4+ T cells potentially interact with HLA-II-expressing 
tumor cells. The cytotoxic T cells had the greatest clonal 
expansion, again indicative of a tumor-specific immune 
response. Notably, high PD-L1 expression on the tumor was 
not associated with a longer time to progression. Based on 
a retrospective cohort of 123 individuals, the authors devel-
oped a predictive model, based on TMB and a cytotoxic 
score calculated by taking the mean of log-transformed 
expression of 25 cytotoxic-related gene signature (NKG7, 
CXCL13, GZMH, HAVCR2, CCL5, GZMK, CCL4, 
GZMA, CCL3, CST7, CCL4L2, ACP5, TNFRSF9, TIGIT, 
GZMB, PDCD1, PRF1, LYST, SIRPG, LAG3, CARD16, 
TUBA4A, PTMS, CD74, KLRD1) highly expressed in both 
 CD4+ and  CD8+ cytotoxic T cells, that could significantly 
differentiate patients with long and short time to progres-
sion after immunotherapy, regardless of HLA-I deficiency. 
Curiously, they also identified two cytotoxic  CD8+ T cell 
clusters  CD103+CD39+ that expressed negative immune 
checkpoint transcripts PDCD1, LAG3 and TIGIT that 
resemble and could potentially overlap with the  CD103+ 
and the  CD39+  CD8+ T cells previously mentioned [44, 45, 
53]. Besides investigating immune populations involved in 
response to immunotherapy, scRNA-seq can also help to 
characterize immune cells that trigger treatment resistance. 
Serine threonine kinase LKB1 mutated tumors are known 
to poorly respond to immunotherapy [65]. Transcriptional 
profiling of STK11/LKB1 mutant mouse models revealed 
the presence of hypofunctional  CD8+ T cells with a decrease 
in memory-like  CD8+ T cells and an enrichment in M2-like 
macrophages [66, 67]. Furthermore, the level of lactate was 
increased in STK11/LKB1 mutant patients, which could 
explain the immunosuppressive environment [68]. The 
blockade of the lactate pathway through MCT4 knock-out 
or the inhibition of Axl in DCs sensitized LKB1 mutant 
tumors to immunotherapy, suggesting that combination 

therapies could circumvent treatment resistance in LKB1 
mutant NSCLC patients.

High‑dimensional imaging and spatial 
transcriptomics

Even though cell-to-cell interactions can be computation-
ally predicted from scRNA-seq data, they are based on 
pairwise ligand-receptor expression; we therefore have no 
evidence of their actual behaviour in vivo. Imaging mass 
cytometry (IMC) can solve this problem and provide pre-
cious information on the NSCLC tumor architecture and 
immune cell crosstalk [69, 70]. Jia et al. [71] reported the 
first case of pseudoprogression after neoadjuvant immu-
nochemotherapy. IMC enabled them to witness a shift 
from immune desert to infiltrated tumor that could have 
caused the enlarged lesions. The results showed cell-to-
cell contact between  CD8+ T cells and  CD14+ and  CD16+ 
monocytes, consistent with Leader et al. [62] predictions 
that involved IL-10, CCL3 and TNF receptors.

Another limit of scRNA-seq is the loss of spatial infor-
mation regarding gene expression. Spatial transcriptom-
ics enable us to analyse transcriptomic regulation in a 
tissue context while preserving the overall architecture 
of the sample [72]. The role of tumor-associated mac-
rophages (TAMs) in promoting tumor growth and resist-
ance to treatment is well known [73]. Larroquette et al. 
[74] demonstrated the predictive value of TAMs infil-
tration for NSCLC patients treated with immunotherapy. 
Indeed, patients with low  CD163+ cell density within the 
tumor had improved clinical outcomes after immuno-
therapy. However,  CD163+ cell infiltration in the stroma 
was not associated with the outcome, underscoring the 
importance of spatial information. The highly infiltrated 
tumors upregulated ITGAM (CD11b), CD27 and CCL5, 
a chemokine involved in TAM recruitment, whereas 
tumors with low  CD163+ infiltrate upregulated HLA-E 
and BLC2. Among patients with high infiltrate of TAMs, 
some showed good treatment response, which was asso-
ciated with an upregulation of genes associated with M1 
phenotype and IFN-γ signalling pathway.

Other emerging technologies are being developed as 
screening tools for biomarkers in NSCLC, notably digital 
spatial profiling. Fluorescence images from formalin-fixed 
paraffin-embedded tissue sections stained with oligonucleo-
tide-conjugated antibodies simultaneously identify proteins 
or RNA expressed in user-defined compartments such as 
tumor cells, stroma and immune cells [75]. Several studies 
demonstrated the feasibility and potential of such approach 
in both research and clinical settings [76–78]. However, this 
promising technology is still in its early stage and needs to 
be optimized before being used on a larger scale.
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Contribution of single‑cell technologies 
in the investigation of ICI‑induced 
immune‑related adverse events (irAEs) 
in NSCLC

The clinical benefits of ICI are limited by irAEs. Grade ≥ 3 
irAEs occur in approximately 10% of NSCLC patients 
treated by ICI and warrant ICI suspension or permanent 
discontinuation [79, 80]. Chemotherapy combined with 
PD-1/PD-L1inhibitors is associated with a lower risk 
of severe irAEs than PD-1/PD-L1 inhibitors alone and 
the addition of CTLA-4 inhibitors increases the risk of 
grade ≥ 3 irAEs [81]. Although the development of irAEs 
correlates with improved efficacy of PD-1/PD-L1 inhibi-
tors [82], ICI-related pneumonitis and myocarditis of any 
grade have been associated with decreased survival in 
NSCLC patients [83, 84]. IrAEs treatment mainly relies 
on corticosteroids, from low to high dosages according to 
severity. A study conducted on 2750 lung cancer patients 
treated by ICI showed that, of the 2% of patients with 
severe irAEs, 43% developed steroid-resistant irAEs [85]. 
Hence, the pathophysiology of these highly heterogenous 
toxicities requires further investigation to guide risk strati-
fication of patients and management strategies and extend 
the clinical benefit of ICI [86]. Here, we will review the 
contribution of single-cell technologies to provide key 
insights into the mechanisms and potential biomarkers of 
ICI-related irAEs in NSCLC patients (Table 2).

Mechanisms underlying ICI‑related irAEs

Although the pathophysiology of ICI-related irAEs resem-
bles that of de novo autoimmune diseases, the precise 
underlying mechanisms have not been fully elucidated. 
Shared T cell clones were identified in matched ICI-related 
autoimmune skin lesions and tumor samples from NSCLC 
patients [87]. Besides, the discovery of tumor-associated 
self-antigens (Ag) combined with scRNA-seq further 
evidenced that autoreactive, napsin A–specific,  CD8+ 
T cells are involved in both ICI efficacy and ICI-related 
inflammatory lung lesions [88]. This strongly suggests the 
existence of shared antigens and the capacity of ICI to 
simultaneously reinvigorate Ag-specific T cells in the two 
compartments. Besides reflecting treatment effectiveness, 
the identification of common pathways makes the occur-
rence of irAEs preventable.

Consistent with the previous notion, a study combining 
mass cytometry with scRNA-seq detected a predominant 
clonally expanded  CD38hiCD127−CD8+ T cell popula-
tion with effector and inflammatory phenotype driven 
by interferon in synovial fluid (SF) from ICI-related 

arthritis but not in SF from rheumatoid arthritis [89]. 
 CD38hiCD127−CD8+ T cells from the peripheral blood 
of ICI-related arthritis were also increased, indicative of 
a systemic reaction to ICI rather than a local expansion 
[90]. Of note,  CD38hi  CD8+ T cells reinvigorated by ICI 
have been detected, using mass cytometry, in tumor and 
peripheral blood samples from NSCLC patients, where 
they correlated with improved responses to PD-1 inhibi-
tors [90, 91].

Strikingly, the same mechanism has been suggested in 
Kim et al.’s [92] publication with  CX3CR1hi and  CXCR3hi 
 CD8+ T cells, two subsets that could largely overlap with 
 CD38hiCD127−CD8+ T cells from the study of Wang et al. 
[89]. Although scRNA-seq data show little expression 
of CD38 transcript by  CX3CR1hi  CD8+ T cells, the same 
was observed in  CD38hiCD127−CD8+ T cells. Besides, 
 CD38hiCD127−CD8+ T cells expressed high levels of CXR3 
and CX3CR1. Kim et al. [92] took a step further with in 
silico cell-to-cell interaction analysis and in vitro migration 
assay suggesting that circulating  CX3CR1hi  CD8+ T cells are 
recruited into the joints by CXCL9/10/11/16-secreting mye-
loid cells. These data indicate that Ag-specific T cells acti-
vated by ICI and recruited from the periphery may contribute 
to the pathogenesis of ICI-related arthritis in NSCLC patients.

scRNA-seq and scTCR-seq analysis were also conducted 
on colon samples from healthy individuals and melanoma 
patients with or without ICI-related colitis [93]. As in ICI-
related arthritis, crosstalk between  CXCR3+ T cells and 
CXCL9/10+ myeloid cells was proposed to be involved in the 
recruitment of T cells. However, as opposed to ICI-related 
arthritis, a large proportion of clonally expanded TCRs from 
 TRM were shared with cycling  (MKI67+) effector  (GZMB+ 
HLA-DRA+)  CD8+ T cells in ICI-related colitis. The authors 
proposed that the differentiation of  TRM into effector  CD8+ T 
cells, further evidenced by pseudotime analysis, could explain 
the early onset of ICI-related colitis. Tregs play an important 
role in preventing autoimmune disease and can be depleted by 
CTLA-4 inhibitors. Tregs expressing a Th1 profile  (STAT1+ 
 IL12RB2+  IL10−) were enriched in CTLA-4 inhibitors 
(± PD-1 inhibitors)-related colitis, compared with healthy 
colon tissue, whereas no Tregs depletion was observed [93]. 
Besides, Tregs from ICI-related arthritis were enriched and 
displayed enhanced immunosuppressive functions [92]. These 
data indicate that the increased risk to develop grade ≥ 3 irAEs 
following administration of CTLA-4 inhibitors, alone or in 
combination, is not caused by depletion of CTLA-4+ Tregs 
[94], but is rather caused by alterations in expression pro-
grams of suppressive  CD4+ T cells [95]. Importantly,  CD4+ 
Th17 cells, but not Th1 cells, persisted in the peripheral blood 
of patients with ICI-related arthritis following steroid admin-
istration, suggesting a role of the former cell population in 
irAEs resistance to steroids [92].
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Potential biomarker of ICI‑related irAEs

Known risk factors of ICI-related irAEs in NSCLC patients 
include HLA-I homozygosity [96], BP180-specific immu-
noglobulin G [97], baseline levels of peripheral  CD8+ T 
cells [98] and gut microbiome [99, 100]. The authors cor-
related the previously mentioned risk factors with improved 
responses to ICI. However, it is necessary to dissoci-
ate irAEs biomarkers from the efficacy of ICI, as the two 
events are closely related [101]. Mass cytometry analysis of 
peripheral blood samples from 46 NSCLC patients, prior to 
PD-1 inhibitor administration, identified 7 phenotypically 
distinct populations of regulatory B cells (Bregs) [102]. 
B-cell cytokine production was impaired in ICI-related 
irAEs patients, notably interleukine-10 (IL-10), a cytokine 
produced by Bregs with immunosuppressive properties. 
Consistent with this finding, the Bregs clusters from ICI-
related irAEs patients were decreased and their defect par-
ticipated in the emergence of ICI-related irAEs. Conversely, 
scRNA-seq analysis of peripheral blood samples from lung 
cancer patients revealed increased B cells, with substan-
tially different B cell receptors repertoire, during ICI-related 
myocarditis remission vs onset [103]. Although changes in 
peripheral B cell populations were also associated with 
the development of severe ICI-related irAEs in melanoma 
patients, the incriminating phenotypes were different from 
those described in lung cancer patients [104]. This inter-
tumor variability adds a layer of complexity to the study of 
ICI-related irAEs. Indeed, several studies have demonstrated 
that single-cell technologies are suitable tools to highlight 
rare events such as peripheral type-1 conventional dendritic 
cell [105], activated effector memory  CD4+ T cell [106] and 
multimodal molecular states [107] as potential biomarkers 
of irAEs, dissociated from the response to ICI, in hepatocel-
lular carcinoma, melanoma and metastatic thymic cancer 
patients, respectively.

Conclusion

Single-cell technologies have led to an unprecedented 
depth of analysis of the tumor microenvironment, pav-
ing the way toward an exhaustive comprehension of the 
mechanisms of action and resistance to ICI. Indeed, these 
multiparametric approaches provide highly resolutive data 
to monitor phenotypic and functional heterogeneity, and 
refine our knowledge on immune cell composition. New 
cell types supporting or dampening ICI response are being 
identified and changes occurring during ICI treatment help 
patients’ stratification.

This level of information cannot be captured by low-res-
olution techniques, which barely allow for the rough iden-
tification of immune populations and usually include a very 

limited number of functional markers. This major limitation 
applies to most techniques that are validated for clinical 
applications. Therefore, if high-throughput technologies are 
currently used for screening candidate biomarkers among 
thousands of immune subsets, we should see the premises 
of their use for clinical applications within the next coming 
years. Indeed, the high cost of these technologies, which 
currently prevents their use in clinical routine, is expected to 
decrease with barcoding and cell hashing. In addition, this 
cost must be weighed against the clinical benefit of a ther-
apy better adapted to a patient’s immune profile, and against 
the cost of monoclonal antibody therapies whose efficacy 
is bound to be low or non-existent in certain subgroups of 
patients [9, 10]. This question is particularly relevant given 
the large number of ICI in phases II and III studies. Finally, 
the fact that the mechanisms of action and resistance are 
more complex than initially expected, as they involve a large 
number of immune subsets, makes it unlikely that a single 
parameter can accurately predict response to these drugs.

The major asset of immune biomarkers is their clini-
cal actionnability, which opens perspectives of therapeu-
tic intervention. Indeed, the identification of alternative 
immune checkpoints that are upregulated upon ligation of 
therapeutic monoclonal antibodies on their targets enables 
to highlight potential immunotherapy combinations. Upreg-
ulation of immune checkpoints such as LAG-3, TIM-3 
and BTLA by immune cells has been described following 
PD-1, PD-L1 and CTLA4 inhibition and was linked with 
enhanced resistance to these drugs in NSCLC [108, 109]. 
Consistently, in the results of the phase II CITYSCAPE 
trial assessing the efficacy of tiragolumab in combination 
with atezolizumab, the simultaneous targeting of TIGIT and 
PD-L1 significantly enhanced survival in NSCLC patients, 
with a safety profile similar to that of atezolizumab alone 
[110]. Other applications are expected with the identifica-
tion of immunosuppressive populations that interfere with 
T cell anti-tumor functions and involved in resistance to 
immunotherapy that may require depletion before treatment 
initiation.

The next hits are expected with spatially resolved multi-
plexed profiling approaches. Indeed, the spatial architecture 
of the immune microenvironment directly impacts cellular 
interactions, and has been linked with response to immu-
notherapy in renal cell carcinoma [111], melanoma [112, 
113] and lung cancer [74]. Results of ongoing studies are 
eagerly awaited and should further enrich the overall picture 
of the determinants of responsiveness to ICI. The next chal-
lenges to overcome in the spatial analysis are yet to come, 
with needs for improvement of the RNA capture efficiency, 
as well as the resolution of spatial measurements, to better 
capture rare cell types while avoiding analysis of doublets.

To conclude, the accumulation of knowledge gained from 
these high-throughput technologies will help identify the 
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next-generation predictive biomarkers of response to ICI and 
successfully meet the challenges in oncoimmunology.
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