Skip to main content

Advertisement

Log in

Mechanisms of vascular damage in ANCA vasculitis

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The discovery of anti-neutrophil cytoplasmic antibodies (ANCA) and their antigenic targets, myeloperoxidase (MPO) and proteinase 3 (PR3), has led to further understanding as to the pathophysiologic processes that underlie vascular and tissue damage in ANCA vasculitis. ANCA trigger neutrophil activation leading to vascular damage in ANCA vasculitis. However, decades of study have determined that neutrophil activation alone is not sufficient to cause disease. Inflammatory stimuli are drivers of ANCA autoantigen expression and ANCA production. Certain infections or bacterial peptides may be crucial players in the initial steps of ANCA immunopathogenesis. Genetic and epigenetic alterations of gene encoding for MPO and PR3 provide additional disturbances to the immune homeostasis which provide a substrate for pathogenic ANCA formation from an adaptive immune system predisposed to autoreactivity. Promoted by inflammatory cytokines, ANCA binding leads to neutrophil activation, a process characterized by conformational changes, production and release of cytotoxic substances, and alternative complement pathway activation, thus creating an intense inflammatory milieu. This cascade of events perpetuates a vicious cycle of further inflammatory cell recruitment and activation, culminating in tissue necrosis. Our understanding of the pathogenic process in ANCA vasculitis paves the way for the development of therapies targeting crucial steps in this process. The greater appreciation of the role for complement, monocytes, and the adaptive immune system has already led to novel complement blockers and is poised to lead to further innovations which will allow for tailored antigen- or cell-specific immunotherapy targeting the autoimmune process without exposure to undue risks or toxicities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

source of perpetual ANCA formation. Abbreviations: ANCA, anti-neutrophil cytoplasmic antibodies; MAC, membrane attack complex; MPO, myeloperoxidase; NET, neutrophil extracellular trap; PR3, proteinase 3; TF, tissue factor; TNF-α, tumor necrosis factor α

Similar content being viewed by others

References

  1. Little MA, Smyth CL, Yadav R, Ambrose L, Cook HT, Nourshargh S, Pusey CD (2005) Antineutrophil cytoplasm antibodies directed against myeloperoxidase augment leukocyte-microvascular interactions in vivo. Blood 106:2050–2058

    Article  CAS  PubMed  Google Scholar 

  2. Xiao H, Heeringa P, Liu Z, Hu P, Zhao M, Aratani Y, Falk RJ (2002) Induction of necrotizing and crescentic glomerulonephritis (NCGN) and small-vessel vasculitis (SVV) by adoptive transfer of anti-myeloperoxidase (anti-MPO) lymphocytes into recombinase activating gene-2 deficient (RAG-2 -/-) mice. Cleve Clin J Med 69:13

    Google Scholar 

  3. Schlieben DJ, Korbet SM, Kimura RE, Schwartz MM, Lewis EJ (2005) Pulmonary-renal syndrome in a newborn with placental transmission of ANCAs. Am J Kidney Dis 45:758–761

    Article  PubMed  Google Scholar 

  4. Cui Z, Zhao MH, Segelmark M, Hellmark T (2010) Natural autoantibodies to myeloperoxidase, proteinase 3, and the glomerular basement membrane are present in normal individuals. Kidney Int 78:590–597

    Article  CAS  PubMed  Google Scholar 

  5. Roth AJ, Ooi JD, Hess JJ, van Timmeren MM, Berg EA, Poulton CE, McGregor J, Burkart M, Hogan SL, Hu Y, Winnik W, Nachman PH, Stegeman CA, Niles J, Heeringa P, Kitching AR, Holdsworth S, Jennette JC, Preston GA, Falk RJ (2013) Epitope specificity determines pathogenicity and detectability in ANCA-associated vasculitis. J Clin Invest 123:1773–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Falk RJ, Jennette JC (1988) Anti-neutrophil cytoplasmic autoantibodies with specificity for myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing and crescentic glomerulonephritis. N Engl J Med 318:1651–7

    Article  CAS  PubMed  Google Scholar 

  7. Goldschmeding R, van der Schoot CE, ten Bokkel HD, Hack CE, van den Ende ME, Kallenberg CG, dem Borne AE (1989) Wegener’s granulomatosis autoantibodies identify a novel diisopropylfluorophosphate-binding protein in the lysosomes of normal human neutrophils. J Clin Invest 84:1577–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aratani Y, Koyama H, Nyui S, Suzuki K, Kura F, Maeda N (1999) Severe impairment in early host defense against Candida albicans in mice deficient in myeloperoxidase. Infect Immun 67:1828–1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kessenbrock K, Fröhlich L, Sixt M, Lämmermann T, Pfister H, Bateman A, Belaaouaj A, Ring J, Ollert M, Fässler R, Jenne DE (2008) Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin. J Clin Invest 118:2438–2447

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Joosten LA, Netea MG, Fantuzzi G, Koenders MI, Helsen MM, Sparrer H, Pham CT, van der Meer JW, Dinarello CA, van den Berg WB (2009) Inflammatory arthritis in caspase 1 gene-deficient mice: contribution of proteinase 3 to caspase 1-independent production of bioactive interleukin-1beta. Arthritis Rheum 60:3651–3662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ciavatta DJ, Yang J, Preston GA, Badhwar AK, Xiao H, Hewins P, Nester CM, Pendergraft WF III, Magnuson TR, Jennette JC, Falk RJ (2010) Epigenetic basis for aberrant upregulation of autoantigen genes in humans with ANCA vasculitis. J Clin Invest 120:3209–3219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Van Rossum AP, Rarok AA, Huitema MG, Fassina G, Limburg PC, Kallenberg CG (2004) Constitutive membrane expression of proteinase 3 (PR3) and neutrophil activation by anti-PR3 antibodies. J Leukoc Biol 76:1162–1170

    Article  PubMed  CAS  Google Scholar 

  13. Halbwachs-Mecarelli L, Bessou G, Lesavre P, Lopez S, Witko-Sarsat V (1995) Bimodal distribution of proteinase 3 (PR3) surface expression reflects a constitutive heterogeneity in the polymorphonuclear neutrophil pool. FEBS Lett 374:29–33

    Article  CAS  PubMed  Google Scholar 

  14. Rarok AA, Stegeman CA, Limburg PC, Kallenberg CG (2002) Neutrophil membrane expression of proteinase 3 (PR3) is related to relapse in PR3-ANCA-associated vasculitis. J Am Soc Nephrol 13:2232–2238

    Article  CAS  PubMed  Google Scholar 

  15. Schreiber A, Busjahn A, Luft FC, Kettritz R (2003) Membrane expression of proteinase 3 is genetically determined. J Am Soc Nephrol 14:68–75

    Article  CAS  PubMed  Google Scholar 

  16. Yang JJ, Tuttle RH, Hogan SL, Taylor JG, Phillips BD, Falk RJ, Jennette JC (2000) Target antigens for anti-neutrophil cytoplasmic autoantibodies (ANCA) are on the surface of primed and apoptotic but not unstimulated neutrophils. Clin Exp Immunol 121:165–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Witko-Sarsat V, Lesavre P, Lopez S, Bessou G, Hieblot C, Prum B, Noel LH, Guillevin L, Ravaud P, Sermet-Gaudelus I, Timsit J, Grunfeld JP, Halbwachs-Mecarelli L (1999) A large subset of neutrophils expressing membrane proteinase 3 is a risk factor for vasculitis and rheumatoid arthritis. J Am Soc Nephrol 10:1224–1233

    Article  CAS  PubMed  Google Scholar 

  18. Jones BE, Yang J, Muthigi A, Hogan SL, Hu Y, Starmer J, Henderson CD, Poulton CJ, Brant EJ, Pendergraft WF, 3rd, Jennette JC, Falk RJ, Ciavatta DJ (2016) Gene-specific DNA methylation changes predict remission in patients with ANCA-associated vasculitis. J Am Soc Nephrol

  19. Miralda I, Uriarte SM, McLeish KR (2017) Multiple phenotypic changes define neutrophil priming. Front Cell Infect Microbiol 7:217

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Miyabayashi M, Yasui K (1996) Regulation of neutrophil O2- production by neutrophil-endothelial cell interaction via CD11b: its modulation by tumor necrosis factor-alpha (TNF-alpha) and lipopolysaccharide (LPS). Int J Hematol 65:49–59

    Article  CAS  PubMed  Google Scholar 

  21. Csernok E, Ernst M, Schmitt W, Bainton DF, Gross WL (1994) Activated neutrophils express proteinase 3 on their plasma membrane in vitro and in vivo. Clin Exp Immunol 95:244–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Falk RJ, Terrell RS, Charles LA, Jennette JC (1990) Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc Natl Acad Sci USA 87:4115–4119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou Z, Richard C, Menard HA (2000) De novo synthesis of proteinase 3 by cytokine primed circulating human polymorphonuclear neutrophils and mononuclear cells. J Rheumatol 27:2406–2411

    CAS  PubMed  Google Scholar 

  24. Schreiber A, Xiao H, Jennette JC, Schneider W, Luft FC, Kettritz R (2009) C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis. J Am Soc Nephrol 20:289–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martins A, Ximenes V, Fonseca L (2013) Serum myeloperoxidase level is increased in heavy smokers. Open J Clin Diagnostics 5–8

  26. Watts RA, Mahr A, Mohammad AJ, Gatenby P, Basu N, Flores-Suarez LF (2015) Classification, epidemiology and clinical subgrouping of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Nephrol Dial Transplant 30(Suppl 1):i14-22

    Article  CAS  PubMed  Google Scholar 

  27. Pendergraft WF, Preston GA, Shah RR, Tropsha A, Carter CW, Jennette JC, Falk RJ (2004) Autoimmunity is triggered by cPR-3(105–201), a protein complementary to human autoantigen proteinase-3. Nat Med 10:72–79

    Article  CAS  PubMed  Google Scholar 

  28. Gilligan HM, Bredy B, Brady HR, Hebert MJ, Slayter HS, Xu Y, Rauch J, Shia MA, Koh JS, Levine JS (1996) Antineutrophil cytoplasmic autoantibodies interact with primary granule constituents on the surface of apoptotic neutrophils in the absence of neutrophil priming. J Exp Med 184:2231–2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pieterse E, van der Vlag J (2014) Breaking immunological tolerance in systemic lupus erythematosus. Front Immunol 5:164

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Kessenbrock K, Krumbholz M, Schonermarck U, Back W, Gross WL, Werb Z, Grone HJ, Brinkmann V, Jenne DE (2009) Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med 15:623–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, Cao W, Wang YH, Su B, Nestle FO, Zal T, Mellman I, Schröder JM, Liu YJ, Gilliet M (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449:564–569

    Article  CAS  PubMed  Google Scholar 

  32. (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447: 661–78

  33. Lyons PA, Rayner TF, Trivedi S, Holle JU, Watts RA, Jayne DR, Baslund B, Brenchley P, Bruchfeld A, Chaudhry AN, Cohen Tervaert JW, Deloukas P, Feighery C, Gross WL, Guillevin L, Gunnarsson I, Harper L, Hruskova Z, Little MA, Martorana D, Neumann T, Ohlsson S, Padmanabhan S, Pusey CD, Salama AD, Sanders JS, Savage CO, Segelmark M, Stegeman CA, Tesar V, Vaglio A, Wieczorek S, Wilde B, Zwerina J, Rees AJ, Clayton DG, Smith KG (2012) Genetically distinct subsets within ANCA-associated vasculitis. N Engl J Med 367:214–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Merkel PA, Xie G, Monach PA, Ji X, Ciavatta DJ, Byun J, Pinder BD, Zhao A, Zhang J, Tadesse Y, Qian D, Weirauch M, Nair R, Tsoi A, Pagnoux C, Carette S, Chung S, Cuthbertson D, Davis JC Jr, Dellaripa PF, Forbess L, Gewurz-Singer O, Hoffman GS, Khalidi N, Koening C, Langford CA, Mahr AD, McAlear C, Moreland L, Seo EP, Specks U, Spiera RF, Sreih A, St Clair EW, Stone JH, Ytterberg SR, Elder JT, Qu J, Ochi T, Hirano N, Edberg JC, Falk RJ, Amos CI, Siminovitch KA (2017) Identification of functional and expression polymorphisms associated with risk for antineutrophil cytoplasmic autoantibody-associated vasculitis. Arthritis Rheumatol 69:1054–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Free ME, Stember KG, Hess JJ, McInnis EA, Lardinois O, Hogan SL, Hu Y, Mendoza C, Le AK, Guseman AJ, Pilkinton MA, Bortone DS, Cowens K, Sidney J, Karosiene E, Peters B, James E, Kwok WW, Vincent BG, Mallal SA, Jennette JC, Ciavatta DJ, Falk RJ (2020) Restricted myeloperoxidase epitopes drive the adaptive immune response in MPO-ANCA vasculitis. J Autoimmun 106:102306

    Article  CAS  PubMed  Google Scholar 

  36. Chen DP, McInnis EA, Wu EY, Stember KG, Hogan SL, Hu Y, Henderson C, Blazek L, Mallal S, Karosiene E, Peters B, Sidney J, James E, Kwok WW, Jennette JC, Ciavatta DJ, Falk RJ, Free ME (2021) Maintenance of remission is influenced by HLA-DPB1*04:01 and interaction with PR3225–239. J Am Soc Nephrol (In Revision)

  37. Erdbrugger U, Hellmark T, Bunch DO, Alcorta DA, Jennette JC, Falk RJ, Nachman PH (2006) Mapping of myeloperoxidase epitopes recognized by MPO-ANCA using human-mouse MPO chimers. Kidney Int 69:1799–1805

    Article  CAS  PubMed  Google Scholar 

  38. Fujii A, Tomizawa K, Arimura Y, Nagasawa T, Ohashi YY, Hiyama T, Mizuno S, Suzuki K (2000) Epitope analysis of myeloperoxidase (MPO) specific anti-neutrophil cytoplasmic autoantibodies (ANCA) in MPO-ANCA-associated glomerulonephritis. Clin Nephrol 53:242–252

    CAS  PubMed  Google Scholar 

  39. Bruner BF, Vista ES, Wynn DM, James JA (2011) Epitope specificity of myeloperoxidase antibodies: identification of candidate human immunodominant epitopes. Clin Exp Immunol 164:330–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Williams JM, Ben-Smith A, Hewins P, Dove SK, Hughes P, McEwan R, Wakelam MJ, Savage CO (2003) Activation of the G(i) heterotrimeric G protein by ANCA IgG F(ab′)2 fragments is necessary but not sufficient to stimulate the recruitment of those downstream mediators used by intact ANCA IgG. J Am Soc Nephrol 14:661–669

    Article  CAS  PubMed  Google Scholar 

  41. Hewins P, Williams JM, Wakelam MJ, Savage CO (2004) Activation of Syk in neutrophils by antineutrophil cytoplasm antibodies occurs via Fcgamma receptors and CD18. J Am Soc Nephrol 15:796–808

    Article  CAS  PubMed  Google Scholar 

  42. Rarok AA, Limburg PC, Kallenberg CG (2003) Neutrophil-activating potential of antineutrophil cytoplasm autoantibodies. J Leukoc Biol 74:3–15

    Article  CAS  PubMed  Google Scholar 

  43. Ohlsson S, Holm L, Hansson C, Ohlsson SM, Gunnarsson L, Pettersson Å, Skattum L (2019) Neutrophils from ANCA-associated vasculitis patients show an increased capacity to activate the complement system via the alternative pathway after ANCA stimulation. PLoS One 14:e0218272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Franssen CF, Huitema MG, Muller Kobold AC, Oost-Kort WW, Limburg PC, Tiebosch A, Stegeman CA, Kallenberg CG, Tervaert JW (1999) In vitro neutrophil activation by antibodies to proteinase 3 and myeloperoxidase from patients with crescentic glomerulonephritis. J Am Soc Nephrol 10:1506–1515

    Article  CAS  PubMed  Google Scholar 

  45. Charles LA, Caldas ML, Falk RJ, Terrell RS, Jennette JC (1991) Antibodies against granule proteins activate neutrophils in vitro. J Leukoc Biol 50:539–546

    Article  CAS  PubMed  Google Scholar 

  46. Franssen CF, Gans RO, Arends B, Hageluken C, ter Wee PM, Gerlag PG, Hoorntje SJ (1995) Differences between anti-myeloperoxidase and anti-proteinase 3-associated renal disease. Kidney Int 47:193–199

    Article  CAS  PubMed  Google Scholar 

  47. Franssen C, Gans R, Kallenberg C, Hageluken C, Hoorntje S (1998) Disease spectrum of patients with antineutrophil cytoplasmic autoantibodies of defined specificity: distinct differences between patients with anti-proteinase 3 and anti-myeloperoxidase autoantibodies. J Intern Med 244:209–216

    Article  CAS  PubMed  Google Scholar 

  48. Yang JJ, Jennette JC, Falk RJ (1994) Immune complex glomerulonephritis is induced in rats immunized with heterologous myeloperoxidase. Clin Exp Immunol 97:466–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brons RH, de Jong MC, de Boer NK, Stegeman CA, Kallenberg CG, Tervaert JW (2001) Detection of immune deposits in skin lesions of patients with Wegener’s granulomatosis. Ann Rheum Dis 60:1097–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brouwer E, Huitema MG, Klok PA, de Weerd H, Tervaert JW, Weening JJ, Kallenberg CG (1993) Antimyeloperoxidase-associated proliferative glomerulonephritis: an animal model. J Exp Med 177:905–914

    Article  CAS  PubMed  Google Scholar 

  51. Cream JJ, Bryceson AD, Ryder G (1971) Disappearance of immunoglobulin and complement from the Arthus reaction and its relevance to studies of vasculitis in man. Br J Dermatol 84:106–109

    Article  CAS  PubMed  Google Scholar 

  52. Neal CR, Arkill KP, Bell JS, Betteridge KB, Bates DO, Winlove CP, Salmon AHJ, Harper SJ (2018) Novel hemodynamic structures in the human glomerulus. Am J Physiol Renal Physiol 315:F1370–F1384

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Tse WY, Nash GB, Hewins P, Savage CO, Adu D (2005) ANCA-induced neutrophil F-actin polymerization: implications for microvascular inflammation. Kidney Int 67:130–139

    Article  CAS  PubMed  Google Scholar 

  54. Yen A, Braverman IM (1976) Ultrastructure of the human dermal microcirculation: the horizontal plexus of the papillary dermis. J Invest Dermatol 66:131–142

    Article  CAS  PubMed  Google Scholar 

  55. Horsfield K (1978) Morphometry of the small pulmonary arteries in man. Circ Res 42:593–597

    Article  CAS  PubMed  Google Scholar 

  56. Ojima Y, Sawada K, Fujii H, Shirai T, Saito A, Kagaya S, Aoki S, Takeuchi Y, Ishii T, Nagasawa T (2018) Anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV) restricted to the limbs. Intern Med 57:1301–1308

    Article  PubMed  Google Scholar 

  57. Sun WY, Pitson SM, Bonder CS (2010) Tumor necrosis factor-induced neutrophil adhesion occurs via sphingosine kinase-1-dependent activation of endothelial {alpha}5{beta}1 integrin. Am J Pathol 177:436–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hu N, Westra J, Rutgers A, Doornbos-Van der Meer B, Huitema MG, Stegeman CA, Abdulahad WH, Satchell SC, Mathieson PW, Heeringa P, Kallenberg CG (2011) Decreased CXCR1 and CXCR2 expression on neutrophils in anti-neutrophil cytoplasmic autoantibody-associated vasculitides potentially increases neutrophil adhesion and impairs migration. Arthritis Res Ther 13:R201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Radford DJ, Savage CO, Nash GB (2000) Treatment of rolling neutrophils with antineutrophil cytoplasmic antibodies causes conversion to firm integrin-mediated adhesion. Arthritis Rheum 43:1337–1345

    Article  CAS  PubMed  Google Scholar 

  60. Varani J, Fligiel SE, Till GO, Kunkel RG, Ryan US, Ward PA (1985) Pulmonary endothelial cell killing by human neutrophils. Possible involvement of hydroxyl radical. Lab Invest 53:656–663

    CAS  PubMed  Google Scholar 

  61. Westlin WF, Gimbrone MA Jr (1993) Neutrophil-mediated damage to human vascular endothelium. Role of cytokine activation. Am J Pathol 142:117–128

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang JJ, Preston GA, Pendergraft WF, Segelmark M, Heeringa P, Hogan SL, Jennette JC, Falk RJ (2001) Internalization of proteinase 3 is concomitant with endothelial cell apoptosis and internalization of myeloperoxidase with generation of intracellular oxidants. Am J Pathol 158:581–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pendergraft WF III, Rudolph EH, Falk RJ, Jahn JE, Grimmler M, Hengst L, Jennette JC, Preston GA (2004) Proteinase 3 sidesteps caspases and cleaves p21(Waf1/Cip1/Sdi1) to induce endothelial cell apoptosis. Kidney Int 65:75–84

    Article  CAS  PubMed  Google Scholar 

  64. Yang JJ, Kettritz R, Falk RJ, Jennette JC, Gaido ML (1996) Apoptosis of endothelial cells induced by the neutrophil serine proteases proteinase 3 and elastase. Am J Pathol 149:1617–1626

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Savage CO, Gaskin G, Pusey CD, Pearson JD (1993) Anti-neutrophil cytoplasm antibodies can recognize vascular endothelial cell-bound anti-neutrophil cytoplasm antibody-associated autoantigens. Exp Nephrol 1:190–195

    CAS  PubMed  Google Scholar 

  66. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    Article  CAS  PubMed  Google Scholar 

  67. Söderberg D, Kurz T, Motamedi A, Hellmark T, Eriksson P, Segelmark M (2015) Increased levels of neutrophil extracellular trap remnants in the circulation of patients with small vessel vasculitis, but an inverse correlation to anti-neutrophil cytoplasmic antibodies during remission. Rheumatology (Oxford) 54:2085–2094

    Article  Google Scholar 

  68. Abreu-Velez AM, Smith JG Jr, Howard MS (2009) Presence of neutrophil extracellular traps and antineutrophil cytoplasmic antibodies associated with vasculitides. N Am J Med Sci 1:309–313

    PubMed  PubMed Central  Google Scholar 

  69. Imamoto T, Nakazawa D, Shida H, Suzuki A, Otsuka N, Tomaru U, Ishizu A (2014) Possible linkage between microscopic polyangiitis and thrombosis via neutrophil extracellular traps. Clin Exp Rheumatol 32:149–150

    PubMed  Google Scholar 

  70. Sangaletti S, Tripodo C, Chiodoni C, Guarnotta C, Cappetti B, Casalini P, Piconese S, Parenza M, Guiducci C, Vitali C, Colombo MP (2012) Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmunity. Blood 120:3007–3018

    Article  CAS  PubMed  Google Scholar 

  71. Wang H, Wang C, Zhao MH, Chen M (2015) Neutrophil extracellular traps can activate alternative complement pathways. Clin Exp Immunol 181:518–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Huang YM, Wang H, Wang C, Chen M, Zhao MH (2015) Promotion of hypercoagulability in antineutrophil cytoplasmic antibody-associated vasculitis by C5a-induced tissue factor-expressing microparticles and neutrophil extracellular traps. Arthritis Rheumatol 67:2780–2790

    Article  PubMed  Google Scholar 

  73. Kambas K, Chrysanthopoulou A, Vassilopoulos D, Apostolidou E, Skendros P, Girod A, Arelaki S, Froudarakis M, Nakopoulou L, Giatromanolaki A, Sidiropoulos P, Koffa M, Boumpas DT, Ritis K, Mitroulis I (2014) Tissue factor expression in neutrophil extracellular traps and neutrophil derived microparticles in antineutrophil cytoplasmic antibody associated vasculitis may promote thromboinflammation and the thrombophilic state associated with the disease. Ann Rheum Dis 73:1854–1863

    Article  CAS  PubMed  Google Scholar 

  74. Stassen PM, Derks RP, Kallenberg CG, Stegeman CA (2008) Venous thromboembolism in ANCA-associated vasculitis–incidence and risk factors. Rheumatology (Oxford) 47:530–534

    Article  CAS  Google Scholar 

  75. Noris M, Remuzzi G (2013) Overview of complement activation and regulation. Semin Nephrol 33:479–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Xing GQ, Chen M, Liu G, Heeringa P, Zhang JJ, Zheng X, J E, Kallenberg CG, Zhao MH (2008) Complement activation is involved in renal damage in human antineutrophil cytoplasmic autoantibody associated pauci-immune vasculitis. J Clin Immunol

  77. Xiao H, Schreiber A, Heeringa P, Falk RJ, Jennette JC (2007) Alternative complement pathway in the pathogenesis of disease mediated by anti-neutrophil cytoplasmic autoantibodies. Am J Pathol 170:52–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wu EY, McInnis EA, Boyer-Suavet S, Mendoza CE, Aybar LT, Kennedy KB, Poulton CJ, Henderson CD, Hu Y, Hogan SL, Hu P, Xiao H, Nachman PH, Jennette JC, Falk RJ, Bunch DO (2019) Measuring circulating complement activation products in myeloperoxidase- and proteinase 3-antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheumatol 71:1894–1903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Charles Jennette J, Xiao H, Hu P (2013) Complement in ANCA-associated vasculitis. Semin Nephrol 33:557–564

    Article  CAS  PubMed  Google Scholar 

  80. Chen SF, Wang FM, Li ZY, Yu F, Chen M, Zhao MH (2018) Complement factor H inhibits anti-neutrophil cytoplasmic autoantibody-induced neutrophil activation by interacting with neutrophils. Front Immunol 9:559

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Kerr H, Richards A (2012) Complement-mediated injury and protection of endothelium: lessons from atypical haemolytic uraemic syndrome. Immunobiology 217:195–203

    Article  CAS  PubMed  Google Scholar 

  82. Chen M, Daha MR, Kallenberg CG (2010) The complement system in systemic autoimmune disease. J Autoimmun 34:J276–J286

    Article  CAS  PubMed  Google Scholar 

  83. Ma YH, Ma TT, Wang C, Wang H, Chang DY, Chen M, Zhao MH (2016) High-mobility group box 1 potentiates antineutrophil cytoplasmic antibody-inducing neutrophil extracellular traps formation. Arthritis Res Ther 18:2

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  84. Wang C, Wang H, Hao J, Chang DY, Zhao MH, Chen M (2015) Involvement of high mobility group box 1 in the activation of C5a-primed neutrophils induced by ANCA. Clin Immunol 159:47–57

    Article  CAS  PubMed  Google Scholar 

  85. Xiao H, Dairaghi DJ, Powers JP, Ertl LS, Baumgart T, Wang Y, Seitz LC, Penfold ME, Gan L, Hu P, Lu B, Gerard NP, Gerard C, Schall TJ, Jaen JC, Falk RJ, Jennette JC (2014) C5a receptor (CD88) blockade protects against MPO-ANCA GN. J Am Soc Nephrol 25:225–231

    Article  CAS  PubMed  Google Scholar 

  86. Jayne DRW, Bruchfeld AN, Harper L, Schaier M, Venning MC, Hamilton P, Burst V, Grundmann F, Jadoul M, Szombati I, Tesar V, Segelmark M, Potarca A, Schall TJ, Bekker P (2017) Randomized trial of C5a receptor inhibitor avacopan in ANCA-associated vasculitis. J Am Soc Nephrol 28:2756–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jayne DRW, Merkel PA, Schall TJ, Bekker P (2021) Avacopan for the treatment of ANCA-associated vasculitis. N Engl J Med 384:599–609

    Article  CAS  PubMed  Google Scholar 

  88. Jennette JC, Falk RJ (1998) Pathogenesis of the vascular and glomerular damage in ANCA-positive vasculitis. Nephrol Dial Transplant 13(Suppl 1):16–20

    Article  PubMed  Google Scholar 

  89. Xiao H, Hu P, Falk RJ, Jennette JC (2016) Overview of the pathogenesis of ANCA-associated vasculitis. Kidney Dis (Basel) 1:205–215

    Article  Google Scholar 

  90. Jennette JC, Falk RJ (2007) The role of pathology in the diagnosis of systemic vasculitis. Clin Exp Rheumatol 25:S52–S56

    CAS  PubMed  Google Scholar 

  91. Vegting Y, Vogt L, Anders HJ, de Winther MPJ, Bemelman FJ, Hilhorst ML (2021) Monocytes and macrophages in ANCA-associated vasculitis. Autoimmun Rev 20:102911

    Article  CAS  PubMed  Google Scholar 

  92. Arrizabalaga P, Sole M, Iglesias C, Escaramis G, Ascaso C (2006) Renal expression of ICAM-1 and VCAM-1 in ANCA-associated glomerulonephritis-are there differences among serologic subgroups? Clin Nephrol 65:79–86

    Article  CAS  PubMed  Google Scholar 

  93. Wuthrich RP (1992) Intercellular adhesion molecules and vascular cell adhesion molecule-1 and the kidney. J Am Soc Nephrol 3:1201–1211

    Article  CAS  PubMed  Google Scholar 

  94. O’Brien EC, Abdulahad WH, Rutgers A, Huitema MG, O’Reilly VP, Coughlan AM, Harrington M, Heeringa P, Little MA, Hickey FB (2015) Intermediate monocytes in ANCA vasculitis: increased surface expression of ANCA autoantigens and IL-1beta secretion in response to anti-MPO antibodies. Sci Rep 5:11888

    Article  PubMed  PubMed Central  Google Scholar 

  95. Matsumoto K, Suzuki K, Yoshimoto K, Seki N, Tsujimoto H, Chiba K, Takeuchi T (2020) Longitudinal immune cell monitoring identified CD14(++) CD16(+) intermediate monocyte as a marker of relapse in patients with ANCA-associated vasculitis. Arthritis Res Ther 22:145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tarzi RM, Liu J, Schneiter S, Hill NR, Page TH, Cook HT, Pusey CD, Woollard KJ (2015) CD14 expression is increased on monocytes in patients with anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitis and correlates with the expression of ANCA autoantigens. Clin Exp Immunol 181:65–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Aasarød K, Bostad L, Hammerstrøm J, Jørstad S, Iversen BM (2001) Wegener’s granulomatosis: inflammatory cells and markers of repair and fibrosis in renal biopsies–a clinicopathological study. Scand J Urol Nephrol 35:401–410

    Article  PubMed  Google Scholar 

  98. Rastaldi MP, Ferrario F, Crippa A, Dell’antonio G, Casartelli D, Grillo C, D’Amico G (2000) Glomerular monocyte-macrophage features in ANCA-positive renal vasculitis and cryoglobulinemic nephritis. J Am Soc Nephrol 11:2036–2043

    Article  CAS  PubMed  Google Scholar 

  99. Cattell V (1994) Macrophages in acute glomerular inflammation. Kidney Int 45:945–952

    Article  CAS  PubMed  Google Scholar 

  100. Anguiano L, Kain R, Anders HJ (2020) The glomerular crescent: triggers, evolution, resolution, and implications for therapy. Curr Opin Nephrol Hypertens 29:302–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. O’Laughlin S, Braverman M, Smith-Jefferies M, Buckley P (1992) Macrophages (histiocytes) in various reactive and inflammatory conditions express different antigenic phenotypes. Hum Pathol 23:1410–1418

    Article  CAS  PubMed  Google Scholar 

  102. Wang N, Liang H, Zen K (2014) Molecular mechanisms that influence the macrophage m1–m2 polarization balance. Front Immunol 5:614

    PubMed  PubMed Central  Google Scholar 

  103. Alba MA, Jennette JC, Falk RJ (2018) Pathogenesis of ANCA-associated pulmonary vasculitis. Semin Respir Crit Care Med 39:413–424

    Article  PubMed  PubMed Central  Google Scholar 

  104. Flint J, Morgan MD, Savage CO (2010) Pathogenesis of ANCA-associated vasculitis. Rheum Dis Clin North Am 36:463–477

    Article  PubMed  Google Scholar 

  105. Jennette JC, Falk RJ (2014) Pathogenesis of antineutrophil cytoplasmic autoantibody-mediated disease. Nat Rev Rheumatol 10:463–473

    Article  CAS  PubMed  Google Scholar 

  106. Hilhorst M, Shirai T, Berry G, Goronzy JJ, Weyand CM (2014) T cell-macrophage interactions and granuloma formation in vasculitis. Front Immunol 5:432

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  107. Pagnoux C, Hogan SL, Chin H, Jennette JC, Falk RJ, Guillevin L, Nachman PH (2008) Predictors of treatment resistance and relapse in antineutrophil cytoplasmic antibody-associated small-vessel vasculitis: Comparison of two independent cohorts. Arthritis Rheum 58:2908–2918

    Article  PubMed  PubMed Central  Google Scholar 

  108. Chung SA, Seo P (2010) Microscopic polyangiitis. Rheum Dis Clin North Am 36:545–558

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lionaki S, Blyth ER, Hogan SL, Hu Y, Senior BA, Jennette CE, Nachman PH, Jennette JC, Falk RJ (2012) Classification of antineutrophil cytoplasmic autoantibody vasculitides: the role of antineutrophil cytoplasmic autoantibody specificity for myeloperoxidase or proteinase 3 in disease recognition and prognosis. Arthritis Rheum 64:3452–3462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Savage CO, Winearls CG, Evans DJ, Rees AJ, Lockwood CM (1985) Microscopic polyarteritis: presentation, pathology and prognosis. Q J Med 56:467–483

    CAS  PubMed  Google Scholar 

  111. Guillevin L, Durand-Gasselin B, Cevallos R, Gayraud M, Lhote F, Callard P, Amouroux J, Casassus P, Jarrousse B (1999) Microscopic polyangiitis: clinical and laboratory findings in eighty-five patients. Arthritis Rheum 42:421–430

    Article  CAS  PubMed  Google Scholar 

  112. Lhote F, Cohen P, Guillevin L (1998) Polyarteritis nodosa, microscopic polyangiitis and Churg-Strauss syndrome. Lupus 7:238–258

    Article  CAS  PubMed  Google Scholar 

  113. Jagiello P, Aries P, Arning L, Wagenleiter SE, Csernok E, Hellmich B, Gross WL, Epplen JT (2005) The PTPN22 620W allele is a risk factor for Wegener’s granulomatosis. Arthritis Rheum 52:4039–4043

    Article  CAS  PubMed  Google Scholar 

  114. Gregersen PK, Lee HS, Batliwalla F, Begovich AB (2006) PTPN22: Setting thresholds for autoimmunity. Semin Immunol 18:214–223

    Article  CAS  PubMed  Google Scholar 

  115. Chung SA, Xie G, Roshandel D, Sherva R, Edberg JC, Kravitz M, Dellaripa PF, Hoffman GS, Mahr AD, Seo P, Specks U, Spiera RF, St Clair EW, Stone JH, Plenge RM, Siminovitch KA, Merkel PA, Monach PA (2012) Meta-analysis of genetic polymorphisms in granulomatosis with polyangiitis (Wegener’s) reveals shared susceptibility loci with rheumatoid arthritis. Arthritis Rheum 64:3463–3471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Li W, Huang H, Cai M, Yuan T, Sheng Y (2021) Antineutrophil cytoplasmic antibody-associated vasculitis update: Genetic pathogenesis. Front Immunol 12:624848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Weidner S, Geuss S, Hafezi-Rachti S, Wonka A, Rupprecht HD (2004) ANCA-associated vasculitis with renal involvement: an outcome analysis. Nephrol Dial Transplant 19:1403–1411

    Article  PubMed  Google Scholar 

  118. Campbell EJ, Campbell MA, Owen CA (2000) Bioactive proteinase 3 on the cell surface of human neutrophils: quantification, catalytic activity, and susceptibility to inhibition. J Immunol 165:3366–3374

    Article  CAS  PubMed  Google Scholar 

  119. Stegeman CA, Tervaert JW, Sluiter WJ, Manson WL, De Jong PE, Kallenberg CG (1994) Association of chronic nasal carriage of Staphylococcus aureus and higher relapse rates in Wegener granulomatosis [see comments]. Ann Intern Med 120:12–17

    Article  CAS  PubMed  Google Scholar 

  120. Proft T, Fraser JD (2003) Bacterial superantigens. Clin Exp Immunol 133:299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zouali M (2007) Exploitation of host signaling pathways by B cell superantigens–potential strategies for developing targeted therapies in systemic autoimmunity. Ann N Y Acad Sci 1095:342–354

    Article  CAS  PubMed  Google Scholar 

  122. Li H, Nooh MM, Kotb M, Re F (2008) Commercial peptidoglycan preparations are contaminated with superantigen-like activity that stimulates IL-17 production. J Leukoc Biol 83:409–418

    Article  CAS  PubMed  Google Scholar 

  123. Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A, Sallusto F, Napolitani G (2007) Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 8:639–646

    Article  CAS  PubMed  Google Scholar 

  124. Oukka M (2008) Th17 cells in immunity and autoimmunity. Ann Rheum Dis 67(Suppl 3):iii26–9

  125. Voswinkel J, Krämer J, Müller A, Herlyn K, Lamprecht P, Gross WL, Gause A (2004) B lymphocytes infiltrating Wegener’s granuloma: the immunoglobulin VH gene repertoire from granulomatous tissues displays an antigen-driven maturation and suggests a microbial trigger. Arthritis Res Ther 6:74

    Article  PubMed Central  Google Scholar 

  126. Husmann CA, Holle JU, Moosig F, Mueller S, Wilde B, Cohen Tervaert JW, Harper L, Assmann G, Gross WL, Epplen JT, Wieczorek S (2014) Genetics of toll like receptor 9 in ANCA associated vasculitides. Ann Rheum Dis 73:890–896

    Article  CAS  PubMed  Google Scholar 

  127. Walsh M, Flossmann O, Berden A, Westman K, Hoglund P, Stegeman C, Jayne D (2012) Risk factors for relapse of antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum 64:542–548

    Article  CAS  PubMed  Google Scholar 

  128. Ooi JD, Jiang JH, Eggenhuizen PJ, Chua LL, van Timmeren M, Loh KL, O’Sullivan KM, Gan PY, Zhong Y, Tsyganov K, Shochet LR, Ryan J, Stegeman CA, Fugger L, Reid HH, Rossjohn J, Heeringa P, Holdsworth SR, Peleg AY, Kitching AR (2019) A plasmid-encoded peptide from Staphylococcus aureus induces anti-myeloperoxidase nephritogenic autoimmunity. Nat Commun 10:3392

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  129. Al-Abdouh A, Siyal AM, Seid H, Bekele A, Garcia P (2020) Hydralazine-induced antineutrophil cytoplasmic antibody-associated vasculitis with pulmonary-renal syndrome: a case report. J Med Case Rep 14:47

    Article  PubMed  PubMed Central  Google Scholar 

  130. Deng C, Lu Q, Zhang Z, Rao T, Attwood J, Yung R, Richardson B (2003) Hydralazine may induce autoimmunity by inhibiting extracellular signal-regulated kinase pathway signaling. Arthritis Rheum 48:746–756

    Article  CAS  PubMed  Google Scholar 

  131. Magro CM, Momtahen S, Harp J (2017) The distinctive histopathology of hydralazine-associated ANCA positive vasculitis: in vivo demonstration of NETosis. Eur J Dermatol 27:91–92

    Article  PubMed  Google Scholar 

  132. Dhillon SS, Singh D, Doe N, Qadri AM, Ricciardi S, Schwarz MI (1999) Diffuse alveolar hemorrhage and pulmonary capillaritis due to propylthiouracil. Chest 116:1485–1488

    Article  CAS  PubMed  Google Scholar 

  133. Hogan SL, Satterly KK, Dooley MA, Nachman PH, Jennette JC, Falk RJ (2001) Silica exposure in anti-neutrophil cytoplasmic autoantibody-associated glomerulonephritis and lupus nephritis. J Am Soc Nephrol 12:134–142

    Article  PubMed  Google Scholar 

  134. Gomez-Puerta JA, Gedmintas L, Costenbader KH (2013) The association between silica exposure and development of ANCA-associated vasculitis: systematic review and meta-analysis. Autoimmun Rev 12:1129–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gómez DM, Urcuqui-Inchima S, Hernandez JC (2017) Silica nanoparticles induce NLRP3 inflammasome activation in human primary immune cells. Innate Immun 23:697–708

    Article  PubMed  CAS  Google Scholar 

  136. Pai P, Bone JM, Bell GM (1998) Hydrocarbon exposure and glomerulonephritis due to systemic vasculitis. Nephrol Dial Transplant 13:1321–1323

    Article  CAS  PubMed  Google Scholar 

  137. Duna GF, Cotch MF, Galperin C, Hoffman DB, Hoffman GS (1998) Wegener’s granulomatosis: role of environmental exposures. Clin Exp Rheumatol 16:669–674

    CAS  PubMed  Google Scholar 

  138. Jayne D, Rasmussen N, Andrassy K, Bacon P, Cohen Tervaert JW, Dadoniene J, Ekstrand A, Gaskin G, Gregorini G, de Groot K, Gross W, Hagen EC, Mirapeix E, Pettersson E, Siegert C, Sinico A, Tesar V, Westman K, Pusey C (2003) A randomized trial of maintenance therapy for vasculitis associated with antineutrophil cytoplasmic autoantibodies. N.Engl. J Med 349:36–44

    CAS  Google Scholar 

  139. Jayne D, Blockmans D, Luqmani R, Moiseev S, Ji B, Green Y, Hall L, Roth D, Henderson RB, Merkel PA, Collaborators BS (2019) Efficacy and safety of belimumab and azathioprine for maintenance of remission in antineutrophil cytoplasmic antibody-associated vasculitis: a randomized controlled study. Arthritis Rheumatol 71:952–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Harper L, Morgan MD, Walsh M, Hoglund P, Westman K, Flossmann O, Tesar V, Vanhille P, de GK, Luqmani R, Flores-Suarez LF, Watts R, Pusey C, Bruchfeld A, Rasmussen N, Blockmans D, Savage CO, Jayne D (2012) Pulse versus daily oral cyclophosphamide for induction of remission in ANCA-associated vasculitis: long-term follow-up. Ann Rheum Dis 71:955–60

  141. Pagnoux C, Quemeneur T, Ninet J, Diot E, Kyndt X, de Wazieres B, Reny JL, Puechal X, le Berruyer PY, Lidove O, Vanhille P, Godmer P, Fain O, Blockmans D, Bienvenu B, Rollot F, Ait el Ghaz-Poignant S, Mahr A, Cohen P, Mouthon L, Perrodeau E, Ravaud P, Guillevin L (2015) Treatment of systemic necrotizing vasculitides in patients aged sixty-five years or older: results of a multicenter, open-label, randomized controlled trial of corticosteroid and cyclophosphamide-based induction therapy. Arthritis Rheumatol 67:1117–1127

    Article  CAS  PubMed  Google Scholar 

  142. Group WR (2005) Etanercept plus standard therapy for Wegener’s granulomatosis. N Engl J Med 352:351–361

    Article  Google Scholar 

  143. Jayne DR, Chapel H, Adu D, Misbah S, O'donoghue D, Scott D, Lockwood CM (2000) Intravenous immunoglobulin for ANCA-associated systemic vasculitis with persistent disease activity. QJM 93:433–9

  144. Fox RI, Herrmann ML, Frangou CG, Wahl GM, Morris RE, Strand V, Kirschbaum BJ (1999) Mechanism of action for leflunomide in rheumatoid arthritis. Clin Immunol 93:198–208

    Article  CAS  PubMed  Google Scholar 

  145. Metzler C, Miehle N, Manger K, Iking-Konert C, de GK, Hellmich B, Gross WL, Reinhold-Keller E (2007) Elevated relapse rate under oral methotrexate versus leflunomide for maintenance of remission in Wegener’s granulomatosis. Rheumatology (Oxford) 46:1087–91

  146. de Groot K, Rasmussen N, Bacon PA, Tervaert JW, Feighery C, Gregorini G, Gross WL, Luqmani R, Jayne DR (2005) Randomized trial of cyclophosphamide versus methotrexate for induction of remission in early systemic antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum 52:2461–2469

    Article  PubMed  CAS  Google Scholar 

  147. Pagnoux C, Mahr A, Hamidou MA, Boffa JJ, Ruivard M, Ducroix JP, Kyndt X, Lifermann F, Papo T, Lambert M, Le NJ, Khellaf M, Merrien D, Puechal X, Vinzio S, Cohen P, Mouthon L, Cordier JF, Guillevin L (2008) Azathioprine or methotrexate maintenance for ANCA-associated vasculitis. N Engl J Med. 359:2790–803

    Article  CAS  PubMed  Google Scholar 

  148. Jones RB, Hiemstra TF, Ballarin J, Blockmans DE, Brogan P, Bruchfeld A, Cid MC, Dahlsveen K, de Zoysa J, Espigol-Frigole G, Lanyon P, Peh CA, Tesar V, Vaglio A, Walsh M, Walsh D, Walters G, Harper L, Jayne D, European Vasculitis Study G (2019) Mycophenolate mofetil versus cyclophosphamide for remission induction in ANCA-associated vasculitis: a randomised, non-inferiority trial. Ann Rheum Dis 78:399–405

  149. Hiemstra TF, Walsh M, Mahr A, Savage CO, de GK, Harper L, Hauser T, Neumann I, Tesar V, Wissing KM, Pagnoux C, Schmitt W, Jayne DR (2010) Mycophenolate mofetil vs azathioprine for remission maintenance in antineutrophil cytoplasmic antibody-associated vasculitis: a randomized controlled trial. JAMA 304:2381–8

  150. Jayne DR, Gaskin G, Rasmussen N, Abramowicz D, Ferrario F, Guillevin L, Mirapeix E, Savage CO, Sinico RA, Stegeman CA, Westman KW, Van Der Woude FJ, RA dLvW, Pusey CD. (2007) Randomized trial of plasma exchange or high-dosage methylprednisolone as adjunctive therapy for severe renal vasculitis. J Am Soc Nephrol 18:2180–2188

    Article  CAS  PubMed  Google Scholar 

  151. Walsh M, Merkel PA, Peh CA, Szpirt WM, Puechal X, Fujimoto S, Hawley CM, Khalidi N, Flossmann O, Wald R, Girard LP, Levin A, Gregorini G, Harper L, Clark WF, Pagnoux C, Specks U, Smyth L, Tesar V, Ito-Ihara T, de Zoysa JR, Szczeklik W, Flores-Suarez LF, Carette S, Guillevin L, Pusey CD, Casian AL, Brezina B, Mazzetti A, McAlear CA, Broadhurst E, Reidlinger D, Mehta S, Ives N, Jayne DRW, Investigators P (2020) Plasma exchange and glucocorticoids in severe ANCA-associated vasculitis. N Engl J Med 382:622–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Guillevin L, Pagnoux C, Karras A, Khouatra C, Aumaitre O, Cohen P, Maurier F, Decaux O, Ninet J, Gobert P, Quemeneur T, Blanchard-Delaunay C, Godmer P, Puechal X, Carron PL, Hatron PY, Limal N, Hamidou M, Ducret M, Daugas E, Papo T, Bonnotte B, Mahr A, Ravaud P, Mouthon L (2014) Rituximab versus azathioprine for maintenance in ANCA-associated vasculitis. N Engl J Med 371:1771–1780

    Article  PubMed  CAS  Google Scholar 

  153. Charles P, Terrier B, Perrodeau E, Cohen P, Faguer S, Huart A, Hamidou M, Agard C, Bonnotte B, Samson M, Karras A, Jourde-Chiche N, Lifermann F, Gobert P, Hanrotel-Saliou C, Godmer P, Martin-Silva N, Pugnet G, Matignon M, Aumaitre O, Viallard JF, Maurier F, Meaux-Ruault N, Riviere S, Sibilia J, Puechal X, Ravaud P, Mouthon L, Guillevin L, French Vasculitis Study G (2018) Comparison of individually tailored versus fixed-schedule rituximab regimen to maintain ANCA-associated vasculitis remission: results of a multicentre, randomised controlled, phase III trial (MAINRITSAN2). Ann Rheum Dis 77:1143–9

  154. Charles P, Perrodeau E, Samson M, Bonnotte B, Neel A, Agard C, Huart A, Karras A, Lifermann F, Godmer P, Cohen P, Hanrotel-Saliou C, Martin-Silva N, Pugnet G, Maurier F, Sibilia J, Carron PL, Gobert P, Meaux-Ruault N, Le Gallou T, Vinzio S, Viallard JF, Hachulla E, Vinter C, Puechal X, Terrier B, Ravaud P, Mouthon L, Guillevin L (2020) Long-term rituximab use to maintain remission of antineutrophil cytoplasmic antibody-associated vasculitis: a randomized trial. Ann Intern Med 173:179–187

    Article  PubMed  Google Scholar 

  155. Jones RB, Tervaert JW, Hauser T, Luqmani R, Morgan MD, Peh CA, Savage CO, Segelmark M, Tesar V, van PP, Walsh D, Walsh M, Westman K, Jayne DR (2010) Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis. N Engl J Med 363:211-20

  156. Stone JH, Merkel PA, Spiera R, Seo P, Langford CA, Hoffman GS, Kallenberg CG, St Clair EW, Turkiewicz A, Tchao NK, Webber L, Ding L, Sejismundo LP, Mieras K, Weitzenkamp D, Ikle D, Seyfert-Margolis V, Mueller M, Brunetta P, Allen NB, Fervenza FC, Geetha D, Keogh KA, Kissin EY, Monach PA, Peikert T, Stegeman C, Ytterberg SR, Specks U (2010) Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med 363:221–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Stegeman CA, Tervaert JW, De Jong PE, Kallenberg CG (1996) Trimethoprim-sulfamethoxazole (co-trimoxazole) for the prevention of relapses of Wegener’s granulomatosis. Dutch Co-Trimoxazole Wegener Study Group. N.Engl. J Med 335:16–20

    CAS  Google Scholar 

  158. Gan PY, Tan DS, Ooi JD, Alikhan MA, Kitching AR, Holdsworth SR (2016) Myeloperoxidase peptide-based nasal tolerance in experimental ANCA-associated GN. J Am Soc Nephrol 27:385–391

    Article  PubMed  CAS  Google Scholar 

  159. Ellebrecht CT, Bhoj VG, Nace A, Choi EJ, Mao X, Cho MJ, Di Zenzo G, Lanzavecchia A, Seykora JT, Cotsarelis G, Milone MC, Payne AS (2016) Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353:179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Special thanks to Jean Brown who provided word editing and inserted the reference citations, and to Joshua Terrell who helped create the illustrative Figures 1 and 5.

Author information

Authors and Affiliations

Authors

Contributions

DMA and MEF conceived the outline for the manuscript. DMA, CAH, and MEF wrote the first draft. JCJ and RJF provided revisions and editing. JCJ provided the pictures. DMA, CAH, and MEF designed the illustrative figures.

Corresponding author

Correspondence to Meghan E. Free.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the special issue on: Inflammation in vascular diseases - Guest Editors: Mariana Kaplan & Peter Grayson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massicotte-Azarniouch, D., Herrera, C.A., Jennette, J.C. et al. Mechanisms of vascular damage in ANCA vasculitis. Semin Immunopathol 44, 325–345 (2022). https://doi.org/10.1007/s00281-022-00920-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-022-00920-0

Keywords

Navigation