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Abstract
Acute ischaemic and haemorrhagic stroke account for significant disability and morbidity burdens worldwide. The myeloid 
arm of the peripheral innate immune system is critical in the immunological response to acute ischaemic and haemorrhagic 
stroke. Neutrophils, monocytes, and dendritic cells (DC) contribute to the evolution of pathogenic local and systemic inflam-
mation, whilst maintaining a critical role in ongoing immunity protecting against secondary infections. This review aims 
to summarise the key alterations to myeloid immunity in acute ischaemic stroke, intracerebral haemorrhage (ICH), and 
subarachnoid haemorrhage (SAH). By integrating clinical and preclinical research, we discover how myeloid immunity is 
affected across multiple organ systems including the brain, blood, bone marrow, spleen, and lung, and evaluate how these 
perturbations associate with real-world outcomes including infection. These findings are placed in the context of the rapidly 
developing field of human immunology, which offers a wealth of opportunity for further research.
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Introduction

Advances in the field of stroke medicine and management of 
cardiovascular health have led to a steady decline in stroke 
incidence and stroke-related mortality and morbidity in high 
income countries [1, 2]. In particular, new treatments like 
endovascular thrombectomy for the treatment of large vessel 
occlusion ischaemic stroke have been shown to be effective 
in reducing rates of disability [3–5]. Haemorrhagic stroke, 
whilst less prevalent than ischaemic stroke (global inci-
dence: 37.6%, haemorrhagic; 62.4% ischaemic), accounts for 
comparatively higher morbidity burden, and is hampered by 
lack of therapeutic interventions [1, 6]. Intracerebral haem-
orrhage (ICH) is the most prevalent form of haemorrhagic 
stroke, and is caused by a bleed within the brain tissue or 
parenchyma, whereas subarachnoid haemorrhage (SAH) is 
precipitated by a bleed into the subarachnoid space within 
the meninges [1, 7]. Challenges in the treatment of ischaemic 
and haemorrhagic stroke centre on reducing mortality rates 
associated with secondary brain injury and infection and, as 
survival rates improve, reducing the impact of disability and 
long term sequelae including cognitive impairment [8–11]. 
Amounting evidence suggests that immune dysregulation 
may be a target to improve brain injury, recovery, and out-
come with respect to these challenges.
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The activation of the peripheral innate immune system 
coupled with systemic inflammation is a fundamental fea-
ture of the immune response to stroke, contributing to both 
secondary brain injury and repair [12–14]. However, in 
combination with lymphopenia, aberrant systemic inflam-
mation and innate immune dysfunction can leave the host 
vulnerable to secondary infection [15–17]. Thus, the innate 
immune system has two distinct overlapping roles in stroke 
pathophysiology, first in the inflammatory response to brain 
injury and second in the maintenance of host defence. This 
review will focus on profiling the myeloid arm of the innate 
immune system, delineating specific roles for neutrophils, 
monocytes, and dendritic cells (DCs) in response to ischae-
mic and haemorrhagic brain injury and maintenance of host 
immunity. Discussion will focus on human stroke immunol-
ogy, and place findings within the context of new conceptual 
frameworks for myeloid cell immunology in the single cell 
era.

The CNS

Priming the environment: early stages of brain 
injury

Acute cerebral ischaemia triggers the rapid activation of 
inflammation in response to inadequate perfusion, and in 
the case of haemorrhagic stroke, presence of extravasated 
blood in the brain parenchyma, subarachnoid space, and 
cerebrospinal fluid (CSF) [18–21]. Immunogenic inflam-
matory activity is concentrated within the peri-infarct and 
peri-haematomal tissues in the acute period following stroke, 
and is mediated by the activation of tissue resident mac-
rophages/microglia, endothelial cells and astrocytes [11, 
22–24]. These brain resident cells sense and respond to local 
damage associated molecular patterns (DAMPs) released by 
dead and dying cells, via the induction of a repertoire of 
inflammatory pathways through toll-like receptor signalling 
[24–27]. Production of inflammatory cytokines, chemokines, 
and proteinases alongside the upregulation of endothelial 
cell adhesion molecules, primes the central nervous system 
(CNS) and vasculature for the entry of peripheral leukocytes 
[28–32]. Neutrophils and monocytes are amongst the first 
leukocytes to invade the inflamed CNS, where they popu-
late meningeal, parenchymal, and vascular tissues [33–39]. 
Myeloid cell infiltration peaks around 1–5 days post-injury 
[36, 40–43] before declining steadily over the course of a 
week, at which point B and T cells become established in 
brain tissue [44, 45]. This critical time period (1–5 days) 
during the subacute stage coincides with the peak of sys-
temic inflammation, development of nosocomial infections, 
and early mortality as seen in acute ischaemic and haemor-
rhagic stroke patients [46–52].

Myeloid cell recruitment to the CNS

CNS anatomy

Leukocyte entry to the CNS following stroke is tightly reg-
ulated by a network of specialised neurovascular barriers. 
There are three main gates by which leukocytes may infil-
trate the CNS from the peripheral blood: the blood–brain 
barrier (BBB) in the brain parenchyma, the blood-menin-
geal barrier in the subarachnoid space, and the blood-CSF 
barrier in the choroid plexus [53]. The brain parenchyma 
during homeostasis is impermeable to peripheral blood 
leukocytes existing in a state of ‘immune privilege’. At 
steady state, the parenchyma is populated only by resident 
myeloid cells: the microglia and perivascular macrophage 
[53]. By contrast, the meninges and choroid plexus com-
prise a broad range of myeloid populations including bor-
der associated macrophages, monocytes, DCs, and granu-
locytes [54, 55].

Following stroke, myeloid cells from the periphery 
accumulate within meningeal, parenchymal, and choroid 
plexus tissues [35, 36]. Emerging evidence from human 
and rodent studies suggest that peripheral myeloid cells 
exhibit divergent activation states in response to stroke, 
which can vary across different anatomical niches [56, 
57]. In contrast, the myeloid response to ischaemic and 
haemorrhagic stroke exhibits several core overlapping ele-
ments, suggestive of a level of redundancy in the response 
to inflammatory brain injury [35, 58–60].

Brain parenchyma

Neutrophils and monocytes infiltrate the brain paren-
chyma in both experimental ischaemic and haemorrhagic 
stroke, mediated by the loss of BBB integrity in response 
to inflammation [30, 61, 62]. Extravasated parenchymal 
populations of neutrophils and monocytes have also been 
observed in ischaemic stroke patients post-mortem, con-
firming their clinical relevance [33–39].

Leukocyte chemotaxis is mediated by a compromised 
BBB, which acts alongside cytokines and chemokine gra-
dients to attract myeloid cells to the brain parenchyma. 
Chemokine signalling is an essential regulator of myeloid 
cell recruitment to the CNS and distribution within the 
brain parenchyma. Neutrophil chemotaxis is supported 
by a plethora of chemokines including CXC chemokine 
ligand (CXCL)1, C–C chemokine ligand (CCL)5, 
CXCL12, and CXCL13 which are rapidly increased in 
response to experimental stroke [63]. In humans, neutro-
phil chemokines are upregulated locally in CNS compart-
ments following ischaemic stroke. CXCL4 and CXCL7 
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are increased in the cerebral circulation relative to the 
systemic circulation [64], whereas CXCL5 is increased in 
the CSF compartment within 24 h [65]. Neutrophil recruit-
ment via CXCL1 is differentially regulated by interleukin 
(IL)-17+ γδ T cells, which promote CXCL1 production 
by astrocytes in murine models of ischaemic stroke [66]. 
Notably, increased CXCL1 levels have been reported in 
the CSF samples of ischaemic stroke patients, supporting 
a potential translational role for the chemokine in human 
subjects. [67]

CC receptor (CCR)2 /CCL2 signalling is indispensable 
for monocyte chemotaxis, as pharmacological or genetic 
inhibition of CCR2 signalling prohibits monocyte entry to 
the brain following experimental ischaemic and haemor-
rhagic stroke [29, 42, 43, 68, 69]. CCR2 signalling therefore 
appears to be a common mechanism by which myeloid cells 
are recruited to the brain following ischaemic and haem-
orrhagic stroke [30, 70]. In response to ischaemic stroke, 
monocyte distribution amongst the infarct and peri-infarct 
tissues appears to be regulated by the CXCL12/CXC recep-
tor (CXCR) 4 signalling axis [56]. Retainment of mono-
cytes within the peri-infarct tissue is observed following 
selective deletion of monocytic CXCR4, and associated 
with alternative activation programmes in brain microglia 
and macrophage resulting in poor outcome [56]. Therefore, 
monocyte localisation within the brain parenchyma, as dic-
tated by chemokine signalling, appears to be important in 
the activation of both brain resident and recruited myeloid 
populations.

Other CNS tissues

The brain parenchyma does not represent the sole destination 
for recruited myeloid cells following stroke. Intravascular 
and extravascular neutrophil populations may be observed 
in the mouse and human brain following ischaemic stroke, 
throughout the brain parenchyma, perivascular spaces, and 
leptomeninges [36]. In human patients, neutrophil extracel-
lular trap (NET) + neutrophil infiltrates have been found 
in clipped aneurysms, surgically evacuated haematoma 
and embolic infarct tissue, placing them at the very focal 
point of stroke aetiology [71–73]. Similarly, a recent sin-
gle cell-RNA sequencing (scRNA-seq) study profiling the 
cellular makeup of arteriovenous malformations (AVM) in 
human patients discovered a pathogenic glycoprotein Nmb 
(GPNMB) + monocyte subset associated with smooth mus-
cle cell death and AVM rupture, precipitating brain haemor-
rhage [74].

Myeloid localisation within meningeal and CSF tissues 
is of particular relevance to SAH due to the extravasation 
of blood into the subarachnoid space. Neutrophils, mono-
cytes, and DCs have all been observed to accumulate in the 
CSF of aneurysmal SAH patients, and elevated neutrophil 

counts associated with cerebral vasospasm [75, 76]. Thus, 
it appears that neutrophils in the CSF compartment are rel-
evant in the pathogenicity of secondary brain injury [75, 
77]. Mechanistically, neutrophil infiltration of the meninges 
appears to be mediated by myeloperoxidase, as has been 
demonstrated in mouse models of SAH [78].

Myeloid cells access and populate the CNS over multiple 
barrier and anatomical sites following stroke. Spatio-tempo-
ral profiling of relationships between recruited immune and 
brain resident cells across different niches will be integral 
in elucidating the specific roles of myeloid cells in brain 
injury and repair [79]. The molecular pathways regulating 
myeloid cell trafficking to different CNS regions and local 
cues that prime specific functions require further study in 
the field of stroke.

Myeloid response to stroke

Neutrophils

Neutrophils co-ordinate multimodal responses to stroke 
injury, contributing to inflammation, parenchymal, and vas-
cular injury over the acute phase of recovery [34, 80, 81]. 
Several lines of evidence implicate neutrophil effector func-
tions in BBB compromise and inflammation through the pro-
duction of matrix metalloproteinase (MMP) 9, proteolytic 
enzymes, reactive oxidative species (ROS), and NETs [12, 
35, 82]. On the macroscopic level, neutrophils contribute to 
the no-reflow phenomenon in ischaemic stroke, where neu-
trophil aggregates impede capillary micro-perfusion [83]. In 
mouse models of SAH, neutrophil depletion prior to injury 
prevents later vascular narrowing, a marker of vasospasm 
and mechanism related to delayed cerebral ischaemia (DCI) 
[77]. These findings emulate results from clinical studies 
linking CSF neutrophil levels with delayed cerebral ischae-
mia in aneurysmal SAH patients [75].

By contrast, neutrophils may also exhibit neuroprotec-
tive functions in response to stroke. Neutrophils express-
ing markers of alternative activation including the chi-
tinase marker Ym1 and the phagocytic mannose receptor 
CD206 have been observed in mouse models of perma-
nent cerebral ischaemia [84]. Neutrophil Ym1 expression 
and clearance from ischaemic tissue were increased by 
the peroxisome proliferator-activated receptor-γ (PPARγ) 
agonist rosiglitazone, and treatment was linked to a latent 
neuroprotective effect [84]. In the setting of experimental 
ICH, interleukin (IL)-27 mediated neutrophil lactoferrin 
production has been suggested to have a protective role 
in the sequestration of toxic iron products from the hae-
matoma [33, 85]. Neutrophil depletion prior to ICH is 
protective against brain injury [81]; however, neutrophil 
depletion post injury leads to further neurological and 
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functional damage; thus, time appears to be a critical fac-
tor in determining the neutrophil role in ICH [33].

Monocytes

CCR2+Ly6Chi classical monocytes (CD14+CD16− in 
human) are the main effector subset responsible for the 
monocyte response, and are rapidly mobilised from the 
circulation in response to experimental brain injury [39, 
42, 56]. Fate mapping experiments in mouse models of 
cerebral ischaemia describe the margination of Ly6Chi 
monocytes in the peri-infarct region, followed by the 
rapid differentiation of cells into a macrophage-like phe-
notype, via the downregulation of Ly6C and CCR2 and 
upregulation of the macrophage marker F4/80 [56, 86]. 
During the differentiation process, monocyte derived 
cells (MDCs) adopt divergent polarisation states, with 
mixed pro- and anti-inflammatory phenotypes. Fate map-
ping of bone marrow–derived Ly6Chi monocytes in the 
post-ischaemic brain reveals upregulation of markers of 
alternative activation including Arg1, Ym1, and CD163, 
24 h after ictus [86]. Sorted CD45hi MDCs from the post-
ischaemic brain show upregulation of genes involved 
in angiogenesis, efferocytosis, antigen-presentation, 
and anti-inflammatory factors [59, 87]. Yet, bone mar-
row–derived MDCs also express a core inflammatory 
gene signature following ischaemic stroke, through the 
induction of type I interferon (IFN), inducible nitric oxide 
synthase (iNOS), IL-1β, and IL-6 genes and retain capac-
ity to produce IL-1β and tumour necrosis factor (TNF)α 
ex vivo [37, 56, 59, 88]. Similar roles relating to inflam-
matory cytokine production, phagocytosis, and antigen 
presentation have been recently profiled for MDCs iso-
lated from the mouse ICH brain, [58] though relatively 
little is known of the monocyte response in SAH [39].

In vivo, the monocyte contribution to brain injury, 
inflammation, and neurological recovery has been pro-
filed by selective Ly6Chi monocyte depletion and tar-
geting of CCR2 signalling pathways. Several studies 
describe neuroprotective roles for Ly6Chi monocytes in 
secondary brain injury and inflammation, prevention of 
haemorrhagic transformation, and in the promotion of 
functional recovery in acute models of cerebral ischae-
mia [29, 43, 68, 69]. Nevertheless, inhibition of Ly6Chi 
monocyte recruitment has been shown by others to have 
pathogenic or even neutral effects [89, 90]. Along similar 
lines, Ly6Chi monocyte depletion was protective against 
brain injury and improved function in mouse models of 
ICH [42]. Therefore, both in vivo and ex vivo, classical 
monocytes adopt divergent roles in the response to ischae-
mic and haemorrhagic brain injury.

Dendritic cells

DCs, like monocytes, migrate to the injured brain and par-
ticipate in local inflammation following experimental ICH 
and ischaemic stroke [91]. Depletion of brain CD11c+ cells 
have previously been shown to occur following treatment 
with neuroprotective therapies in experimental stroke, sug-
gesting a role in brain injury [92]. In a preclinical model of 
ischaemic stroke, broad inhibition of myelin specific T cell 
autoreactivity reduced DC levels and attenuated brain injury, 
suggesting antigen presentation is significant in the priming 
of T cell responses in experimental stroke [93]. There is also 
evidence that DCs prime antigen independent responses, as 
neutrophil recruitment to the ischemic brain is driven by DC 
IL-23 activation of IL-17 γδT cells [94]. In human patients, 
conventional (cDC), plasmacytoid (pDC), and DC-T cell 
clusters have been identified in the ischemic and haemor-
rhagic brain post-mortem dispersed amongst vascular and 
non-vascular tissues [95].

Assessment of the myeloid response in the single 
cell era

The numerous roles adopted by myeloid cells in response to 
acute stroke suggest conceptual frameworks based upon pro- 
and anti-inflammatory functional dichotomies are somewhat 
over-simplified. In support of this notion, monocytes and 
neutrophils often display mixed pro- and anti- inflamma-
tory phenotypes at overlapping time points following stroke 
[59, 84]. Thus, myeloid cells appear to exhibit phenotypic 
and functional heterogeneity across a single population in 
response to brain injury.

Cell heterogeneity ascribes differences in phenotype and 
function across a single population, and can explain why one 
cell population may appear to assume many different roles in 
the response to stroke. Heterogeneity can be a consequence 
of differences in terms of cell ontogeny (tissue resident vs. 
recruited), localisation (parenchymal vs. vascular, core vs 
peri-lesion), and the time-point profiled following injury 
(inflammation vs. resolution phase).

Research at the single cell level is an important tool to 
study heterogeneity across a single population, and stud-
ies of this kind have provided novel insights on the role of 
macrophages in neuroinflammation [57, 96–98]. In mouse 
models of acute cerebral ischaemia and human ischaemic 
stroke, Beuker et al. [57] utilised scRNAseq to profile mye-
loid responses across the brain parenchyma and arachnoid 
pia. They identified a unique subset of parenchymal mac-
rophages of mixed monocyte/microglial origin (SAMC), 
defined by the expression of a gene signature related to 
lipid metabolism and myelin phagocytosis, which was later 
functionally validated in vivo. The identification of a mixed 
monocyte/microglial subset is compelling, as it suggests 
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that the parenchymal microenvironment following ischae-
mic stroke is capable of instructing macrophage phenotypes 
on cells of different haematopoietic origins. Lipid droplet 
rich microglia have since been identified in the aged mouse 
brain under steady state, and related to enhanced inflamma-
tory type I IFN responses and poor outcome in experimental 
cerebral ischemia [96, 99].

Notably, the SAMC population appeared to have genetic 
overlap with (neuro) degeneration-associated microglia 
(DAM), previously identified in animal models of experi-
mental autoimmune encephalitis (EAE), amyotrophic lat-
eral sclerosis (ALS), and Alzheimer’s disease [97, 98, 100]. 
The myeloid compartment of the CNS has been extensively 
profiled in the setting of EAE, leading to the discovery of a 
novel disease associated Cxcl10 + monocyte subset within 
the inflamed CNS [101]. Critical regulators of the mono-
cyte to phagocyte transition and inflammatory function, in 
EAE, have also been identified for IFNγ and granulocyte 
macrophage–colony stimulating factor (GM-CSF) respec-
tively [102]. It remains to be discovered whether similar 
frameworks governing monocyte/macrophage biology exist 
in the setting of acute ischaemic and haemorrhagic stroke.

One prevailing question in the field of stroke immunology 
is the extent to which myeloid cell ontogeny, versus lived 
experiences in the brain tissue, dictates resultant cell phe-
notypes and functions. With this in mind, we next endeavour 
to discuss the immune response to stroke in the periphery, 
detailing the myeloid response across different organs and 
tissues.

The periphery

Neuroimmune cross‑talk: anatomical organisation

At steady state, myeloid cells circulate freely in the periph-
eral blood and lymph and form marginated pools in several 
immunological organs including the bone marrow, spleen, 
liver, and possibly the lung [103–108]. In response to stroke, 
the number of circulating myeloid cells increases dramati-
cally, [109–113] driven by the mobilisation of marginated 
populations and the induction of emergency myelopoiesis in 
the spleen and bone marrow [41, 114, 115] (Fig. 1). These 
cells are funnelled to distal tissues through a network of 
blood and lymphatic vessels which act as a conduit for innate 
immune cell transport over mucosal barrier and tissue sites 
including the brain [116, 117].

The CNS is able to influence myeloid immunity through 
the induction of long-range neurogenic and humoral signal-
ling pathways. DAMPs, molecular factors, immune cells, 
and self-antigen from the CNS drain into the systemic cir-
culation and lymphatic pathways. Accumulation of these 
factors in secondary lymphoid organs, such as the cervical 

lymph nodes and spleen, perpetuates systemic inflamma-
tion [118–120]. Novel discoveries have since outlined how 
specialised niches within the borders of the CNS support 
myeloid activity in response to CNS injury and neuroin-
flammation. The skull bone marrow has been identified as 
a local haematopoietic source of myeloid cells at steady 
state and in injury [121], and supplies neutrophils to the 
meninges via microvascular channels in the dura mater fol-
lowing ischaemic stroke [122]. The meningeal lymphatic 
system located in the cribriform plate has been identified as 
an important immune-regulatory niche in EAE, supporting 
antigen presenting interactions between CD11c + myeloid 
and CD4 + T cells, alongside the drainage of CSF, CNS anti-
gen, and immune cells from the inflamed CNS [123–125]. 
In stroke, cervical lymph nodes have an important role in 
the drainage of extravasated erythrocytes in SAH from the 
meninges, and CNS antigens including myelin and neuronal 
proteins in ischaemic stroke patients [119, 126].

Neurogenic control of systemic immunity is co-ordinated 
through the sympathetic nervous system and hypothalamic 
pituitary axis [114, 127, 128]. Increased sympathetic drive 
as measured by circulating catecholamine levels is seen in 
patients [129–131], and is of particular relevance in aneurys-
mal SAH, where sympathetic activation is associated with 
the development of complications relating to cardiac dys-
function, neurogenic pulmonary oedema, and hypertension 
[129, 132, 133]. The sympathetic nervous system innervates 
both primary and secondary lymphoid organs, and promotes 
immunogenic activity at distal tissues following stroke [114, 
115]. For example, adrenergic signalling has been shown 
to drive myeloid differentiation programmes in the bone 
marrow, induce lymphocyte apoptosis in the spleen, and 
enhance immunosuppressive functions of liver iNK-T cells 
in response to ischaemic stroke [114, 134–136].

Emergency myelopoiesis

Bone marrow

Systemic inflammation coupled with the activation of adren-
ergic signalling pathways promotes myeloid haematopoietic 
bias following stroke. Myeloid bias in the bone marrow is 
evident through increased numbers of haematopoietic stem 
cell (HSC), granulo-monocyte progenitor (GMP), and mono-
cyte dendritic progenitors (MDP) in contrast to decreased 
common lymphoid progenitor (CLP) counts 3 days after 
acute ischaemic or haemorrhagic stroke [114, 115]. Excised 
skull flap bone marrow samples from ICH patients under-
going surgical craniotomy also show expanded populations 
of GMP and common myeloid progenitors (CMP) [115]. 
Thus, the skull may represent an important local reservoir by 
which myeloid cells are deployed directly to the CNS [121].
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Inflammatory factors can activate toll-like, cytokine, 
growth factor, or adrenergic receptors expressed on bone 
marrow stroma and progenitor cells, promoting myelopoi-
etic bias through the induction of specific developmen-
tal factors [137]. Following experimental ischaemia, 
increased Ly6Chi monocyte, and neutrophil levels coin-
cide with increased expression of the transcription factor 
Pu.1 in the bone marrow [114]. Pu.1 is an essential regula-
tor of monocyte and neutrophil development through the 
GMP lineage [138–140]. Whilst the modulation of Pu.1 by 
molecular factors has not been investigated in stroke per 
se, increased adrenergic innervation of the bone marrow 
following stroke has been associated with HSC cycling 
and activation in mouse models of cerebral ischaemia and 

ICH [114, 115]. Adrenergic signalling via β3 adrenergic 
receptors expressed on mesenchymal stem cells, enhances 
HSC mobilisation through the modulation of CXCL12, 
and promotes myeloid differentiation [141, 142]. Soluble 
inflammatory factors such as type I IFNs and IL-1, which 
are upregulated in acute inflammation [96, 143], may also 
regulate bone marrow myeloid bias in stroke. Type I IFNs 
have been implicated in emergency myelopoiesis in mouse 
models of endotoxemia (sepsis) [144], and enhanced type 
I IFN activation in murine bone marrow myeloid cells is a 
feature of myocardial infarction [145]. Acute elevation of 
IL-1, as seen in stroke [146–149], can induce HSC prolif-
eration and drive myelopoiesis via Pu.1 activation [150].

Fig. 1   The multi-organ myeloid response to acute ischaemic and 
haemorrhagic stroke. Ischaemic or haemorrhagic brain injury engages 
emergency myelopoiesis and mobilisation of myeloid cells from tis-
sues, through neurogenic and humoral signalling pathways (1). The 
bone marrow adjusts haematopoietic outputs to meet demand increas-
ing the levels of circulating neutrophils, monocytes, and DCs, which 
exhibit differential phenotypes and functions in response to systemic 
inflammation (2). Circulating myeloid cells are delivered to distal tis-
sues, shaping local immune responses to brain injury and infectious 
challenge (3). Comorbidities such as cardiovascular disease, infec-

tion, and age may modulate the scale and responsiveness of myeloid 
immunity to brain injury. Question marks represent proposed hypo-
thetical pathways and avenues for further research. cDC, conven-
tional dendritic cell; CVD, cardiovascular disease; DC, dendritic cell; 
HMGB1, high-mobility group box protein 1; HPA, hypothalamic 
pituitary axis; HSPC, haematopoietic stem cell; IL-, interleukin; 
MyP, myeloid progenitor; NET: neutrophil extracellular trap; pDC: 
plasmacytoid,,dendritic cell; rTEM, reverse transmigrated neutrophil. 
Created with BioRender.com
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Spleen

Emergency myelopoiesis is not exclusive to the bone mar-
row, and is often observed in the spleen in acute inflamma-
tion. In models of myocardial infarction, adrenergic innerva-
tion of the bone marrow promotes HSC seeding of the spleen 
resulting in extramedullary myelopoiesis [142, 151]. Though 
splenic haematopoiesis within the context of ischaemic or 
haemorrhagic stroke has yet to be investigated, the spleen 
mounts a dynamic response to brain injury. Spleen contrac-
tion is seen in human ischaemic stroke and ICH patients 
as well as in mice following experimental ischaemia [135, 
152] In mouse, splenic atrophy coincides with activation of 
adrenergic signalling and loss of splenic marginal zone B 
cells, whereas splenic macrophages exhibit dynamic micro-
anatomical and phenotypic changes following cerebral 
ischaemia [120, 135]. Splenic atrophy may also arise as a 
consequence of innate cell mobilisation from marginated 
pools. In vivo tracing of splenocytes following MCAo in 
rat shows monocytes alongside NK cells and T cells traf-
fic to the brain via the peripheral blood [153]. In patients 
with acute ischaemic stroke and ICH, spleen shrinkage was 
observed in 40% of the study cohort, within 24 h of ini-
tial injury and associated with stroke severity and systemic 
increase of inflammatory cytokines including IFNγ, IL-6, 
IL-10, IL-12, and IL-13 [152].

Peripheral blood compartment

Neutrophil

Following acute ischaemic and haemorrhagic stroke, a tran-
sient increase in circulating neutrophil counts is observed 
[109–111]. In the clinical setting, the neutrophil to lym-
phocyte ratio (NLR) is commonly used as a biomarker of 
immunological dysfunction. In aSAH patients, NLR has 
been linked to stroke severity and has been identified as a 
prognostic biomarker of DCI and vasospasm [154, 155]. In 
ICH and ischaemic stroke patients, high NLR at admission 
is predictive of poor 90-day outcome and haemorrhagic 
transformation respectively [156, 157]. Further studies in 
ischaemic stroke patient cohorts have shown increased NLR 
scores strongly relate to infection, poor outcome, and mor-
tality at 3 months [158–160]. Therefore, one may conclude 
that high neutrophil counts, particularly when coupled with 
lymphopenia, could have a detrimental role in the recovery 
from brain injury.

Neutrophils respond to immunologic stress by adopt-
ing a broad range of phenotypes, which reflect changes in 
neutrophil lifecycle and activation states [161]. Molecular 
cues, increased systemically in inflammation, may encour-
age divergent phenotypes and polarisation resulting in het-
erogeneity [161]. Within the peripheral blood compartment, 

acute inflammation is associated with the emergence of 
immature, senescent, inflammatory, immune-suppressive, 
and reverse transmigrated (rTEM) neutrophil subsets and 
states [110]. A recent study profiling the hyperacute neu-
trophil response in ischaemic stroke patients revealed neu-
trophils adopted senescent (CXCR4brightCD62Ldim) and 
rTEM(CD54hiCXCR1lo) phenotypes. rTEM neutrophils 
are able to migrate from tissues to the peripheral blood, a 
process observed in mouse models of lipopolysaccharide 
(LPS)-induced neuroinflammation [162]. Moreover, rTEM 
neutrophils exhibit inflammatory functions, may redistribute 
to peripheral organs such as the lung following sterile injury, 
and inhibit T cell proliferation [159, 163, 164] processes 
which may contribute to impeded host immunity follow-
ing acute ischaemic stroke. Notably, this study did not find 
evidence of immature neutrophils, and immune-suppressive 
neutrophils (CD16brightCD62Ldim) were unchanged. With 
time, neutrophil phenotypes in systemic circulation and in 
tissues are likely to shift, reflecting ontogeny (emergency 
myelopoiesis), and activation state (maturation of the inflam-
matory microenvironment) [110].

Monocyte

Consistent clinical studies have shown monocytes expand in 
the peripheral blood in response to ischaemic and haemor-
rhagic stroke, and strongly associate with markers of out-
come. In ischaemic stroke, elevated blood monocyte counts 
have been associated with stroke severity, mortality, and 
incidence of infection [15, 112, 165]. In ICH, studies have 
previously described an association between high monocyte 
counts on admission with mortality and poor outcome [112, 
166]. Latent monocyte infiltration of the CSF in aneurys-
mal SAH patients has been related to DCI [76], whereas 
elevated levels of peripheral blood monocytes at admission 
have been related to vasospasm and hydrocephalus [113, 
167]. Therefore, clinical findings consistently support a role 
for monocytes in both primary and secondary brain injury.

Stroke differentially regulates discrete subpopulations 
of blood monocytes. Specifically, clinical studies in ischae-
mic stroke and ICH have reported an expansion of clas-
sical (CD14+CD16−) and intermediate (CD14+CD16+) 
populations at the expense of non-classical monocytes 
(CD14loCD16+) [15, 168]. Higher classical monocyte counts 
have been associated with poor outcome, mortality, and 
clinical worsening, whereas high intermediate counts are 
associated with protection against mortality [15, 168]. As 
discussed earlier, translational studies have implicated the 
murine classical monocyte equivalent (Ly6ChiCCR2+) as the 
primary monocyte effector within the brain. Expansion of 
circulating classical monocytes in the blood is likely a reflec-
tion of enhanced release of these cells from haematopoietic 



288	 Seminars in Immunopathology (2023) 45:281–294

1 3

organs, and supports the ongoing recruitment of classical 
monocytes to the brain.

Decreased non-classical monocyte levels are associated 
with poor outcome and increased risk of infection [15, 168]. 
Depletion of non-classical monocytes from the peripheral 
blood is a feature of acute inflammation witnessed in sepsis 
[169] and COVID-19 [170], and is posited to be the result of 
cell death [171], vascular patrolling [172], or reflect altered 
monocyte differentiation kinetics. At steady state, a subset 
of classical monocytes remains in the blood and differenti-
ates into intermediate followed by non-classical monocytes 
[173]. In conditions of immunologic stress, such as LPS 
driven endotoxemia, acute monocytopenia (two hours) is 
followed by the sequential repopulation of classical followed 
by intermediate and non-classical monocyte subsets (72 h) 
[173]. Whilst the time point sampled by previous clini-
cal studies is too late to confirm monocytopenia in stroke, 
this paradigm may explain the kinetics of monocyte subset 
regeneration in response to systemic inflammation. Never-
theless, one cannot completely rule out the possibility of 
non-classical monocyte recruitment to the brain. Elevated 
levels of CD16+ monocytes are reported in CSF samples of 
aSAH patients, relative to a decrease of circulating CD16+ 
monocytes in the peripheral blood [76, 174]. ICH and aSAH 
in particular require extensive cerebrovascular remodelling 
in major vessels. Recruitment of non-classical monocytes 
to the cerebral vessels could support this given their role 
as vascular patrolling cells [172]. In support of this view, 
a recent study in a model of mild traumatic brain injury 
(TBI) outlined a specific role for non-classical monocytes in 
the promotion of angiogenesis in the meningeal vasculature 
[175].

Dendritic cell

Both ischaemic and haemorrhagic stroke patients exhibit 
characteristics of impairments to the DC compartment post-
stroke. Consistent reports have described decreased levels 
of total DCs, cDCs, and pDC levels in the peripheral blood 
of ischaemic stroke and ICH patients [95, 176]. Moreover, 
cDCs, pDCs, and DC-T cell clusters have been identified 
in the ischaemic and haemorrhagic brain post-mortem, and 
pDCs increase in the CSF of aSAH patients at a late time 
point [76, 95]. Although the precise mechanisms underlying 
decreased levels of DCs within the peripheral blood have 
not been identified, the presence of DCs in the brain may be 
indicative of recruitment of cells from the periphery and a 
role for them in brain injury.

Myeloid cell function and training

In addition to phenotypic changes, myeloid cells may also 
exhibit impaired innate or adaptive functions following acute 

ischaemic or haemorrhagic stroke. Accordingly, peripheral 
blood neutrophils display features of a hyper-inflammatory 
functional state following acute ischaemic stroke as marked 
by decreased CD62L expression, increased CD11b expres-
sion, and enhanced NETosis, ROS production, and levels of 
elastase [110].

In humans, circulating monocytes exhibit hallmarks 
of functional deactivation post-stroke which is associated 
with stroke-associated infection. Expression of the antigen 
presenting molecule HLA-DR on monocytes is diminished 
in stroke patients and correlates with incidence of stroke 
associated infection [15, 177]. Likewise, increased mono-
cytic expression of Tim-4, a molecule with T cell costimu-
latory capacity, correlated with poor outcome in ischaemic 
stroke patients [178]. Both HLA-DR and Tim-4 are critical 
mediators of T cell activation in response to antigen, sug-
gesting the initiation of adaptive immunity may be impaired 
in stroke. Monocyte innate effector functions also appear 
to be compromised, as in vitro, monocytes isolated from 
stroke patients exhibit hallmarks of a refractory state follow-
ing recurrent stimulation with LPS [179]. DCs also appear 
to have impaired innate effector functions following stroke. 
DCs isolated from aSAH patients had impaired cytokine 
production in response to TLR stimulation compared to 
non-stroke controls [176]. Other parameters of DC function 
remain to be fully characterised; for example, it is unclear 
whether specific type 1 or type 2 responses are promoted 
by DCs or whether DC subsets act in a tolerogenic manner 
within the context of stroke.

Trained immunity

Arguably, the presentation of differential functions of 
myeloid cells when primed in vitro along with altered func-
tional phenotypes ex vivo is suggestive of trained immunity. 
Trained innate immunity is driven by epigenetic or meta-
bolic reprogramming, which results in altered immune cell 
responses to subsequent immunogenic challenge [180, 181]. 
This training can either enhance immune responses, or can 
impair them, resulting in dysregulated immunity and further 
pathogenicity [181]. Indeed in stroke, tolerogenic functions 
could be protective, reducing systemic inflammation and risk 
of autoimmunity directed towards self-antigen [119, 182]. 
On the other hand, innate immune paralysis and senescence 
may leave the host vulnerable to infection, if myeloid func-
tions are overtly suppressed [177, 179].

Epigenetic or metabolic evidence of innate immune repro-
gramming in response to stroke is yet to be discovered. Yet, 
several prominent regulators of the systemic inflammatory 
response to ischaemic and haemorrhagic stroke, including 
High mobility group box protein 1 (HMGB1) and catecho-
lamines, have the potential to induce training in other mod-
els of inflammation [183, 184]. Moreover, haematopoietic 
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organs (bone marrow and spleen) can act as integrative 
educational hubs for innate cell training. In the context of 
stroke, the spleen modulates the protective effects of LPS 
pre-conditioned monocytes following tMCAo. Ex vivo LPS 
‘priming’ led to the accumulation of neuroprotective mono-
cytes in the brain and meninges following adoptive transfer 
to a tMCAo mouse. The neuroprotective effect was lost in 
splenectomised mice, suggesting the spleen was essential in 
mediating this benefit [185].

Long-range signalling in inflammation may also prime 
myeloid cells early on in development. In the setting of 
myocardial infarction, long-range signalling instructs type 
I IFN programs in bone marrow monocyte and neutrophil 
populations, which are maintained by cells infiltrating the 
ischaemic myocardium [145]. In this case, the cells are 
already ‘primed’ to initiate type I IFN programs upon tis-
sue entry. In a mixed model of experimental TBI with infec-
tion, Type I IFN programmes initiated in myeloid cells in 
response to infectious challenge, disrupted vascular repair in 
the meninges and brain parenchyma following experimental 
TBI [186]. Thus, infection and brain injury appear to dictate 
divergent immunological programs, with infection driven 
type I IFN activation detrimental to neurovascular repair 
and recovery. Nevertheless, the debate surrounding long 
range vs. local signals on informing cell fate and function 
continues. Longitudinal immune sequencing of monocytes 
and neutrophils in haematoma and peripheral blood sam-
ples from ICH patients revealed divergent genetic profiles 
between circulating and haematoma populations suggesting 
the brain microenvironment dictates terminal cell activation 
states irrespective of peripheral phenotype [187].

Lung immunity and stroke

Brain injury may modulate innate cell function in distal 
organs, rendering them vulnerable to infectious challenge. 
In stroke, attention has recently focused on the lung and the 
gut, two immunogenic organs central to the maintenance 
of host defence. The gut-immune brain axis with respect to 
stroke and other neurological disorders has been the subject 
of extensive review [188–190]. though studies examining 
the lung are comparatively few. Nosocomial pneumonia is 
the most prevalent infection reported amongst ischaemic 
stroke patients, and is linked to dysphagia, stroke sever-
ity, and immune dysregulation [191–193]. Experimental 
cerebral ischaemia increased macrophage and neutrophil 
counts in bronchiolar lavage fluid (BALF) 24 h after ictus, 
consistent with upregulated gene expression of the inflam-
matory cytokine IL-1β [194]. The lungs may also be subject 
to inflammatory injury themselves, as marked by alveolar 
damage and oedema 24 h following experimental cerebral 
ischaemia [195]. Acute lung injury and acute respiratory dis-
tress syndrome contribute to poor outcome in SAH patients 

[196, 197]. In aged mouse models, increased lung bacte-
rial burden following stroke was associated with increased 
inflammation, and impaired neutrophil chemotaxis and bac-
tericidal functions [198].

Conclusion

The pre-clinical and clinical studies presented in this review 
outline a role for the myeloid arm of the peripheral innate 
immune system in the response to acute ischaemic and 
haemorrhagic stroke. Preclinical studies in rodent models 
of stroke, supported by clinical research, have revealed how 
myeloid cells adapt across different CNS compartments and 
niches by changing phenotype and function. For example, it 
is clear that inflammation functions as a pre-requisite for the 
initiation of repair programmes in myeloid cells. Identifying 
the critical regulators of these phenotypes, functions, and 
anatomical distribution of myeloid cell post-stroke repre-
sents an opportunity for therapeutic intervention.

Research focusing on the peripheral immune system 
has built a picture of disrupted immunity across multiple 
organ systems, including the bone marrow, spleen, blood, 
and lung. Each of these tissues exhibit a dominant myeloid 
response in the acute stage of stroke, often at the expense of 
adaptive immunity. Evidence from clinical studies suggests 
this myeloid bias is related to stroke severity and is associ-
ated with key measures of outcome, including stroke associ-
ated infection. However, the long-term consequences of this 
response are still somewhat unclear, as is how the innate 
immune system primes adaptive immunity and translates 
into immune-suppression.

Whilst the literature paints a rich picture of the myeloid 
response in ischaemic stroke, haemorrhagic stroke includ-
ing both ICH and SAH subtypes remains comparatively 
under-researched. It is likely some level of redundancy exists 
between ischaemic and haemorrhagic stroke in terms of the 
peripheral immune response and systemic inflammation. Yet 
further research is critical in understanding how haemor-
rhagic stroke drives systemic immune dysregulation, and the 
differential requirements of the myeloid response in resolv-
ing haemorrhagic brain injury compared to ischaemic stroke.

The field of human stroke research may gain from recent 
technological breakthroughs in the field of human immu-
nology. As immunology moves into the single cell era, 
advancements in the fields of flow cytometry, transcriptom-
ics, proteomics, metabolomics, and data analytics present 
new opportunities for research in human stroke immunol-
ogy. On the other end of the scale, epidemiological research 
driven by large databases and supported by big data analytics 
will be integral in researching ischaemic and haemorrhagic 
stroke across entire populations. Expanded human research 
could encourage translational research in the reverse. That 
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is, research questions identified in human could be back-
translated using relevant mouse models to test hypotheses 
and identify targetable molecular pathways for therapeutic 
intervention.
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