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Abstract
Eosinophils are traditionally considered as end-stage effector cells involved in the pathogenesis of Th2 immune-mediated
disorders as well as in the protection against parasite infection. However, this restricted view has recently been challenged by
a series of studies revealing the highly plastic nature of these cells and implication in various homeostatic processes. Large
numbers of eosinophils reside in the lamina propria of the gastrointestinal tract, at the front line of host defence, where they
contribute to maintain the intestinal epithelial barrier function in the face of inflammation-associated epithelial cell damage.
Eosinophils confer active protection against bacterial pathogens capable of penetrating the mucosal barrier through the release of
cytotoxic compounds and the generation of extracellular DNA traps. Eosinophils also integrate tissue-specific cytokine signals
such as IFN-γ, which synergise with bacterial recognition pathways to enforce different context-dependent functional responses,
thereby ensuring a rapid adaptation to the ever-changing intestinal environment. The ability of eosinophils to regulate local
immune responses and respond to microbial stimuli further supports the pivotal role of these cells in the maintenance of tissue
homeostasis at the intestinal interface.
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Introduction

Eosinophils arise in the bone marrow from GATA-1-binding
factor 1 (GATA-1) positive granulocyte-monocyte progeni-
tors and develop to maturity in response to the cytokines
GM-CSF, IL-3 and IL-5. Eosinophils are then released into
the peripheral blood as terminally differentiated cells and rap-
idly migrate to their target tissues. While their half-life in the
circulation is relatively short (estimated between 3 and 24 h)
[1, 2], the survival of eosinophils upon migration into periph-
eral tissues is largely expanded, with turnover rates depending
on distinct expression of the common γ-chain receptor in their
target tissues [3]. Eosinophil chemotaxis is mainly driven by
the binding of the chemokine eotaxin-1 (CCL11) to its CCR3

receptor, with CCL11 produced primarily by cells of stromal
origin such as fibroblasts, smooth muscle cells and endothelial
cells, but also by epithelial cells [4].

Small numbers of tissue resident eosinophils are found in
multiple tissues under steady-state conditions, including the
thymus, lung, uterus, mammary gland, adipose tissue and gas-
trointestinal (GI) tract. Interestingly, eosinophil numbers in
the GI tract are substantially higher than in other tissues, ac-
counting for 20–30% of the total intestinal leukocytes [5]. In
addition to the pool of eosinophils present under steady-state
conditions, eosinophils can further be recruited to sites of tis-
sue damage in response to injury or exposure to allergen or
pathogens, where they exert potent inflammatory effects
through the release of cytokines, lipid mediators and cytotoxic
granule proteins in a process known as “degranulation”.
Eosinophil granules typically comprise eosinophil peroxidase
(EPX), eosinophil cationic protein (ECP), major basic protein
(MBP) and eosinophil-derived neurotoxin (EDN). The tight
regulation of eosinophil effector functions is crucial for the
development of beneficial immune responses and the simul-
taneous avoidance of excessive tissue damage. The abnormal
presence of eosinophils in peripheral organs is therefore
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generally associated with disease. Eosinophilia is a major hall-
mark of allergic asthma in the airways [6, 7] and of allergic
skin manifestations such as atopic dermatitis [8], but is also
typical of chronic inflammatory conditions of the GI tract such
as inflammatory bowel diseases (IBD) and eosinophil-
associated gastrointestinal disorders (EGIDs—a family of
conditions characterised by inappropriate GI eosinophil accu-
mulation in the context of Th-2-driven immune polarisation)
[9–11]. The tissue-damaging consequences of eosinophilia at
these sites have been attributed to several factors released by
activated eosinophils as they degranulate.

In the GI tract, eosinophils are scattered throughout the
lamina propria of the stomach, small intestine, cecum and
colon but are absent from the oesophagus. Eosinophils are
recruited to the GI tract already during fetal life, before the
establishment of the intestinal microflora [2]. The strategic
location of intestinal eosinophils close to themucosal interface
and their expression of various Toll-like receptors (TLRs) at
the cell surface suggests that they can sense and respond to
microbial stimulation. Recent evidences show that eosinophils
not only contribute to shape the composition of the intestinal
microbiota—directly or indirectly via the modulation of mu-
cosal immune responses—but also respond to bacterial com-
ponents or bacterially derived metabolites. In this review, we
concisely summarise the current understanding of eosinophil
contribution to intestinal homeostasis and highlight recent lit-
erature investigating their ability to recognise and eliminate
bacterial pathogens in the GI tract. We further discuss studies
exploring interactions between eosinophils and the intestinal
microbiota. As eosinophil contribution to the pathogenesis of
Th2-oriented conditions such as asthma, allergy or infection
with parasites has already been reviewed extensively [12–14],
we focus here on evidence of their priming by the cytokine
IFN-γ and potential implication in Th1 polarised immune
settings such as following bacterial infections and bacterially
driven inflammation.

Eosinophil immunoregulatory function
in intestinal homeostasis

The intestinal lamina propria is home to a dense and highly
specialised mucosal immune system, comprising multiple T,
B, innate lymphoid and myeloid cell subsets that act in concert
with epithelial and stromal cell populations to mount effector
immune responses against pathogens while avoiding deleteri-
ous responses to commensals. This dynamic crosstalk ensures
the coexistence of the immune systemwith the microbiota in a
mutual ly benefic ia l re la t ionship, a lso known as
“homeostasis”.

Eosinophils contribute to the maintenance of intestinal ho-
meostasis in several ways. They preserve the epithelial barrier
integrity by enhancing intestinal mucus secretion and

eosinophil-deficient mice display decreased mucus-
expressing goblet cells in the small intestine [15].
Eosinophils also support the maintenance of IgA-producing
plasma B cells, which in turn promote the development of
Peyer’s patches and modulate the composition of the intestinal
microbiota [15, 16]. In addition, there is growing evidence on
the role of eosinophils in regulating local immune responses,
especially of T cells. Indeed, eosinophils down-regulated
Th17 cells in the small intestine by secreting IL-1 receptor
antagonist (IL-1Rα), a natural inhibitor of IL-1β [16].
Similarly, the frequencies of mucosal Th1, but not Th2 cells,
were strongly increased in the GI tract of mice depleted of
eosinophils in a microbiota-dependent manner [17] (Fig. 1).
GI eosinophils were also reported to suppress Th2 responses
in Peyer’s patches during intestinal infection by nematodes
[18]. In contrast, enteric eosinophils promoted the initiation
of Th2 immunity by controlling the activation and migration
of CD103+ dendritic cells to draining lymph nodes in response
to local EPX release in a model of food allergy [19]. These
studies indicate that eosinophils might restrict inappropriate T
cell responses to promote mucosal homeostasis, but that their
function might be highly context dependent.

Eosinophil can also influence T cell responses indirectly,
by promoting the differentiation of regulatory T cells (Tregs).
Indeed, the analysis of eosinophil-deficient mice revealed a
notable reduction in the frequencies of intestinal Foxp3+

Tregs correlating with decreased TGF-β activating factors
MMP3 and MMP9 [20]. Similarly, intestinal eosinophils but
not peripheral blood eosinophils induced the differentiation of
naïve T cells into Foxp3+ Tregs cells in vitro through the
release of TGF-β1 and retinoic acid [21]. Recent reports have
described the existence of a unique microbiota-induced Treg
subset expressing the nuclear hormone receptor RORγt,
which controls intestinal inflammation [22–24]. Whether in-
testinal eosinophils also contribute to the differentiation of this
specialised subset associated with enhanced suppressive func-
tions still remains to be determined the effects of eosinophils
on the maintenance of intestinal homeostasis.

Pathways involved in eosinophil activation
during bacterial infections

Bacterial recognition pathways driving eosinophil
activation

The mucosal immune system recognises microbial compo-
nents and metabolites through several families of innate im-
mune receptors, resulting in the production of cytokines, an-
timicrobial proteins and immunoglobulins (IgA) that maintain
intestinal barrier integrity. Eosinophils are well equipped to
sense and respond to bacterial stimulation. They express a vast
varry of pattern-recognition receptors (PRRs) capable of
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recognising specific evolutionarily conserved microbial com-
ponents called pathogen-associated molecular patterns
(PAMPs), as well as damage-associated molecular patterns
(DAMPs). PRR engagement on eosinophils activates intracel-
lular signalling cascades leading to a broad range of responses,
including the release of pro-inflammatory cytokines,
chemokines, cytotoxic granule proteins, leukotrienes and re-
active oxygen species, the upregulation of adhesionmolecules
increasing cellular trafficking as well as enhanced survival.
Eosinophils express several families of PRR, including toll-
like receptors (TLRs), RIG-I-like receptors (RLRs),
nucleotide-binding oligomerisation domain-like (NOD-like)
receptors as well as the receptor for advanced glycation end
products (RAGE) [25]. An overview of the pattern-
recognition receptors expressed on eosinophils are reviewed
by Kvarnhammar et al. [25].

TLRs recognise PAMPs in different cellular compart-
ments. TLR1, -2, -4, -5, -6 and -10 are positioned on the cell
surface and primarily detect bacterial proteins, lipoproteins

and polysaccharides. In contrast, TLR3, -7, -8 and -9 are lo-
cated in endosomes, where they detect mostly viral nucleic
acids. All TLRs except TLR8 have been detected in eosino-
phils at the mRNA or protein level. Peripheral blood eosino-
phils were reported to prominently express TLR7 [25], which
recognises single-stranded RNA. While TLR7 signalling in
eosinophils might contribute to host protection against viral
pathogens, it remains to be determined whether it might also
participate in the recognition of the viral component of the gut
microbiome. The stimulation of human eosinophils with
TLR2, TLR5 and TLR7 agonists led to the upregulation of
intercellular adhesion molecule-1 (ICAM1) and of surface
CD18 expression, together with the release of IL1β, IL-6,
IL-8, CXCL1 and superoxides. These effects were mediated
by the combined action of ERK kinase, PI3K kinase and
NF-κB pathways [26]. In contrast, only the TLR2 agonist
peptidoglycan (PGN) could induce eosinophil degranulation
and ECP release [26]. In a study of Driss et al., both the live
form of M. bovis bacillus Calmette-Guérin (BCG) and

Fig. 1 Roles of eosinophils in intestinal homeostasis and host protective
immunity. The gastrointestinal tract is home to a large population of
resident eosinophils. a Under physiological conditions, eosinophils
integrate tissue-derived signals and bacterial metabolites to promote
mucosal homeostasis. They restrict inappropriate Th1 responses in
response to microbiota-derived signals and inhibit Th17 cell by
secreting IL-1Rα. Eosinophils also promote the differentiation of
regulatory T cells via the release of TGF-β, MMP9 and retinoic acid. b
Eosinophils maintain epithelial barrier integrity by enhancing intestinal
mucus secretion and supporting IgA-producing plasma B cells through

the production of cytokines such as IL-1β, TGF-β and IL-6, leading to
the diversification of the microbiota. Eosinophil-derived IL-1β also
promote the development of Peyer’s patches and lymphotoxins
production by RORγ+ ILCs. c In response to bacterial pathogens such
as C. rodentium breaching the epithelial barrier, eosinophils are further
recruited from the bone marrow to sites of tissue damage, where they are
conditioned by IFN-γ to facilitate bacterial killing through the release of
extracellular DNA traps (EETs) and associated cytotoxic granule
proteins. Concomitantly, eosinophils also downmodulate Th1 responses
via the expression of PD-L1
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purified lipomannan promoted the synthesis of reactive oxy-
gen species, EPX, ECP, TNF-α and α-defensins in a
TLR2/Myd88-dependent manner [27]. Eosinophils further
responded to bacterial lipopolysaccharide (LPS) stimulation,
a TLR4 agonist, by enhanced survival and secretion of the
cytokines GM-CSF, TNF-α and IL-8 [28] as well as by the
release of ECP in a CD14-dependent manner [29]. However,
the function of PRRs has mostly been studied in vitro, in
isolated single cell systems, which neither take into account
the tissue-specific characteristics of eosinophils nor recapitu-
late the local cytokine network. Indeed, it is likely that eosin-
ophil response to selected bacterial triggers synergises with
activating cytokine signals in a given tissue to increase TLR
expression and signal transduction.

Eosinophil priming through the Th1 cytokine IFN-γ

Among the cytokines priming eosinophil activation within the
GI tract, IFN-γmight play an important role. IFN-γ is a pleio-
tropic cytokine produced predominantly by innate lymphoid
cells (ILCs), natural killer (NK) cells, T-helper 1 (Th1) CD4+

T cells and cytotoxic CD8+ T cells. IFN-γ signalling through
the IFN-γ receptor (IFN-γR) activates the Janus kinase
(JAK)-signal transducer and activator of transcription 1
(STAT1) pathway to induce the expression of classical
interferon-stimulated genes that have key immune effector
functions, such as host defence against bacterial pathogens,
modulation of immune and inflammatory responses as well
as tumour immunosurveillance [30].

During microbial infection or tissue damage, an early burst of
IFN-γ is produced by innate-like cells in response to the cyto-
kines IL-12, IL-18 or following the activation of PRRs. This is
followed by high and prolonged levels of IFN-γ produced by
Th1 or CD8+ T cells upon TCR engagement in response to
microbial peptide recognition [30]. IFN-γ is well known to reg-
ulate the function of multiple immune and non-immune cell
types, including helper (Th) and follicular helper (Tfh) T cells,
regulatory T (Treg) cells, B cells, innate-like lymphocytes, endo-
thelial cells, stromal cells, adipocytes and neural cells [30]. IFN-γ
is also a potent activator of different myeloid cells. In macro-
phages, IFN-γ mediates the polarisation to an ‘M1-like’ state
[31], which results in their hyper-responsiveness to inflammatory
stimuli and enhances their pro-inflammatory activity while pro-
moting resistance to tolerogenic or anti-inflammatory factors
[30]. IFN-γ further induces the local differentiation ofmonocytes
into dendritic cells and macrophages at sites of infection [32]. In
neutrophils, priming by IFN-γ increases oxidative metabolism,
surface receptor expression and degranulation and strongly en-
hances their ability to kill pathogens [33].

By contrast, the effect of IFN-γ on eosinophil function is
less well understood. IFN-γ was reported to promote the de-
granulation of human eosinophils and to enhance their pro-
duction of superoxide anions following GM-CSF or IL-5

priming [34]. Further studies highlighted the role of IFN-γ
in eosinophil primary granule mobilisation and piecemeal de-
granulation, a vesicle-dependent process allowing the selec-
tive release of part of their granule-stored contents. Indeed,
IFN-γ induced the mobilisation of CD63 (a component of
the late endosomal and lysosomal membranes also present in
“secretory lysosomes,” [35]) to eosinophil peripheral mem-
branes, together with the selective release of the chemokine
CCL5 [36, 37]. The release of extracellular cell-free granules
that retain their content of preformed cytokines and cationic
proteins is typically observed during cytolysis, a nonapoptotic
form of cell death [38] and is well documented in several
human pathologies [39–41]. Interestingly, the extracellular
granules of human, but not of mouse eosinophils, express
the IFN-γ receptor α-chain (IFNGR1) on their membrane
and remain ligand responsive, with the ability to differentially
secrete their cationic proteins or cytokine contents [42, 43].
Thus, binding of IFN-γ to its receptor might continue to in-
duce the local release of eosinophil granule proteins even in
the absence of live eosinophils, thereby ensuring a long-
lasting effect. Besides its effect on granule mobilisation,
IFN-γ also supports eosinophil antimicrobial functions. The
stimulation of mouse eosinophils with IFN-γ led to the killing
of the parasite L. amazonensis in vitro in a reactive oxygen-
dependent manner, but independent of their degranulation
[44]. In addition, the priming of human eosinophils with IL-
5 or IFN-γ is required for the release of eosinophil DNA traps
in response to LPS stimulation [45].

In the GI tract, basal levels of IFN-γ are expressed in re-
sponse to specific commensal bacteria [46] and strongly in-
creases during infection or inflammation. Our group has re-
ported a key role for IFN-γ in the regulation of eosinophils in
settings of acute and chronic bacterial infection [17]. We
found that eosinophils are cell-intrinsically conditioned by
IFN-γ levels in their residential tissues to promote homeosta-
sis and restrict immunopathology by locally suppressing Th1
responses in an experimental model of H. pylori infection.
Mice lacking the IFN-γR specifically in the eosinophil lineage
mirrored the phenotype of eosinophil-deficient PHIL mice
and exhibited higher frequencies of mucosal Th1 cells. The
regulatory capacity of eosinophils toward Th1 cells depended
at least in part on their PD-L1 expression but was independent
of degranulation. Eosinophils isolated from infected tissues
further exhibited a strong IFN-γ-associated genes signature
characterised by the expression of Pdl1, Cxcl10, Stat1 and
Ccl5. The upregulation of these transcripts could be recapitu-
lated in vitro upon stimulation of IFN-γ-primed eosinophils
with live H. pylori and depended on the synergistic effect of
both, H. pylori and IFN-γ stimulation, as neither signal alone
was sufficient to drive differential gene expression [17].
Similarly, the transcriptional and proteomic analysis of colon-
ic intra-tumoral eosinophils in a model of colitis-induced can-
cer revealed a strong IFN-γ-linked signature, indicating a key
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role for IFN-γ in activating eosinophils in experimental colo-
rectal cancer [47]. It is interesting to note that in settings of
chronic intestinal inflammation, IFN-γ producing T cells ac-
cumulate not only in the colon of mice, but also in the bone
marrow [48]. There, IFN-γ increases the proliferation of long-
term hematopoietic stem cell progenitors (LT-HSC) resulting
in the enhanced production of downstream granulocyte-
monocyte progenitors (GMPs), which also give rise to eosin-
ophils [48, 49]. While this feed-forward mechanism may con-
tribute to increase the eosinophil output observed during in-
testinal inflammation [50], it would be interesting to assess
whether eosinophils are to a certain extent pre-activated by
IFN-γ before reaching their target organs and whether this
conditioning might impact their functional properties. The po-
tential effects of IFN-γ signalling on eosinophil functions are
summarised in Fig. 2.

Eosinophils in host protective immunity
against bacterial pathogens

Eosinophils have traditionally been associated with protection
against parasitic helminth infections. However, emerging ev-
idences show that eosinophils are also involved in the recog-
nition and elimination of other pathogens such as viruses,
fungi and bacteria. Eosinophil bactericidal activity might be

particularly important at mucosal interfaces and in environ-
ments with high bacterial stimulation such as in the GI tract.
In situations where the epithelial barrier integrity is
compromised—such as during infection or chronic
inflammation—the release of cytotoxic granules in associa-
tion with EETs might provide a second physical barrier aimed
at limiting bacterial invasion, but might also contribute to the
pathogenesis of chronic inflammatory conditions such as IBD
[45].

Eosinophils in inflammatory bowel diseases (IBDs)

IBDs are chronic relapsing disorders affecting the gastrointes-
tinal tract and associated with high morbidity. The two main
forms of IBDs, Crohn’s disease and ulcerative colitis, are
characterised by intestinal inflammation and epithelial injury.
The precise aetiology of IBDs is still unclear, but chronic
inflammation seems to arise from an abnormal immune re-
sponse against the microorganisms of the intestinal flora in
genetically susceptible individuals, resulting in the breakdown
of intestinal homeostasis. IBD patients therefore often present
signs of microbial imbalance, intestinal barrier dysfunction
and dysregulation of the intestinal mucosal immune system.
As opposed to primary EGIDs, which feature a predominant
eosinophilic infiltrate, IBDs are characterised by a heteroge-
neous infiltration of inflammatory leukocytes, together with a

Fig. 2 Eosinophil regulation by IFN-γ. Under homeostatic conditions,
basal levels of IFN-γ are produced by innate lymphoid cells (ILCs),
natural killer (NK) cells, T-helper 1 (Th1) CD4+ T cells and cytotoxic
CD8+ T cells. IFN-γ induces mobilisation of CD63 to eosinophil
peripheral membranes, followed by the piecemeal release of
chemokines and granule proteins. Upon microbial infection or tissue
damage, high and sustained expression of IFN-γ induces ROS-
dependent antimicrobial activities and the release of EETs. During both
acute and chronic bacterial infection, eosinophils prevent excessive

inflammation by regulating local Th1 responses through the
upregulation of PD-L1 in response to IFN-γ signalling. Besides its
direct action on eosinophils, IFN-γ further promotes bone marrow
eosinopoiesis by supporting the proliferation of long-term
hematopoietic stem cell progenitors (LT-HSC). IFN-γ might also bind
to the IFN-γR expressed at the surface of intact extracellular eosinophil
granules, leading to the release of granular content even in the absence of
live eosinophils
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marked increase in eosinophil numbers resulting from en-
hanced production of eotaxin 1 in the lamina propria by
colonocytes, macrophages or B cells [51]. Strong evidence
suggests that eosinophils play a cardinal role in the pathogen-
esis of IBDs by promoting tissue damage through excessive
degranulation, likely in an attempt to protect the host from
pathogen incursion [52]. Intestinal eosinophil densities or fae-
cal granule protein levels directly correlate with disease sever-
ity [53], while eosinophil degranulation at sites of active mu-
cosal inflammation is commonly reported [54, 55].
Interestingly, eosinophils seem to a certain extent pre-
activated in the circulation of IBD patients, suggesting that
media to r s such as in f lammatory cy tok ines and
chemoattractants might prime their activation systemically
[56]. Despite circumstantial evidence for a pathogenic role
of eosinophils in IBD, the observation that high levels of ac-
tivated eosinophils persisted in the lamina propria of UC pa-
tients in disease remission [57] suggests that tissue eosinophil-
ia cannot be solely linked to eosinophil pro-inflammatory ac-
tivities and might be highly context-dependent. The difficulty
of attributing a definitive functional contribution of eosino-
phils to the pathogenesis of IBD is further illustrated in exper-
imental models of intestinal inflammation, where eosinophil
deficiency resulted in either ameliorated or worsened inflam-
mation depending on the model used [50, 58, 59].

Antibacterial properties of eosinophil granule
proteins

The importance of eosinophils in host protection against bac-
terial pathogens is illustrated by Linch et al. describing the
protective effect of eosinophilia in IL-5 transgenically
engineered mice against P. aeruginosa [60]. While
eosinophil-deficient mice were highly susceptible to peritoni-
tis following P. aeruginosa infection and exhibited impaired
bacterial clearance, the presence of eosinophilia or the adop-
tive transfer of eosinophil granule extracts reduced the bacte-
rial load in vivo [60]. The antibacterial properties of eosino-
phil granule proteins are well documented for ECP, MBP, and
EPX and are reviewed in Gigon et al. [61].

ECP is uniquely expressed in eosinophils and exerts potent
antibacterial properties against both Gram-negative and
Gram-positive strains independently of its ribonuclease activ-
ity [62]. Elevated levels of serum ECP are often found in
patients with bacterial infections, leading to the conclusion
that eosinophil activation in this setting results in the prefer-
ential mobilisation of ECP [63, 64]. The bactericidal effects of
ECP can be related to its membrane disruption capacity
[65–67] and ability to bind the bacteria-wall components
LPS and PGN with high affinity, leading to membrane
depolarisation [68]. ECP also induces bacterial aggregation
and forms amyloid aggregates in vitro [68, 69], potentially
enhancing pathogen agglutination and killing at the infection

foci. Similarly, MBP-1 exhibits non-selective cytotoxicity to-
ward bacteria by binding to and permeabilising bacterial
membranes [67, 70]. Upon release, MBP-1 aggregates and
forms amyloids that facilitate antimicrobial activity.
Interestingly, large MBP amyloid plaques present in the tis-
sues of eosinophilic patients are characterised by decreased
cytotoxicity and were proposed to result from a feedback
mechanism aimed at limiting tissue damage under pathologi-
cal conditions, while providing a scaffold for the recruitment
of innate immune cells [71]. Indeed, the stimulation of human
eosinophils with MBP leads to further degranulation and re-
lease of IL-8 [72], a pro-inflammatory cytokine with potent
chemoattractant properties for innate immune cells. EPX is a
cationic haloperoxidase that shares 70% amino acid homolo-
gy with the better characterised neutrophil myeloperoxidase
[73]. EPX catalyzes the oxidation of halide and pseudohalides
ions present in the plasma together with hydrogen peroxide to
form highly cytotoxic hypohalous acids involved in bacterial
killing [10]. EPX interacts with the superoxide generated by
the NADPH oxidase to provide the bactericidal activity of
eosinophils [74, 75].

Eosinophil-derived extracellular DNA traps

The elimination of bacterial pathogens mainly occurs extra-
cellularly through the release of eosinophil granule proteins at
high local concentration, which are toxic to both pathogens
and neighbouring cells. Interestingly, granule proteins can al-
so be found attached to DNA released from activated eosino-
phils. These so-called extracellular traps (EETs) form a local-
ised scaffold that captures both granule proteins and bacteria,
thereby ensuring the targeted killing of pathogens while lim-
iting cytotoxic damages to the surrounding tissues. While the
deposition of extracellular DNA by eosinophils contributes to
the innate host defence machinery, it also likely plays an im-
portant role in the development of certain pathologies, partic-
ularly in settings of chronic, unresolved inflammation.
Evidence of eosinophil-derived extracellular DNA deposi-
tions are observed in multiple human pathologies, including
Crohn’s disease [45], allergic asthma [76], atopic dermatitis
[77] and eosinophilic esophagitis [78], as well as following
bacterial infections [45, 79]

The release of EETs can be initiated by several mechanisms,
including TLR-, cytokine-, chemokine- and adhesion receptor-
mediated signal transduction pathways [80]. The mechanism of
EET formation and origin of the released DNA are still a matter
of debate and are discussed elsewhere [81]. Yousefi et al. first
demonstrated the catapult like release of mitochondrial DNA in
response to bacteria such as E. coli, which led to rapid bacterial
killing in a phagocytosis-independent manner [45]. The release
of EETs could further be recapitulated in vitro by stimulating
human eosinophils with LPS, complement receptor 5a or
eotaxin following IL-5 and/or IFN-γ priming. This process
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depended on reactive oxygen species and was independent of
cell death or apoptosis [45]. Degranulation and EETs formation
seem to rely on different molecular pathways, as the release of
eosinophil granule proteins was reported to precede the release
of DNA, implying that their association takes place in the ex-
tracellular space [82].

The relevance of EETs in eosinophil bactericidal activities
was further demonstrated in vivo. In a model of post-caecal
ligation and puncture, IL-5 transgenic but not wild-type mice
displayed substantial deposition of extracellular DNA indica-
tive of EETs, which protected mice against microbial sepsis
[45]. In a model of acute colitis induced by the pathogen
C. rodentium, eosinophils were rapidly recruited to the colon-
ic lamina propria upon bacterial challenge, where they
degranulated and released EETs associated with EPX (Fig.
1) [17]. In the absence of eosinophils, mice displayed im-
paired bacterial clearance and increased susceptibility to the
pathogen, as evidenced by stronger Th1/Th17 responses and
immunopathology. C. rodentium was further highly

susceptible to killing by activated eosinophils in vitro and
bacterial viability coincided with the release of EPX and the
formation of EETs [17]. Interestingly, the triggering of EETs
leading to bacterial killing seems to be highly dependent on
the nature of the bacterial stimuli, as only selected bacterial
species—such as C. rodentium and S. Typhimurium but not
H. hepaticus or H. pylori—are capable of provoking EETs
in vitro (Fig. 3). In addition, the induction of lytic cell death
and extracellular DNA release by S. aureus depended on the
expression of its Hla virulence factor [83]. It is thus tempting
to speculate that the inactivation of specific bacterial virulence
factors, a strategy commonly employed by pathobionts such
as H. pylori to escape immune recognition [84], might also
contribute to avoid eosinophil-mediated killing. Future studies
addressing the mechanisms through which selective bacterial
species or virulence factors are recognised by eosinophils and
lead to distinct functional responses would thus help to better
understand the role of eosinophils in bacterial infections and
bacterially driven pathologies.

Fig. 3 Selected bacterial species promote eosinophil DNA extracellular
trap formation (EETs). a–d Eosinophils were isolated from the spleens of
IL5-tg mice and sorted by flow cytometry. Eosinophils were then infected
with live Helicobacter hepaticus (b), Citrobacter rodentium (c),
Salmonella typhimurium MCI (d) for 15 min at 37 °C or were left
untreated (a). Cells further received 5 μM/well of the nucleic acid stain
Sytox green (Invitrogen) 5 minutes after infection, and were visualised for

extracellular trap formation on a Leica DM6 Bmicroscope. White arrows
point toward EETs. The formation of EETs was clearly visible in
C. rodentium infected eosinophils, while less marked DNA filaments
and nuclear disintegration was observed following S. typhimurium
infection. In contrast, EETs formation was not observed in response to
H. hepaticus infection or in uninfected eosinophils. Scale bar represents
10 µm

301Semin Immunopathol (2021) 43:295–306



Eosinophils and the microbiota

The GI tract is home to the densest microbial communities
known. Bacteria outnumber host cells by a factor of 10 and
exist in a highly adapted and mutualistic relationship with the
host, contributing to nutrition, immune system development
and function, as well as protection from pathogens. Imbalance
in the microbiota composition is referred to as “dysbiosis” and
is associated with the pathogenesis of both intestinal and
extra-intestinal disorders [85]. Dysbiosis is also commonly
observed in IBD patients and is characterised by an overall
reduced bacterial diversity together with an increased abun-
dance of mucolytic, sulfate reducing and pathogenic bacteria,
which contribute to alter mucosal integrity and promote in-
flammation [86].

Eosinophils are located in the GI lamina propria—
separated from our microbial residents by just a single layer
of epithelial cells. While several studies have reported an im-
portant role for eosinophils in maintaining a homeostatic com-
position of the intestinal microbiota, much less is known about
how microbiota-derived factors and metabolites might regu-
late local eosinophil functions.

Modulation of the intestinal microbiota by
eosinophils

Immunoglobulin A (IgA) is the dominant antibody isotype
found in mucosal secretions and promotes host-microbiota
symbiosis by impacting the composition and density of intes-
tinal bacterial communities. IgA is secreted into the gut lumen,
where it binds to and ‘coats’ specific members of the micro-
biota. While the functional consequences of IgA binding are
still incompletely understood, impaired IgA production is re-
lated to decreased overall microbial diversity and shifts in the
relative abundances of specific bacterial taxa [87–89]. Chu
et al. first reported that eosinophil-deficient mice generated
through the deletion of a high-affinity GATA-binding site in
the GATA-1 promoter (ΔdblGATA-1) [90] have impaired
generation and maintenance of IgA plasma cells in the small
intestine [20]. In this study, eosinophils directly regulated GI
IgA production through their expression of IL-6, APRIL and
TGF-β via TLR-mediated signalling, resulting in reduced se-
cretory IgA levels, less IgA adherence to faecal bacteria and a
reduction of Gram-positive bacteria, possibly Firmicutes [20].
Similarly, Jung et al. described the reduced expression of se-
cretory IgA and bacterial imbalance associated with impaired
Peyer’s patches development in the absence of eosinophils,
but suggested an indirect regulatory mechanism implicating
eosinophil-derived IL-1β and lymphotoxins [15]. A schemat-
ic depiction of the pathways through which eosinophils sup-
port the generation of IgA is represented in Fig. 1. In contrast
to these reports, later studies found only modest or no differ-
ences in the numbers of IgA-secreting plasma cells in

eosinophil deficient mice, proposing that factors such as the
genetic background or age of mice might account for these
differences [91, 92]. More recently, Beller et al. reported that
mucosal IgA production was in fact determined independently
of eosinophils by specific members of the intestinal microbi-
ota themselves [93]. The cohousing of eosinophil-deficient
mice with their wild-type counterparts prior to analysis led
to the equalisation of their microbiota and normalisation of
IgA levels, in contrast to non-cohoused animals. By compar-
ing the microbiome of eosinophil-deficient and wild-type
mice, bacteria enriched for the genus Anaeroplasma were fur-
ther identified as major driver of TGF-β expression in intes-
tinal T follicular helper cells leading to IgA class switching
and enhancing mucosal IgA levels [93]. Interestingly, the mi-
crobial analysis of cohousedΔdblGATA-1 and wild-type lit-
termates revealed that the absence of eosinophils primarily
affect the composition of mucus-resident bacterial species in
the large and small intestine, with little change in mucosal IgA
[92]. These observations implicate that eosinophils might also
regulate the microbiota by mechanisms independent of IgA,
especially the bacteria most hyperlocal to the gut barrier. The
impact of eosinophils on the microbiota composition might be
triggered directly through the secretion of anti-bacterial fac-
tors or indirectly, by promoting the production of epithelium-
derived anti-bacterial peptides or through the regulation of
local immune responses. While eosinophils clearly seem to
participate in the dynamic modulation of intestinal bacterial
communities, the mechanisms behind these activities are like-
ly to extend beyond the action of IgA alone.

Eosinophil response to microbial signals

Besides their impact on the microbiota composition, eosino-
phils also respond to microbial stimuli in several ways. While
eosinophils can directly encounter specific pathogens capable
of dwelling through the dense GI mucosal layer [17], direct
contacts between eosinophils and commensal bacteria are less
likely to occur under homeostatic conditions due to the strict
compartmentalisation of the intestinal microbiota to the mu-
cosal surface. Eosinophils might thus recognise bacterial me-
tabolites or might be conditioned indirectly via microbiota-
derived signals acting via the epithelium. Indeed, a cross-
talk between eosinophils and intestinal epithelial cells has
been proposed to limit C. difficile infection in an IL-25-
dependent manner [94]. Buonomo et al. reported that mice
treated with the microbiota-regulated cytokine IL-25 were
protected from lethal C. difficile infection in an eosinophil-
dependent manner. Mice lacking eosinophils suffered pro-
found epithelial destruction unrelated to the levels of bacterial
colonisation, IL-4, mucin or IgA [94]. The results suggest that
in response to microbial signals, epithelial-derived IL-25 pro-
motes eosinophil homeostatic function that maintains epithe-
lial barrier integrity. In addition, a recent report indicated that
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eosinophil survival was negatively regulated by the bacterial
metabolite butyrate [84]. Butyrate is a short chain fatty acid
(SCFA) produced through the microbial fermentation of die-
tary fibres in the lower intestinal tract and has received much
attention recently for its beneficial effects on intestinal homeo-
stasis and anti-inflammatory properties [85]. Patients with
IBDs have an altered gut microbial composition and a concur-
rent reduction in butyrate-producing bacteria [95].
Interestingly, both mouse and human eosinophils express
strikingly high levels of the SCFA receptors GPR43 and
GPR41 (free fatty acid receptors 2 and 3, respectively) in
comparison to other leukocytes [96, 97]. In vitro, butyrate
induced eosinophil apoptosis and attenuated their migratory
and adhesion capacities. Butyrate further alleviated allergic
airway inflammation by limiting eosinophil trafficking
in vivo [85]. While the physiological relevance of these ob-
servations in the context of intestinal homeostasis still needs to
be further explored, it suggests that eosinophil survival and
possibly functional polarisation in the lamina propria might be
directly controlled by commensal-derived metabolites.

The critical interplay between the microbiota and intestinal
eosinophils in shaping homeostatic immune processes is fur-
ther illustrated in studies using germ-free (GF) mice. In a
recent reported, Jiménez-Saiz and co-workers report a signif-
icantly higher frequency of eosinophils in the intestines of GF
than of specific pathogen free control animals [98]. The intes-
tinal eosinophils of GF mice also exhibited a striking reduc-
tion of cytoplasmic granule size and content, further
supporting a role for the microbiota in shaping the phenotype
and density of local eosinophil populations. Interestingly, GF
mice also displayed increased eosinophil frequencies at other
mucosal sites such as the lung or the vaginal tract but not in
sterile tissues such as spleen or uterus, which could be nor-
malised by microbiota repletion. [98]

While microbiota-derived signals seem to modulate differ-
ent aspects of eosinophil biology, the precise nature of these
signals and whether they might synergise with local cytokine
networks to enforce a niche-specific spectrum of activities
resulting in distinct functional subsets still needs to be inves-
tigated further.

Concluding remarks

Eosinophils are an integral part of the resident intestinal im-
mune system, conferring protection against invading patho-
gens while exerting subtle regulatory effects on local immune
cells. In addition to their homeostatic functions, eosinophils
also promote inflammation and tissue damage through their
excessive degranulation in settings of chronic, unresolved in-
flammation. Despite these evidences, eosinophils are often
overlooked. With the development of new experimental
models of eosinophil deficiency and tools specifically

targeting the eosinophil lineage, the extent of their contribu-
tion to tissue homeostasis and protective immunity has slowly
begun to be revealed. However, these experimental strategies
may underestimate the phenotypic diversity of tissue-resident
or disease-associated eosinophils. Further studies relying on
modern technologies such as proteomics, single cell sequenc-
ing or high-dimensional flow-cytometry might thus help to
elucidate the intricate molecular pathways defining eosinophil
heterogeneity along the GI tract. The identification of distinct
functional subsets might further lay the basis for exploiting
new pharmacological strategies to manipulate eosinophil ac-
tivities in pathologies such as IBD and provide mechanistic
insights that may be applicable to other eosinophil-mediated
disease contexts.
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