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Abstract
Chronic infections with human hepatitis viruses continue to be a major health burden worldwide. Despite the availability of an
effective prophylactic vaccine against the hepatitis B virus (HBV) and of antiviral agents efficiently suppressing HBV replica-
tion, more than 250 million people are currently chronically infected with this hepatotropic DNA virus, and resolution of chronic
hepatitis B (CHB) is rarely achieved. Moreover, coinfection with the hepatitis D virus (HDV), a human RNA satellite virus
requiring the envelope proteins of HBV for productive viral spreading, substantially aggravates the disease course of CHB. The
molecular mechanisms by which these viruses interact with each other and with the intrinsic innate responses of the hepatocytes
are not fully understood. While HBV appears to avoid innate immune recognition, HDV elicits a strong enhancement of innate
responses. Notwithstanding, such induction does not hamper HDV replication but contributes to liver inflammation and path-
ogenesis. Intriguingly, HDV appears to influence the ability of T cells to recognize infected hepatocytes by boosting antigen
presentation. This review focuses on current knowledge regarding how these viruses can shape and counteract the intrinsic innate
responses of the hepatocytes, thus affecting the immune system and pathogenesis. Understanding the distinct strategies of
persistence that HBV and HDV have evolved is central for advancing the development of curative therapies.
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Introduction

Hepatitis B virus (HBV) remains the major etiological agent
of chronic viral hepatitis worldwide. Persistent HBV infection

is characterized by various degrees of liver inflammation,
which bears the risk, over decades, to develop liver cirrhosis
and hepatocellular carcinoma (HCC) [1]. The current death
toll is around 880.000 deaths a year [2]. Alarmingly, the num-
ber of deaths associated with chronic viral infections is even
increasing [3]. Nucleos(t)ide analogs (NUCs) are safe and
well-tolerated approved antiviral agents. Because of their abil-
ity to suppress HBV replication efficiently and their high bar-
rier to resistance, they have become the gold standard for
chronic hepatitis B (CHB) treatment [4]. However, loss of
circulating viral antigens (HBeAg, HBsAg) and seroconver-
sion remain rare under NUC treatment, committing most pa-
tients to long-term antiviral therapy. Although NUCs have
been shown to prevent disease progression in most patients
and to reduce the risk of developing HCC in non-cirrhotic
patients, NUC discontinuation is often bound to the relapse
of viral activity. This is mainly due to the fact that NUCs do
not target the HBV genome template that is formed from
incoming virions in the nuclei of infected hepatocytes [5]. In
contrast, pegylated interferon alpha (peg-IFNα) is the only
approved finite treatment for chronic HBV infection, despite
its limited capacity to induce seroconversion and association
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with side effects [6]. Thus, undetectable HBV DNA levels in
the serum and HBsAg loss, which are considered endpoints
for a functional cure, are rarely achieved with existing treat-
ments [4]. Therefore, the current efforts to advance treatment
options for CHB aim to increase off-treatment response rates
or functional cure rates [7].

Themolecular mechanisms determining either effective HBV
recognition and clearance, or persistence and pathogenesis are
not fully elucidated. Acute HBV infection is known to resolve
spontaneously in approximately 95% of immunocompetent
adults, leading to the development of long-lasting immunity
[8]. In contrast, 90% of children infected before 1 year of age
develop a chronic HBV infection [9]. In general, the resolution of
HBV infection requires an effective viral recognition and con-
certed induction of innate and adaptive immune responses. Both
animal and clinical studies demonstrated that in acute self-limited
HBV infection, both CD8+ T cell and CD4+ T cell responses to
HBV proteins are strong and polyclonal [10], whereas in chron-
ically infected individuals, immune responses appear weak and
narrowly focused [8, 11]. The inability to effectively suppress
HBV infection therefore results in the persistence of high quan-
tities of viral antigen over the years. Such chronic presentation of
viral antigens progressively suppresses virus-specific T cell im-
munity, which appears particularly compromised in old CHB
patients [12, 13]

Despite the clear role of adaptive immune responses to
resolve HBV infection, both unique replication characteristics
of this hepatotropic virus and its ability to avoid or even affect
intrinsic innate responses appear to be key elements in deter-
mining the failure of effective HBV recognition as it is ob-
served in the course of CHB.

The disease course of CHB is substantially aggravated by
co- or super-infection with the hepatitis delta virus (HDV),
which is the only known satellite virus infecting humans.
According to the World Health Organization (WHO), at least
12 million individuals are HBV/HDV co-infected worldwide,
although recent metanalyses indicated these numbers may be
substantially higher [14]. HDV infection causes the most se-
vere form of chronic viral hepatitis, since it is associated with
more rapid progression to cirrhosis, liver decompensation,
HCC, and death [15]. As a defective RNA viroid, HDV needs
the expression of HBV envelope proteins for the productive
release of HDV particles and propagation among human he-
patocytes. Because HDV shares the same envelope proteins of
HBV, HDV infection can be prevented by hepatitis B immu-
nization in HBV-negative individuals. However, treatment
options for patients with chronic HDV (CHD) are limited.
Off-label use of pegylated interferon alpha (peg-IFNα) shows
limited efficacy, is curative in a minority of patients, and is
associated with frequent and sometimes severe side effects
[16]. The development of novel in vitro and in vivo systems
for HBV and HDV infection has opened new venues for the
preclinical assessment of new therapeutic options [17, 18]. As

a result, Myrcludex B/bulevirtide (BLV), a synthetic peptide-
blocking HBV andHDV cell entry, has now reached the clinic
and was conditionally approved for the treatment of HBV/
HDV-co-infected patients in Europe and Russia in 2020. In
clinical trials, Bulevirtide has shown excellent safety and
strong effectiveness in lowering HDV RNA loads [19] both
alone and combined with peg-IFNα [20]. Further, promising
treatment options include peg-IFN-lambda [21, 22],
lonafarnib, which is a farnesyl transferase inhibitor, and
nucleic acid polymers [23, 24]. Despite these encouraging
therapeutic progresses, the molecular mechanisms responsible
for the more severe disease progression observed in CHD
compared to chronic HBV mono-infection are not yet fully
understood. The strict host and tissue tropism of these viruses
have hindered in-depth understanding of the host mechanisms
involved in HBV and HDV sensing and the strategies adopted
by HBV to escape recognition. Elucidating the interplay be-
tween HBV and HDV in infected cells, as well as the strate-
gies used by both viruses to evade and modulate immune
responses, remains a key effort for the development of cura-
tive therapies.

HBV replication and persistence strategies

The hepatitis B virus is a small blood-borne enveloped DNA
virus that can cause both acute and chronic infection by
targeting the hepatocytes, which are the only cells susceptible
to infection. Typical of HBV is not only its high tissue and
species specificity, but also a unique genomic organization
and replication mechanism, which involves the formation of
an over-length RNA intermediate and the utilization of a re-
verse transcriptase [25]. The infectious viral particle consists
of a spherical lipid envelope containing a single small circular
partially double-stranded DNA (rcDNA) molecule of about
3200 nucleotides, which is covalently linked to the viral po-
lymerase and packaged within a nucleocapsid formed by the
core protein (HBcAg) [25]. The viral membrane is formed by
host-derived lipids and three HBV envelope proteins that are
named, according to their size, preS1 (or large), preS2 (or
middle), and S (or small). The three HBV envelope proteins
share the C-terminal extremity, which corresponds to the S
domain of the small protein, while the middle and large pro-
teins display N-terminal extensions of 55 (preS2) and, geno-
type-dependent, 107 or 118 amino acids (preS1), respectively
[26]. The same C-terminal domain bears the region coding for
the surface antigen (HBsAg). A crucial step in the entry pro-
cess of HBV into the human hepatocytes is the high-affinity
binding of the N-terminal domain of the preS1 protein to the
hepatocyte-specific receptor, the Na+-taurocholate
cotransporting polypeptide (NTCP) [27, 28]. Notably, the en-
try of both HBV and HDV is efficiently blocked by a small
myristoylated lipopeptide derived from the preS1 domain of
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the large envelope protein [18, 29–31]. To establish a produc-
tive HBV infection, the viral genome needs to be conveyed to
the hepatocyte nucleus (Fig. 1), where the key molecule of
viral persistence, the covalently closed circular DNA
(cccDNA) minichromosome, is built from the rcDNA with
the support of distinct, not yet fully characterized, cellular
enzymes. The formation of the cccDNA is therefore a multi-
step process requiring the participation of the cellular DNA
repair machinery and its association with histone and non-
histone proteins (for a review, see [32]). The cccDNA serves
as a template for the production of all viral RNAs that are
transcribed from four largely overlapping main open reading
frames. Distinct promoters and enhancer regions regulate the
transcription of both subgenomic RNAs, like those responsi-
ble for the production of the envelope proteins and an over-
length pregenomic RNA (pgRNA). The transcription of the
pgRNA is not only indispensable for viral replication, but is
also responsible for the translation of the polymerase and of
the core proteins. Through the reverse transcription of the
pgRNA within the nucleocapsids, newly formed rcDNA-
containing nucleocapsids are enveloped and secreted as prog-
eny viruses via the endosomal secretory pathway [33].

The smallest subgenomic RNA produces the regulatory X
protein (HBx), which was reported to interfere with several
cellular pathways and transcription factors and to be recruited

onto the cccDNA [32, 34]. Moreover, a major function of
HBx that has emerged in the last years regards its ability to
hinder the host’s attempts to silence cccDNA transcription
[35–37]. By binding to the damaged DNA binding protein 1
(DDB1) [38], HBx triggers the degradation of the structural
maintenance of chromosomes 5/6 complex (SMC5/6), a
multi-functional DNA-binding complex involved in chromo-
some dynamics and stability [39]. Thus, HBx expression ap-
pears fundamental to counteract the SMC5/6 host restriction
factor and maintain active transcription of the cccDNA
minichromosome. Therapeutic strategies aiming at abrogating
HBx production, such as siRNA technologies, were recently
shown to enable reappearance of the SMC5/6 complex and
silencing of the cccDNA minichromosome in HBV-infected
chimeric mice [40].

Infected hepatocytes also secrete the non-structural pre-
core protein, the so-called E antigen (HBeAg), as well as high
amounts of subviral particles (SVPs), which are mainly com-
posed of envelope proteins (HBsAg) but lack the capsid and
the viral genome. High levels of circulating viral antigens are
thought to contribute to establishing HBV persistence and a
state of immune tolerance [41]. Of note, HBV DNA se-
quences are also found integrated into the host genome in
the liver of infected individuals [42, 43]. Although HBV
DNA sequences are often truncated and highly rearranged,

Fig. 1 Schematic representation of the replication cycle of HBV in mono-infected hepatocytes and of HBV and HDV in co-infected hepatocytes,
pointing out the enhancement of innate genes and increased antigen presentation
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they can contribute to the production of viral proteins, in par-
ticular, HBsAg. Moreover, additional virological markers like
hepatitis B core-related antigens (HBcrAg) and enveloped
particles containing HBV RNAs or empty capsids are also
secreted from HBV replicating cells into the bloodstream
[33]. Their relationship with cccDNA transcription, their clin-
ical potential as surrogate biomarkers [44], and their role in the
HBV life cycle, immunomodulation, and pathogenesis still
need to be elucidated.

The persistence of the HBV minichromosome in the liver
of CHB patients is considered the main virological reason for
the rebound of HBV commonly determined in serum after
cessation of NUC therapy. In an environment where liver
inflammation is controlled and hepatocyte turnover remains
low, the intrahepatic cccDNA pool appears stable [45].
However, knowledge of the half-life of individual cccDNA
molecules is still limited, with reports estimating half-lives
spanning from months to years [46–48]. To note, an accurate
definition of the longevity of individual cccDNA molecules
remains technically challenging. Adding complexity, the oc-
currence of new infection events is thought to play a key role
in determining maintenance and renewal of intrahepatic
cccDNA loads even under NUC therapy, due to the inability
of polymerase inhibitors to achieve complete suppression of
HBV replication [46].

It is conceivable that the kinetics of cccDNA decay are
substantially affected by various biochemical and immuno-
logical conditions. Without a doubt, immune cells have the
ability to recognize and destroy the cccDNA together with the
infected hepatocytes, events that are expected to lower the
intrahepatic cccDNA levels. Furthermore, the immune-
mediated elimination of infected cells is bound to promote
compensatory hepatocyte proliferation. Cell division has been
shown not only to dilute the existing cccDNA molecules
among dividing cells, but also to facilitate their destabilization
and loss, thus leading to a substantial reduction of the
intrahepatic cccDNA pool [49].

Studies with HBV-related viruses have shown that a pool
of cccDNA molecules can be established not only from
rcDNA molecules infecting the cells via the NTCP receptor
entry pathway “external route,” but also through an “internal
route” redirecting newly synthesized rcDNAs into the nucleus
instead of promoting cell egress [49, 50]. However, the effi-
cacy of such an “internal route” in HBV-infected human he-
patocytes has been recently questioned, since both in vitro
[43] and in vivo [31, 49] studies provide accumulating evi-
dence that amplification and replenishment of the HBV
cccDNA pool are mainly supported by new infection events.
Understanding cccDNA biology and whether the transport of
newly synthesized rcDNA molecules into the nucleus of hu-
man hepatocytes are key events determining maintenance of
the cccDNA pool remain mandatory to assist the design of
future therapeutic interventions. In this regard, the

development of therapeutic approaches able to lower
cccDNA amounts, to trigger its silencing, and to guard the
cells from new infection events represent the main goals for
achieving a functional cure. Together with strategies promot-
ing restoration of the HBV-specific antiviral immune re-
sponses, a complete HBV cure could even be envisioned [5,
7, 24].

HDV replication and persistence strategies

The viral genome of HDV is a circular, single-stranded,
negative-sense (−) RNA of approximately 1680 nucleotides.
In the nucleus of infected human hepatocytes, the viral ge-
nome appears as a rod-like structure with broad intramolecular
base pairing. This leads to the accumulation of three distinct
RNA forms: the genomic RNA (−); the antigenomic RNA (+),
which is an exact complement of the genomic RNA; and a
smaller linear mRNA (+) encoding two isoforms of the only
viral protein, the hepatitis delta antigen (HDAg). The small
(S-) HDAg (24 kDa, 195 amino acids) is important for virus
replication, while the large (L) variant (27 kDa, 214 amino
acids), which is generated by an RNA editing event induced
by the cellular enzyme adenosine deaminase acting on RNA
(ADAR), is essential for virus assembly [51]. Abrogation of
the stop-codon within the HDV antigenome enables the ex-
tension of the mRNA open reading frame and translation of L-
HDAg, which harbors a nuclear export signal. The host RNA
polymerases drive HDV replication using the antigenome as a
template and are also responsible for the transcription of the
HDV mRNA (Fig. 1). Using a double rolling-circle amplifi-
cation process, HDV genomes and antigenomes are first gen-
erated as oligomers that get self-cleaved into RNA monomers
through their intrinsic ribozyme activity. Newly formed
HDV-RNA is associated with L-HDAg and S-HDAg to gen-
erate a ribonucleoprotein (RNP) complex. This complex is
enveloped through budding into an ER-derived lipid bilayer
carrying the three HBV envelope proteins to generate new
virions [52].

The balance between genomic and antigenomic RNA ap-
pears crucial in guaranteeing persistence of HDV replication
and is highly regulated by the two forms of HDAg, as well as
through epigenetic modifications [53, 54]. Post-translational
modifications are also known to play a key role in HDV rep-
lication and morphogenesis. Notably, farnesylation of the L-
HDAg is essential for enabling the interaction of the HDV
RNP complex with the HBsAg in the cytoplasm, thus favoring
the assembly of HDV virions [55].

HBV plays an essential role as a helper virus for HDV
transmission. However, HDV infection was shown to persist
in patients for years also in the presence of very low levels of
HBV infection [56, 57]. Intriguingly, HDAg-positive cells
have been detected after liver transplantation for up to one
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and half years in the absence of HBV replication [58, 59], and
infection studies in human liver chimeric mice revealed that
HDV can infect and persist in vivo for at least 6 weeks in the
absence of HBV [60]. Moreover, these in vivo experiments
demonstrated that HDV mono-infection could be converted
into a productive infection by super-infection with HBV [60],
thus highlighting the endurance capacity of HDV in quiescent
human hepatocytes. Of note, recent in vitro and in vivo studies
revealed that HDV may even be rescued by alternative
enveloped viruses, such as flaviviruses, hepaciviruses, and
vesiculoviruses [61]. Particularly intriguing was the observa-
tion that HDV could be propagated by HCV in the liver of co-
infected humanized mice, thus providing experimental evi-
dence that HBV envelope proteins are not strictly required
for HDV cell egress. However, clinical analysis of chronically
infected HCV patient cohorts failed to document cases of
HDV/HCV co-infection without HBV, thus indicating that
HDV propagation mediated by HCV infection may rarely
occur in a real clinical setting [62–64]. Since the interaction
between the farnesylated L-HDAg and the HBsAg is weak,
the evolutionary advantage of using HBV as a helper virus to
exit the hepatocytes is not fully elucidated. Yet, it is conceiv-
able that not only the tolerogenic liver environment and the
peculiar low immune recognition profile of HBV (see below),
but also the high production of HBV envelope proteins and of
SVPs, which may serve as immunological decoy also for
HDV [65], represent key benefits for HDV/HBV co-
replication.

Keeping in mind the requirement of HBV envelope pro-
teins for HDV cell-to-cell propagation, it could be hypothe-
sized that immune-mediated cell turnover in HBV/HDV
chronically infected livers could not only accelerate cccDNA
loss but also affect HDV persistence. However, in vitro and
in vivo experiments revealed that cell division promoted the
clonal expansion of HDV-positive cell clusters, thus enabling
HDV to propagate and replicate among dividing human he-
patocytes even in the absence of HBV [66]. These findings
highlight the strong persistence capacities of this unique RNA
virus in the liver of HBV/HDV chronically infected patients.

HBV and HDV recognition by intrinsic innate
mechanisms of the hepatocytes

The ability of the innate immunity to recognize intracellular
pathogens, like viruses, is central to initiate the first line of
defense and to coordinate immune responses adequate to
achieve the control of the infection. A large range of patho-
gens is sensed through germline-encoded pattern recognition
receptors (PRRs) that are present either on the cell surface or
within multiple intracellular compartments. These PRRs in-
clude membrane-bound Toll-like receptors (TLRs); cytosolic
DNA sensors, such as members of the AIM2 family; and

numerous cytosolic RNA sensors, like the RIG I like receptors
(RLRs) with their main players: the retinoic acid-inducible
gene I (RIG-I) and melanoma differentiation-associated gene
5 (MDA5). These receptors are specialized to recognize un-
usual structures like viral proteins or nucleic acids [67]. Their
activation initiates the recruitment of distinct sets of adaptor
molecules, such as Myd88 (myeloid differentiation primary
response gene 88), MAVS (mitochondrial antiviral-signaling
protein), STING (stimulator of interferon genes), IFI16, and
TRIF (TIR-domain-conta in ing adapter - inducing
interferon-β), which trigger the main signaling pathways of
NF-kB and interferon regulatory factors (IRFs). Nuclear trans-
location of these factors culminates in the induction of
interferon-stimulated genes (ISGs) and production of different
inflammatory cytokines, interferons (type I/III IFNs), and
chemokines (reviewed in [68]).

Primary human hepatocytes (PHHs) express a broad range
of PRRs [69] and have the ability to sense various pathogens,
as shown by studies with the hepatitis C virus (HCV). In this
regard, both experimental studies [70–73] and analyses of
liver specimens from HCV-infected patients provided clear
evidence that HCV induces the upregulation of ISGs and a
strong interferon response [74–76]. The enhancement of var-
ious human ISGs and chemokines, like TGFβ1 and IP10, was
also demonstrated in the absence of the adaptive immune sys-
tem, in HCV-infected human hepatocytes within the liver of
immunodeficient uPA chimeric mice [77]. Of note, HCV is an
RNA virus whose replication cycle exclusively takes place in
the cytoplasm of infected cells. It is therefore plausible that
PRRs, like RIG-I, MAVS, and TLR3, can sense cytosolic
HCV RNA despite the ability of HCV proteins to attenuate
the IFN response by counteracting components of the innate
immune signaling [68]. Nevertheless, type I and III interferons
are produced during HCV infection, and interferon-based
treatments suppress HCV replication both in vitro [78] and
in vivo [77, 79], even though sustained ISG expression has
been associated with weaker responses to IFN-based treat-
ment [80].

In contrast to HCV, after entering the hepatocytes, the
HBV DNA is transported to the cell nucleus" instead of "into"
- since the genome may get released from the nucleocapsid at
the level of the nuclear membrane. Above all, the mimicry
abi l i ty of the HBV DNA genome to reside as a
minichromosome in hepatocyte nuclei appears to be a key
replication strategy of this virus to avoid innate immune rec-
ognition. Transcribed HBV RNAs are generated from the
cccDNA by cellular enzymes and resemble host messenger
RNAs with their 5′ cap and 3′poly(A) tail, thus offering poor
opportunities to ignite recognition. Only the HBV pgRNA
contains an unusual hairpin loop as packaging signal [81]
and was shown to induce cytosolic PRRs (RIG-I) in certain
experimental conditions [82]. Nevertheless, the pgRNA be-
comes rapidly encapsidated by the core proteins in the
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cytoplasm, thus protecting the HBV replicative intermediate
from PRR recognition. Such ability of HBV to escape a strong
induction of the so-called antiviral state led researchers to
stamp HBV as a “stealth” virus [73].

Both studies in chimpanzees [83] and in patients with acute
infection [84] showed that HBV neither triggers the induction of
type I/III interferons nor clearly enhances ISGs, indicating that
either the sensory pathways are unable to recognize HBV or that
HBV can actively block these pathways. Likewise, in vitro stud-
ies with HBV-infected human hepatocytes failed to detect upreg-
ulation of ISGs [72], and liver specimens from patients with
CHBwere reported to express ISG levels similar to those obtain-
ed from control individuals [85]. Nevertheless, this study showed
that innate responses could be activated upon ex vivo incubation
of fresh liver biopsies with TLR3 agonists.

Human liver chimeric mice are based on the repopulation
of the mouse liver with primary human hepatocytes. Because
these mice lack NK cells and functional adaptive immune
responses, the model offers the opportunity to dissect interac-
tions occurring between human hepatotropic viruses and in-
trinsic innate responses of the human hepatocytes in vivo. We
and others employed these systems to investigate the capacity
of human hepatocytes to sense different hepatitis viruses
in vivo [21, 86], as well as the antiviral effects of therapeutic
cytokines like interferons [22, 40, 87, 88] and of HBV-
specific immune cells [89–91]. These studies revealed that
HBV induces a much weaker and barely detectable enhance-
ment of innate immunity genes [86, 92] in comparison with
infections with HCV [77] or HDV [86].

As an RNA virus, HDV is expected to be recognized by
various PRRs, and in particular RNA sensors like RLRs,
MDA5 and to activate downstream signaling proteins (i.e.,
MAVS) and transcription factors, which can translocate into
the cell nucleus and initiate the transcription of IFN and ISG
genes. HBV/HDV co-infection in humanizedmicewas shown
to provoke a sustained induction of the antiviral state of the
human hepatocytes by promoting the enhancement of classi-
cal human ISGs, genes involved in antigen presentation (see
below), and the induction of inflammatory and pro-fibrogenic
cytokines (i.e., IP10, IFN-β, TGF-β), both at the transcrip-
tional and protein levels [86]. In this regard, TNFα was re-
cently shown to play a key role in HDV-mediated liver in-
flammation [93]. A similar HDV-mediated induction of ISGs
was also observed in vitro [94] and in other mouse models
[95–97]. The increased amounts of ISGs and cytokine levels
may be a key determinant of liver inflammation in HDV in-
fection, thus explaining the more severe course of disease
observed in CHD patients. The enhancement and nuclear
translocation of STAT in human hepatocytes also indicated
that HDV triggered the JAK/STAT signaling cascade in
HBV/HDV co-infected livers. Notably and in line with previ-
ous in vitro studies [98], nuclear accumulation of STAT pro-
teins appeared most pronounced in cells displaying lower

HDAg levels, suggesting that interference mechanisms may
be active in the presence of high HDV protein levels [86].
Microarray analyses also reported the activation of a broad
range of ISGs and production of IFN-β and IFN-λ in hepato-
ma cell lines (HepG2-NTCP cells) and PHH cultures infected
with HDV [99]. Of note, HDV-mediated induction of IFN
appeared strongly reduced upon depletion of MDA5, thus
indicating that this innate cellular component can act as a
key sensor of HDV RNA recognition [96, 100]. However, it
remains unknown whether MDA5 can be also transported to
the nucleus, which is the replication site of HDV. Thus, the
ability of this virus to replicate in a “protected” cellular com-
partment may be seen as a countermeasure to avoid recogni-
tion from PRRs or other cellular restriction mechanisms as it
has been recently described for HBV (i.e., SMC5/6 complex).

It is noteworthy that different levels of HBV and HDV
infection can coexist among human cells within the same liver
even in immune-deficient liver chimeric mice. As shown in
Fig. 2, human hepatocytes expressing almost exclusively high
levels of HDAg can be observed near cells expressing both
viruses, as well as cells positive only for HBV markers.
Moreover, the development of HBV viremia and the increase
of intrahepatic cccDNA loads appeared substantially delayed
in HBV/HDV co-infected mice in comparison with HBV
mono-infected animals, suggesting that the stronger antiviral
state exerted by HDV during viral spreading could interfere
with HBV replication and establishment of new infection
events [18, 101]. Such moderate HDV-mediated suppression
of HBV activity could occur also in the absence of the adap-
tive immune system, as it is the case in chimeric mice, thus
supporting the notion that intrinsic innate mechanisms elicited
within the hepatocytes and/or direct virus/virus interferences
account for a certain dampening of HBV productivity.
Although the exact molecular mechanisms by which HDV
can suppress HBV remain to be elucidated, these observations
are in agreement with studies reporting lower levels of HBV
infection in HBV/HDV co-infected patients [56].

Single-cell analyses based on in situ RNA hybridization
showed that the activation of innate genes is clearly detectable
not only in HBV/HDV co-infected livers [86, 96, 99], but also
within the human hepatocytes [21]. While some studies re-
ported induction of ISGs and IFN also in the setting of HDV
mono-infection [95–97], a clear induction of the same intrin-
sic immune responses could not be detected in the setting of
HDV mono-infection in immune-deficient humanized mice
[21]. The mechanisms underlying such differences are un-
clear. The low amounts of infected cells achievable in vivo
in the setting of HDV mono-infection may in part impact the
type and amplitude of intrahepatic HDV sensing. Of note,
extracellular vesicles released from HDV mono-infected cells
have been recently shown to bear the ability to induce pro-
inflammatory cytokines in macrophages and peripheral blood
mononuclear cells [102], thus indicating that different
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mechanisms may participate in intercellular HDV sensing.
Moreover, one could speculate that the co-existence of both
viruses enabling ongoing HDV spreading among hepatocytes
may play a determinant role in promoting the enhancement of
most ISGs, as well as the production of pro-inflammatory
cytokines. If this is true, abrogation of new infection events
would be expected to lower liver inflammation in CHD
infection—and provide at least in part a rationale for the ame-
lioration of most biochemical parameters as it has been ob-
served in the clinical trials investigating the efficacy of the
HBV/HDV entry inhibitor bulevirtide [103].

Altogether, the abovementioned studies provide strong ev-
idence that the presence of HBV in human hepatocytes co-
infected with either HCV or HDV [72, 86] did not prevent the
enhancement of intrinsic innate responses promoted by these
RNA viruses. Therefore, such studies support the hypothesis
that HBV remains nearly invisible to PRRs within the infected
hepatocytes. While the ability of HBV to escape innate recog-
nition in infected cells encounters large consensus in the sci-
entific community, it remains unclear whether HBV can ac-
tively suppress or hinder the induction of innate mechanisms
in infected cells at least in certain conditions. In this respect,
downregulation of some innate genes was observed in liver
samples from CHB patients [104], while other studies report-
ed the ability of the precore/HBeAg to target and hinder the
induction of the TLR signaling pathways, thus supporting the

notion that HBV proteins may actively contribute to the eva-
sion of the innate responses [105]. Moreover, the HBx protein
and the HBV polymerase were reported to block the induction
of innate immunity genes in vitro [106, 107]. However, the
use of different experimental models and viral protein expres-
sion levels may in part explain the controversial data reported.
Yet, persistent production of HBsAg and HBeAg have shown
to exert immune-modulating functions contributing to viral
persistence [8, 105, 108–110] and to the B cell exhaustion
detected in chronically HBV-infected individuals [111–115].

It can be noted that also HDV adopts unusual replication
modalities, which enable the virus to limit contacts with the
intracellular PPRs by nuclear compartmentalization of the
HDV RNA-RNA replication. In addition, the formation of a
circular RNA genome without accessible 5′ or 3′ ends pre-
vents PRR recognition by RIG I [116], while other viral
RNA motives (like GC rich elements) that are potentially rec-
ognized by innate defense mechanisms are shielded by the
delta antigens forming tight ribonucleoprotein (RNP) com-
plexes [117] that may remain spatially inaccessible to cellular
factors such as nucleases. Although it is currently unclear
whether the HDAg can contribute or counteract innate im-
mune recognition of HDV infection, the RNP complex is con-
sidered to play a key role also in preventing over-
accumulation of editing events by ADAR1 at sites of the viral
RNA other than the amber/w site. Such control of editing

Fig. 2 Immunofluorescence staining of cryostat sections of a HBV/
HDV-infected humanized mouse liver showing primary human
hepatocytes (anti-CK18, 1:400, Dako, Denmark) expressing viral
markers of both viruses within the same nuclei (merged yellow signal),
as well as the presence of cells producing either high levels of HBcAg
(green; rabbit anti-HBcAg, 1:2000, Dako) or nearly only HDAg (red
signal; anti-HDAg-positive human serum, 1:8000), indicating strongly

different and possibly fluctuating levels of HBV and HDV infection
coexisting in immune-deficient chronic infected livers. The nuclei were
stained by Hoechst 33258 (1:20,000 diluted, Invitrogen). Stained sections
were mounted with fluorescent mounting media (Dako), analyzed with a
fluorescence microscope BZ8710 (Keyence, Osaka, Japan), and
photographed using a ×40 magnifying lens
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levels appears central to control HDV RNA replication levels
and the likely outcome of infection [118].

Similarly to HBV, the HDV RNP complex is further
enveloped by HBsAg before budding into the endosomal
compartment (for more details on RNA receptors see review
[119]), thus limiting the steps where HDV can be recognized
by the intrinsic immune mechanisms of the hepatocytes.
Finally, HDAg was predicted to generate only few peptides
that can be processed and bind to human leukocyte antigen
(HLA) molecules; steps that are essential to activate HDV-
specific CD8 T cells [120]. Moreover, immune evasion mu-
tations on predicted T cell epitopes were observed in chronic
HBV/HDV infected individuals [121].

Hepatocyte antigen presentation of HBV
and HDV and immunogenic properties
of HDV

The liver represents a particularly attractive organ for many
pathogens. Being exposed to high amounts of food-derived
metabolites, toxins, and bacterial products coming from the
gut, the liver is characterized by unique tolerogenic properties,
where immune activation is kept tightly controlled. While the
liver parenchymal cells, the hepatocytes, ensure metabolic and
detoxification functions, large amounts of infiltrating and res-
ident immune cells are found in the healthy liver. Innate lym-
phoid cells, like the Kupffer cells, which are the liver resident
macrophages, build together with liver sinusoidal endothelial
cells (LSECs) and hepatic stellate cells (HSCs) the so-called
non-parenchymal cell (NPC) compartment. In addition to
many liver-specific NPCs, natural killer cells and various cir-
culating monocytes, like dendritic cells and lymphocytes, in-
cluding mucosa-associated invariant T (MAIT) cells, infiltrate
the liver and contribute to the orchestration of the immune
response [67]. Despite such unique richness of resident and
circulating lymphoid and professional antigen-presenting
cells, the distinct ability of infected and innate cells to sense
and signal the presence of pathogens may differently impact
the effectiveness of the immune responses elicited.

Antigen presentation is certainly a required checkpoint to
initiate adaptive, pathogen-specific, immune responses. The
hepatotropic nature of HBV and HDV and the fact that hepa-
tocytes are in direct contact with blood flow means that naive
and effector/memory T cells are in direct contact with the
virus-infected parenchymal cells [122, 123]. Priming of naive
T cells by antigens exclusively presented by hepatocytes is
known to generate T cell tolerance [124], but the mechanisms
of antigen presentation during natural infection in the presence
or absence of inflammatory events can profoundly alter T cell
priming [125] and the ability of effector T cells to recognize
infected hepatocytes [126]. Recent work in animal models has
elegantly demonstrated that priming by HBV-infected

hepatocytes causes the induction of HBV-specific CD8+ T
cells that do not become classical effector CD8+ T cells
[125]. Moreover, this study pointed out the key role of IL-2
in promoting the expansion and proliferation of primed HBV-
specific T cells. Similarly to what is observed in so-called
immunotolerant patients (HBeAg+ chronic infection), this
specific tolerogenic priming was shown to occur in a liver
environment without inflammatory events. Indeed, HBV-
specific T cells of immune tolerant CHB patients were shown
to expand and become functional upon the addition of IL-2. In
contrast, priming in an inflammatory liver environment ap-
pears to be mediated mainly by professional antigen-
presenting cells (Kupffer cells, endothelial cells). However,
such priming was shown to induce more classical effector T
cells that became exhausted and could be rescued by anti-PD-
1 treatment [125]. Chronic HDV infection was shown to be
associated with increased levels of pro-inflammatory cyto-
kines like IL-12 and IL-18 and to engage MAIT cells, which
are a subset of innate-like T cells, causing their functional
impairment and progressive depletion as the HDV-
associated liver disease progresses (Dias 2019). Of note, only
a modest MAIT cells decrease was observed in HBV mono-
infected patients (Dias), thus suggesting that higher cytokine
levels often determined in HDV infection, may contribute to
liver damage and disease progression also by the activation
and subsequent loss or exhaustion of different innate and
adaptive immune responses.

The infection of HDV and its ability to directly activate
innate immunity in hepatocytes radically changes the liver
microenvironment and the ability of T cells to recognize
HBV-infected hepatocytes. Recent work performed in an
in vitro HDV infection system, liver biopsies of HBV/HDV
co-infected patients and mice with humanized livers, have
shown that HDV infection not only enhances the gene expres-
sion of HLA class I molecules,B2M, immunoproteasome, and
co-stimulatory molecules genes, but it also increases the pre-
sentation of viral epitopes and, as a consequence, the efficien-
cy of T cell recognition of infected hepatocytes [126].

We do not have data related to how HBV/HDV co-infected
hepatocytes might differentially prime naive T cells.
However, HDV has clear effects on the presentation of viral
antigens to effector CD8+ T cells. This could explain the high
incidence of CD8+ T cell escape mutations found in HDV
epitopes [121, 127], but also explain the epidemiological ev-
idence of a better HBV control, or at least frequent HBV
suppression, in HBV/HDV co-infected patients than in HBV
mono-infected patients. The compact nature of the HBVDNA
genome poses a limit on the generation of mutated HBV vi-
ruses, and this could in part explain why dually infected HBV/
HDV patients become HBsAg-negative at a higher rate than
HBV-mono-infected patients [128].

The increased ability of HDV to boost the presentation of
HBV antigens was shown to not be exclusive to the co-
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infected HBV/HDV hepatocytes but also to neighboring HBV
mono-infected cells, through a mechanism likely mediated by
the increased production of IFN-β and IFN-λ [126]. In this
regard, infected or damaged cells and cellular events eliciting
pathogen recognition result in the production of a variety of
soluble factors, such as danger signals, pro-inflammatory cy-
tokines and chemokines, and extracellular vesicles [102].
These signals may play a pivotal role in promoting bystander
innate immune activation of neighboring cells.

The increased antigen presentation induced by HDV also
supports the concept that therapeutic interventions designed to
boost HBV-specific CD8+ T cell responses, with anti-PD1
therapy or with the use of chimeric antibody receptor
engineered (CAR) or T cell receptor (TCR)-redirected T cells
or TCR-like antibodies might be better suited for the treatment
of HBV-HDV chronic hepatitis. The demonstration that HDV
can persist intracellularly in replicating human hepatocytes
despite blocking re-infection by administering the entry inhib-
itor bulevirtide [66] suggests that immune-mediated destruc-
tion of a substantial fraction of HDV-infected cells is required
to substantially lower intrahepatic HDV infection.

Sensitivity of HBV and HDV to therapeutic
cytokines

The persistence of high antigen levels is considered a major
factor driving functional exhaustion of HBV-specific immune
cells, and various studies indicated a poor restoration of im-
mune cell functions in the early phases of IFN treatment [8,
129–131]. Moreover, the limited rates of cccDNA reduction
determined in patients receiving IFN-based therapy [132, 133]
do not fully explain the early kinetics of HBsAg decline. Thus,
the responsiveness of the hepatocytes to IFN therapy may be
central to trigger the initial reduction of viral antigens and
thereby facilitate the functional reconstitution of antiviral T
cell responses. An early HBsAg decline is indeed observed
in patients responding to peg-IFNα therapy [131]. Thus, IFN-
based therapy may be beneficial in some patients not only by
acting as an immune-modulator, but also by directly lowering
HBV RNA levels in infected hepatocytes. Studies in human-
ized mice showed that administration of conventional IFNα
led only to a transient epigenetic suppression of the cccDNA
[88] and that the responsiveness of HBV-infected human he-
patocytes appeared in part impaired [92]. Moreover, some
human ISGs appeared less efficiently induced after one single
injection of peg-IFNα in HBV-infected livers compared to the
enhancement induced in uninfected animals, suggesting the
existence of an initial, albeit partial, impairment of the respon-
siveness of the HBV-infected hepatocytes to IFNα, which,
however, could be breached by repeated administrations of
the longer-active peg-IFNα [87]. At any rate, several weeks
of treatment with peg-IFNα were sufficient to provoke a

strong decrease of circulating and intrahepatic viral antigens
despite the absence of immune cell responses in this system
[40, 87]. Of note, recent studies showed that not only admin-
istration of peg-IFNα but also RNA interference strategies
targeting all HBV transcripts could abrogate the production
of all HBV proteins, including HBx, in a substantial amount
of hepatocytes in vivo, leading to the reappearance of the
SMC5/6 complex and cccDNA silencing [40]. Intriguingly,
sustained silencing of cccDNA transcription could be main-
tained in a substantial fraction of infected cells by applying the
entry inhibitor bulevirtide, thus by shielding the hepatocytes
from new infection events [40].

Due to its narrow genome size and the lack of expression of
its own viral polymerase, therapy options for HDV are still
limited with peg-IFNα being the drug of common use [23]
and more recently bulevirtide, which does not directly block
viral activity but rather promotes the reduction of HDV loads
by blocking cell entry [103]. Unfortunately, outcomes in pa-
tients treated with peg-IFNα remain unsatisfactory and the
mechanisms by which IFN exerts anti-HDV effects in human
hepatocytes are not yet elucidated. Previous in vitro studies
mostly relied on a particular cell culture-derived strain of
HDV genotype 1 [134] that resulted insensitive to IFNα
in vitro [99]. Contrarily, a patient-derived HDV-1 strain was
shown to respond both to peg-IFNα and to peg-IFNλ in hu-
man liver chimeric mice [22], thus providing evidence that
these therapeutic cytokines can lower HDV loads in infected
human hepatocytes also in a system lacking adaptive immune
responses. Understanding the mode of action of interferon in
HDV-infected cells, as well as the mechanisms responsible for
the different responsiveness to interferon among distinct HDV
isolates shall greatly assist the design of therapies aiming to
accelerate HDV loss and achieve HDV cure.

Conclusions

Elucidation of the different mechanisms that infected hepato-
cytes use to unveil the presence of these human hepatotropic
viruses to uninfected bystander cells and to different types of
resident and circulating immune cells is central to understand
keymechanisms determining the resolution of HBV andHDV
infection versus persistence. Whereas experimental infection
systems and patient analyses support the notion that HBV
avoids innate immune recognition, co-infection with HDV
appears to cause profound changes in the infected liver. The
clear enhancement of various ISGs, the higher production of
chemokines and inflammatory cytokines, as well as the in-
creased antigen presentation capabilities determined in
HBV/HDV infection may act however as a double sword,
boosting the ability of immune cells to recognize infected cells
on the one side, but also augmenting liver inflammation and
thus accelerating pathogenesis. Through the development of
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various in vitro and in vivo infection models, as well as of
sophisticated technologies enabling the dissection of events
occurring at the single-cell level, the role of distinct HBV
and HDV proteins in modulating the antiviral responses in
infected hepatocytes is gaining recognition, also highlighting
the importance of viral activity in counteracting the first line of
host defenses. Understanding the interplay between viral pro-
teins and the innate responses remains central for developing
curative treatment strategies against HBV and HDV.
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