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Abstract The immune system in early life is tasked with
transitioning from a relatively protected environment to one
in which it encounters a wide variety of innocuous antigens
and dangerous pathogens. The immaturity of the developing
immune system, and particularly the distinct functionality of
T lymphocytes in early life, has been implicated in increased
susceptibility to infection. Previous work has demonstrated that
immune responses in early life are skewed toward limited in-
flammation and atopy; however, there is mounting evidence
that such responses are context- and tissue-dependent. The reg-
ulation, differentiation, and maintenance of infant T cell re-
sponses, particularly as it relates to tissue compartmentaliza-
tion, remains poorly understood. How the tissue environment
impacts early-life immune responses and whether the develop-
ment of localized protective immune memory cell subsets are
established is an emerging area of research. As infectious dis-
eases affecting the respiratory and digestive tracts are a leading
cause of morbidity and mortality worldwide in infants and
young children, a deeper understanding of site-specific immu-
nity is essential to addressing these challenges. Here, we review
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Introduction

Neonates and infants are disproportionately susceptible to
multiple viral and bacterial pathogens, many of which are
encountered via mucosal and barrier sites, including the respi-
ratory and digestive tracts, skin, and other mucosal surfaces.
The worse outcome of infants to infection, as well as their
limited and delayed responses to vaccines, has been primarily
attributed to immaturity of the immune system in early life.
Reduced functional responses by T lymphocytes have been
specifically implicated due to their role in coordinating many
aspects of adaptive immunity.

A major challenge during the neonatal period is to not only
develop immune responses to the diverse pathogens encoun-
tered at multiple sites, but also to contain infections while at
the same time preventing potentially lethal effects associated
with systemic infection and immune responses. The immedi-
ate response to infection with pathogenic and non-pathogenic
microorganisms involves components of the innate immune
response, which are highly active during infancy, including
the production of anti-microbial peptides, direct phagocytosis
from neutrophils and monocytes/macrophages, and produc-
tion of anti-microbial products and pro-inflammatory cyto-
kines (for a review, see [1]). These innate immune responses
are not sufficient to clear most pathogens or to prevent dis-
semination of infection, and adaptive immune responses char-
acterized by specificity and long-term memory are

@ Springer


mailto:df2396@cumc.columbia.edu
http://crossmark.crossref.org/dialog/?doi=10.1007/s00281-017-0648-7&domain=pdf

594

Semin Immunopathol (2017) 39:593-604

subsequently triggered. The adaptive immune response is mo-
bilized in early life and required for protecting the neonate, as
infants with severe combined immunodeficiency (SCID) who
lack lymphocytes suffer from repeated and disseminated in-
fections [2] and ultimately succumb without immune
reconstitution.

The adaptive immune response is initiated by dendritic
cells (DCs) which have taken up antigens in the affected tis-
sues and migrated to the tissue-draining lymph node(s). DCs
present antigen to T cells in the context of major histocompat-
ibility complex (MHC) molecules and simultaneously provide
costimulatory signals (CD80 and CD86) necessary for T cell
activation via the cell surface T cell antigen receptor (TCR)
and the costimulatory receptor CD28. Following these acti-
vating signals, T cells begin to rapidly proliferate. CD4* T
cells, in particular, begin to produce IL-2, which acts in both
an autocrine and paracrine manner as a third signal to further
enhance proliferation and subsequent differentiation into ef-
fector T cells (Teff). Along with IL-2, the presence of addi-
tional cytokines at this time influences the commitment of
newly activated T cells to defined functional subsets with par-
ticular cytokines promoting certain subsets. Among CD4* T
cells, Th1, Th2, Th17, regulatory T cell (Treg), and follicular
helper T cell (Tth) subsets have been well-described [3, 4].
CD8™ T cells appear to be less heterogeneous and differentiate
primarily into cytotoxic effectors (CTLs) analogous to Thl-
type CD4" T cells [5]. Newly activated effector T cells then
home to the affected tissues where they exert their effector
functions. Thl-type T cells, typically generated in the context
of viral infections, are robust producers of IFN-y and TNF-&
and are required to clear many types of viral and bacterial
infections encountered in early life.

Following the resolution of infection, a fraction of
responding effector T cells will be retained long-term as popu-
lations of memory T cells, which persist for up to a lifetime of
an individual. Memory T cells are heterogeneous in their local-
ization and maintenance within circulation, lymphoid tissues,
and multiple peripheral tissues and barrier sites, including the
skin, lungs, and intestines. It is now understood that a signifi-
cant fraction of memory T cells in both mice and humans is
comprised of non-circulating, tissue-resident memory (TRM) T
cells [6-8]. The functional importance of TRM in protection
from reinfection has been demonstrated in adult murine models
at a number of tissue sites and for several pathogens [6, 9-12],
and the predominant presence of TRM-phenotype cells in hu-
man tissues [13] suggests important roles for maintaining im-
mune protection and homeostasis in humans.

The generation, function, and regulation of immune re-
sponses by T cells during early life are not well understood,
in either mouse models or humans. Defining the functional
capacities of early-life T cells continues to evolve with find-
ings that infant T cells may have diverse or distinct functions
depending on the nature of the infection or stimulus [14].
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Moreover, the ability of early-life infections to promote
tissue-localized T cell responses, lasting T cell memory, and
TRM responses is only beginning to be characterized.
Neonates and infants have substantial populations of T cells
from birth, both in the blood and in peripheral tissues. These T
cells, however, are predominantly naive, express distinct pat-
terns of homing receptors compared to adults, and in some
cases may generate more regulatory than pro-inflammatory
responses. In order to develop therapies to better treat infec-
tions and promote robust, protective responses to vaccines, it
is essential to define the mechanisms that control T cell differ-
entiation, function, tissue localization, and maintenance at the
carliest life stages.

This review will discuss current paradigms in infant T cell
immunity and tissue localization and how recent studies have
begun to shift our understanding of T cell responses in early
life with implications in the design of vaccines and therapeu-
tics to protect this vulnerable population.

Burden of infection and immunological challenges
in early life

Following birth, neonates transition from a largely sterile en-
vironment to one where they are rapidly exposed to novel
innocuous antigens and microorganisms and an abundance
of potentially pathogenic organisms. The majority of the ear-
liest pathogen encounters during early life occur at the inter-
face where our immune system meets the external environ-
ment, including skin, gastrointestinal, and respiratory tracts.
As a consequence, the burden of infectious disease in early life
occurs at these tissue sites. Annually, over 2 million neonates
are affected by severe infections with lower respiratory tract
infections (LRTIs), malaria, diarrheal illnesses, neonatal sep-
sis, and meningitis among the most common etiologies in this
population [15, 16]. The systemic spread of infection can re-
sult in sepsis, which is the most common cause of death in
infants and young children worldwide. Failure to effectively
control pathogens within the respiratory tract has led it to be
the most common cause of pediatric sepsis [17]. The high
susceptibility of infants to disseminated infection indicates
that tissue-immune responses are less well-developed and
are not always sufficient to contain infection in the neonatal
period.

Viral respiratory tract infections (VRTIs) are ubiquitous
among children with nearly all children having experienced
infection with respiratory syncytial virus (RSV) within the
first 2 years of life [18]. Viruses account for the majority of
LRTI in children less than 5 years of age [19], with RSV,
influenza, and rhinoviruses most prevalent; however, signifi-
cant morbidity and mortality also result from human
metapneumovirus (HMPV), coronavirus, bocavirus,
parainfluenza, enterovirus, and adenovirus [20]. RSV alone
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is the second leading cause of death in infants and young
children and the most frequent cause of non-neonatal infant
mortality [21]. The clinical features of viral LRTI typically
begin with mild symptoms progressing in severity to respira-
tory distress and lung tissue damage [20]. Few options for
treatment are currently available, with supportive care prevail-
ing [22]. A variety of antiviral therapeutics, including immu-
noglobulins, siRNA-interference, fusion inhibitors, and small
molecules, are currently in development at the clinical trial
phase [23]. While children with underlying conditions includ-
ing malnutrition, chronic lung disease, congenital heart dis-
ease, and those born extremely prematurely (< 29 weeks ges-
tation) are at increased risk for severe illness, from LRTI [24],
the majority of children who require hospitalization have none
of these risk factors [25, 26], emphasizing the general vulner-
ability of infants to these infections.

Diarrheal illnesses are the other major clinical manifesta-
tion of early-life infections, with 70% of the 700,000 deaths
worldwide occurring in the first 2 years of life. Rotavirus
remains the most common cause of severe and fatal diarrhea
worldwide [27], although a vaccine is available. Cholera is
also a significant cause of diarrhea-related mortality, with peak
incidence in children under 5 years of age, during epidemics.
Importantly, multiple episodes of diarrheal illness have been
associated with nutritional deficits resulting in long-term con-
sequences, including growth stunting and decreased cognitive
function [28]. The focus of therapy during acute infectious
diarrheal illness focuses on hydration status, with therapies
including antibiotics reserved for specific etiologies (i.e., chol-
era). Prevention is of particular importance in diarrheal illness
with a focus on hygiene and vaccination [29]. The prevalence
of mucosal infections in early life suggests inefficient mucosal
immune responses and a need to enhance immunity in a site-
specific fashion.

Peripheral seeding and initiation of early-life T cell
responses

In both mice and humans, T cells have distinct phenotypic and
distribution patterns in early life which change gradually with
age (Table 1). Although mice are born relatively lymphopenic,
humans are born with a full complement of peripheral lym-
phocytes [30-32]. The majority of T cells in human infants
exhibit features of recent thymic emigrants, including high
levels of T cell receptor excision circles (TRECs) as transient
products of TCR gene rearrangement and expression of CD31
on the cell surface [32, 33] (Table 1). In both humans and
infant mice (> 1 week of age), the majority of T cells present
within blood and lymphoid and peripheral tissues in early life
exhibit a naive phenotype with high expression of L-selectin
(CD62L) and low expression of the activation marker CD44
for murine naive T cells, and expression of the CD45RA
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Table 1  Features of T cells at various states in early life

Stage Feature Reference

Steady state Increased TREC content [32, 33]
Increased CD31 expression [32]
Enhanced 437 expression [43]
Reduced CCR4 expression [43]
Predominately naive in tissues [32]

Priming/activation Increased proliferation [62, 63]
Increased apoptosis

Effector phase Decreased IFN-y production [52]
Increased IL-4 production [53] [54, 55]
Production of IL-8 [14]
Increased T-bet expression [83]

Memory Reduced circulating memory [83]
Reduced TRM formation [84]

isoform and the chemokine receptor CCR7 for human naive
T cells [32, 34]. In mice, T cells during the first week of post-
natal life display increased expression of activation markers,
including enhanced levels of CD44, as a result of
lymphopenia-induced homeostatic expansion which transi-
tions to a more naive-like phenotype in the second week of
life and beyond [30, 31]. In humans, this early-life homeostat-
ic expansion does not occur, suggesting that use of mice as
models for human early-life T cell immunity should assess
responses following this initial period of lymphopenia-
induced proliferation.

The seeding of blood and tissues with newly generated naive T
cells is a feature of the neonatal immune response. Due to contin-
uous antigen exposure as well as the abundance of new antigens
acquired during early life, T cells become activated and convert to
memory phenotypes involving the upregulation of differentiation
markers and downregulation of lymph node homing receptors
(CD44hi/CD62Lo for mouse memory T cells and CD45RO+/
CCR7lo for human memory T cells). In humans, memory-
phenotype cells can be detected during infancy mostly in mucosal
sites such as lungs and jejunum, while during late childhood and
in adults, the majority of T cells in mucosal sites and > 50% in
lymphoid tissue and blood are memory phenotype [13, 32]. These
distinct patterns of T cell compartmentalization can significantly
impact the way by which infants respond to infectious challenge
in tissues compared to adults.

A major function of naive T cells is active immune surveil-
lance, and such cells are essential in the host’s ability to re-
spond to novel pathogens. Naive T cells migrate primarily
through the blood, lymph, and lymphoid tissues, a process
mediated by expression of CD62L, which binds CD34,
expressed by endothelial cells, and GlyCAM-1, found on the
lymph node high endothelial venules, as well as CCR7 which
binds the chemokines CCL19 and CCL21, both expressed in
the lymph nodes. During infection, naive T cells interact with
mature, activated DCs bearing pathogen-derived antigens
within the context of the lymph nodes. This interaction of
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naive T cells with DCs may influence how infant T cells can
respond to new antigens.

In early life, DC populations differ both in subset compo-
sition and functionality relative to adults. In both the lungs and
spleen, neonatal mice exhibit reduced numbers of CD11b*
DCs (CD4*CD11b*), important in CD4* T cell activation,
relative to adults [35, 36]. Similarly, numbers of CD103*
(CD8"CD103*) DCs, responsible for activation of CD8* T
cells, are reduced in the neonatal spleen during the steady state
and exhibit reduced maturation and migration from the lung to
the lung-draining lymph node following viral infection [35].
In humans, frequencies of CD1¢™ DCs, analogous to CD11b*
DCs in mice, are higher in the jejunum and appendix of infant
and pediatric donors compared to adults [37]. Cord blood-
derived DCs were found to exhibit decreased levels of
MHCH-II, costimulatory ligands, and IL-12 production upon
stimulation compared to adult DCs [38—40]. In mice, howev-
er, DCs derived from neonatal spleen produced IL-12 at levels
comparable to adults following stimulation [36], suggesting
potential site-specific differences in DC function in early life
between mice and humans. Importantly, differences in DC
subsets, localization, and function in early life may have pro-
found effects on T cell responses with reduced numbers and
functionality of neonatal DCs potentially leading to reduced
costimulation necessary for optimal T cell activation follow-
ing infection.

While the majority of T cells in infant mouse and human
tissues are naive, populations of memory T cells can be found
in the lungs, jejunum, and ileum of human infants [32], which
represent the predominant sites of early antigen encounter to
pathogens, commensal microorganisms, and food antigens.
Interestingly, despite the local accumulation of T cell memory
in the tissues, T cells present in lymph nodes draining these
tissues remain predominantly naive [32], suggesting possible
in situ priming of immune responses. Similarly, neonatal mice
can generate inducible bronchus-associated lymphoid tissue
(iBALT) as a consequence of pulmonary inflammation [41]
indicating localized T cell priming. Taken together, these find-
ings suggest a potential role for in situ, tissue priming in the
initiation of T cell responses in early life which may have
important implications for vaccines.

T cell tissue homing

The interaction of T cells with DCs during priming also results
in the upregulation of molecules facilitating tissue-specific
homing in a process termed imprinting, where DCs derived
from particular tissue sites elicit specific patterns of homing
receptor expression which guide activated T cells back to
those tissues [42]. In adult mouse models, T cells activated
and matured in Peyer’s patches or mesenteric lymph nodes
express CCR9 and the integrin «437, which mediate gut
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homing, whereas activation in lymph nodes draining non-
gastrointestinal tissues, such as the skin or lung, results in
upregulation of CCR4 which promotes homing to these tis-
sues [42]. In early life, peripheral blood T cells predominantly
express the gut-homing receptor o437 while adult peripheral
blood-derived T cells express the tissue-homing receptor
CCR4 [43] (Table 1). Furthermore, in response to pathogen-
derived signals, the expression of homing receptors on infant,
but not adult T cells, was altered [43], suggesting differential
regulation of T cell homing during infection during infancy
(Table 1).

The distinct patterns of homing receptor expression in early
life may influence infant T cell localization in the context of
infection. In a neonatal mouse model of influenza infection,
recruitment of virus-specific CD8" T cells to the lung was
delayed relative to adults and neonatal T cells exhibited dis-
tinct localization patterns within the lung tissue [44, 45]. In
other studies in humans and mouse models, there is evidence
that enhanced recruitment of T cells to the lung may contribute
to pathology. We found increased frequencies of CD8" T cells
in airway secretions from children requiring invasive mechan-
ical ventilation due to severe respiratory infection that corre-
lated with lung injury [46], suggesting infiltration of path-
ogenic CD8* T cells into the lung. Neonatal mouse
studies have also shown that RSV infection in early life
resulted in enhanced T cell infiltration with increased airway
hyperresponsiveness upon later reinfection [47, 48]. Autopsy
studies of fatal cases of RSV and influenza demonstrate exten-
sive immune cell infiltration dominated by neutrophils and
macrophages [49, 50]. Taken together, these findings support
the notion that T cell homing during infection may be distinct
in early life compared to in adulthood, with suboptimal re-
sponses under some conditions and enhanced accumulation
of T cells in the tissues under other conditions contributing
to immune pathology.

T cell effector functions

T cell activation leads to the differentiation of T cells into
distinct functional subsets, including Thl, Th2, Th17, Treg,
and Tth subsets. This process is governed by the inflammatory
context of infection and driven by distinct transcriptional reg-
ulators promoting defined transcriptional programs [3]. In the
context of early-life responses, differentiation into Thl and
Th2 subsets has been the most well-studied process. Thl-
type responses are characterized by T-bet-driven expression
of IFN-y and TNF-« and the generation of CTLs, which lyse
infected cells [3, 51]. Th2 effector differentiation is driven by
GATA3 expression characterized by secretion of IL-4, IL-5,
and IL-13, which promote eosinophil and mast cell recruit-
ment and the generation of antibody responses important in
the control of fungal and parasitic infections [3]. The
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generation of functional subsets of T cells has been extensive-
ly characterized in infant T cells, identifying quantitatively
and qualitatively distinct responses as described below and
summarized in Table 1.

Early work investigating the generation of Thl and
Th2 responses in neonates and infants revealed that the
IFN-y locus in neonatal T cells is hypermethylated [52],
resulting in transcriptional repression, while the IL-4 lo-
cus is hypomethylated allowing for enhanced expression
[53]. Based on these results, T cell responses in early life
were designated as Th2-biased (Table 1) and provided a
basis for diminished T cell responses to infection, as Thl-
type responses provide protection from viral and intracel-
lular bacterial infections. In humans, studies of cord
blood-derived T cells likewise demonstrated reduced pro-
duction of IFN-y compared to adult-derived cells follow-
ing activation in vitro and simultaneous production of
IFN-y and IL-4, not typically observed in adults [54,
55]. Such Th2-biased responses primed during early life
could also persist into adulthood, in part through a mech-
anism involving apoptosis of Thl-type effectors upon an-
tigen recall [56]. In an RSV infection and vaccination
model, neonatal mice generated Th2-biased responses
which led to Th2-biased memory responses in adulthood
[47, 57]. Severe RSV infection in children has similarly
been linked to enhanced Th2-type immune responses and
subsequent wheezing episodes in later childhood [47, 58].
These studies suggested that the infection history during
infancy could impact the quality of responses later in life.

Despite this evidence for Th2-skewing, a number of studies
have demonstrated that neonatal/infant T cells from both
humans and mice can generate Thl responses characterized
by robust IFN-y production under appropriate conditions.
While stimulation of cord blood-derived CD4" T cells does
not result in significant [FN-y production, addition of exoge-
nous IL-12 to the culture promotes IFN-y secretion at levels
similar to adult peripheral blood T cells [55]. Similarly, T cells
derived from infant intestinal tissues produce ample IFN-y
following ex vivo stimulation [32], suggesting that human T
cells in early life are fully competent to produce pro-
inflammatory cytokines in the proper environment. In the con-
text of RSV infection, robust IFN-y-driven responses have
been observed in children and nearly 80% of infants in-
fected with RSV in the first year of life develop virus-
specific CTL activity correlating with enhanced IFN-y
production and reduced IL-4 responses [59], which can
also contribute to immune pathology [60]. In neonatal
mice, infection with, low doses of murine leukemia virus
generated protective cytotoxic T cell responses while high
dose infection preferentially generated non-protective Th2
responses [61] suggesting that the nature of the initial in-
fection may also influence the nature of protective T cell
responses.

There is increasing evidence that T cells in early life
may also have unique functionality not typically observed
in adults. Neonatal human T cells derived from cord blood
and fetal tissues undergo increased proliferation relative to
adult cells [62, 63], suggesting differences in cell cycle
control between infant and adult T cells. Moreover, T cells
from newborn cord blood and infant peripheral blood pro-
duce high levels of the chemokine IL-8 (CXCLS) follow-
ing stimulation that greatly exceeds levels secreted by
adult T cells [14] (Table 1). The precise role of IL-8 in
early-life T cell responses is not known, although IL-8 is
a potent chemoattractant and activator of neutrophils and
vd T cells [14] and could serve to promote recruitment of
these cells into infection sites. Furthermore, cord blood
contains significant frequencies of yd T cells with en-
hanced functionality compared to conventional 3 T cells,
acting as robust producers of IFN-y and IL-2 [64]. Taken
together, these studies indicate that early-life T cell re-
sponses may exhibit context-dependent differences in
function relative to adults.

Regulation of early-life T cell responses

A key challenge of early life is to balance the conflicting
demands of generating appropriate, robust immune responses
to pathogens and develop tolerance to innocuous and self-
antigens. A number of pathways limiting T cell responsive-
ness in early life have been identified that are specific to either
infancy and/or enhanced during early life. Erythroid-lincage
CD717 cell populations in neonatal mice and human cord
blood were found to mediate immune suppression through
depletion of L-arginine, an essential factor for T cell responses
[65]. In addition, there are increased frequencies of Tregs
present in the blood and peripheral tissues during fetal and
early life which are functionally enhanced relative to adult
Tregs [32, 66]. Depletion of infant Tregs promotes robust
IFN-y responses in cultures of infant CD4* and CD8" T cells
[32], suggesting that the ability of infant T cells is not intrin-
sically compromised, but subject to increased inhibition.
Relative to adults, infant T cells are more likely to differentiate
into Tregs following stimulation in a process mediated by the
RNA-binding protein Lin28b and TGF-{ signaling [67, 68],
revealing additional mechanisms by which early-life inflam-
matory responses can be dampened. Importantly, multiple
suppressive mechanisms may be necessary to limit potentially
detrimental inflammatory responses in the context of exten-
sive new antigen exposure immediately after birth. The in-
creased presence and functional capacity of infant Tregs
may also serve to contain tissue-immune responses and pre-
vent lymphocytic infiltration into multiple tissues during this
critical early-life window.
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Memory T cell establishment and subsets

Following the resolution of primary infection, CD4" and
CDS8" effector T cell populations undergo a rapid contraction
during which approximately 90-95% of effector cells die by
apoptosis. Subsets of pathogen-specific T cells, however, sur-
vive this contraction and are retained as long-lived memory T
cells which can persist for life, conveying protective immunity
upon secondary pathogen encounter. Factors determining
which responding cells persist as memory, however, are not
completely clear, and even less is known about how this pro-
cess occurs in early life. There is evidence that neonatal effec-
tor T cells have increased propensity for apoptosis [62, 63],
and their increased proliferation may also drive them to a
reduced lifespan.

A key factor required for memory T cell generation is sig-
naling via homeostatic and survival cytokines such as IL-7
and IL-15. In adults, naive CD4" and CD8" T cells express
IL-7R (a dimer of CD127 and the common gamma chain
receptor CD132) [69, 70] and IL-7 signaling is important,
although not sufficient, for the transition from effector to
memory as memory CD4" cells fail to develop in IL-7-
deficient hosts [71, 72]. IL-15 signaling is also essential for
CD8* memory formation [73], although it is dispensable in
the generation of memory CD4* T cells [74]. IL-7 and IL-15
signaling have both been further shown to be important in the
long-term maintenance of CD4" and CD8* memory T cells by
promoting homeostatic proliferation [71, 72, 75]. In both
humans and mice, T cells derived from fetal tissues or cord
blood have an increased tendency to proliferate in response
IL-7 and IL-15 signaling relative to adult controls [76, 77].
The increased susceptibility of neonatal T cells to apoptosis
following activation can be ameliorated by IL-7 and IL-15
in vitro [62, 63], suggesting that this pathway could be
targeted for enhancing memory T cell generation from neona-
tal T cells.

In the context of infection, cell surface markers delineating T
cell memory precursors in adults have been identified. CD8"
cells expressing high levels of CD127 and low levels of the co-
inhibitory receptor killer-cell lectin-like receptor G1 (KLRGI)
serve as precursors to memory T cells [78, 79], while
CD127(10)KLRG1(hi) CD8" T cells tend to be short-lived effec-
tor cells [78]. In an analogous fashion, high expression of Ly6c
delineates terminally differentiated CD4" effector cells from
memory precursors [80]. At the transcriptional level, terminally
differentiated CD4" and CD8" effector T cells express high levels
of the Thl lineage-defining transcription factor T-bet [79, 81]
which has been shown in mouse infection models to drive dif-
ferentiation toward terminal effector rather than memory T cells
[82].

During the neonatal period, considerably less is known re-
garding transcriptional regulation of effector and memory differ-
entiation. In a systemic infection model in neonatal mice,
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increased percentages of CD8" T cells displayed a terminally
differentiated CD127(1o)KLRG1(hi) phenotype with higher
levels of T-bet relative to adults [83] (Table 1). These neonatal
effector CD8" T cells had shorter lifespans in vivo compared to
adult counterparts [83]. For CD4" T cells, increased T-bet induc-
tion was observed in human infant compared to adult CD4* T
cells following activation in vitro, and in mouse, CD4" T cells
recruited to the lung during acute influenza infection in infant
compared to adult mice [84].Taken together, these findings sug-
gest that T cells may be intrinsically programmed for terminal
effector differentiation in early life for promoting rapid pathogen
clearance that is critical during the neonatal period and takes
precedence over memory generation.

Memory T cell localization and function

Memory CD4* and CD8" T cells are heterogeneous in terms of
phenotype, localization, and function. Like effector T cells, mem-
ory T cells retain high-level expression of CD44 and human cells
express the CD45RO isoform. Memory T cells are, however,
heterogeneous in their expression of the lymphoid homing mol-
ecules CD62L and CCR7 which led to delineation of two sub-
sets: CD62L*/CCR7*, central memory T cells (TCM) which
localize to secondary lymphoid tissues, and CD62L-/CCR7-ef-
fector memory T cells (TEM) present in peripheral tissues [85].
Both subsets were presumed to circulate with TCM migrating
through the secondary lymphoid tissues and TEM acting to sur-
vey the peripheral tissues.

In addition to TEM and TCM subsets, a distinct population of
non-circulating memory T cells termed tissue-resident memory
(TRM) has been recently identified to persist long-term in pe-
ripheral tissues, including brain, skin, vaginal mucosa, and lung,
following infection [6, 9—12]. Similar to TEM, TRM are CD44hi
and CCR710/CD62LIo. Both CD4* and CD8*TRM are distin-
guished by expression of CD69, a cell-surface marker that is
upregulated early after T cell activation and also serves tissue
retention function in lymph nodes [86]. CD4"TRM also express
high levels of CD11a, the alpha chain of the integrin LFA-1 [6],
while CD8" TRM express CD103, or «E integrin that pairs with
(37 integrin [87], which is not significantly upregulated by CD4*
TRM in mice. Relative to circulating T cell subsets, TRM exhibit
enhanced protective capacities mediated by robust in situ re-
sponses. For example, pro-inflammatory cytokines produced
by TRM can promote DC maturation and recruitment of circu-
lating memory T cells and B cells to the site of infection [88-90].
While precise mechanisms underlying the generation of distinct
T memory subsets remain unclear, these populations are tran-
scriptionally distinct [11]. The phenotype and migration proper-
ties of naive, effector, TCM, TEM, and TRM subsets are outlined
in Table 2.

In humans, the majority of T cells in tissues of older children
and adults exhibit memory phenotypes and the majority of these
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Table 2 Phenotype of naive, effector, and memory T cell subsets

Property Naive Effector TCM TEM TRM

CD44 Low High Intermediate High High

CD62L High Low High Low Low

CCR7 High Low High Low Low

CD45 Isoform (humans) CD45RA CD45RO CD45RO CD45RO/CD45RA?* CD45RO

CD69 Low High Low Low High

CD103 - - - - +-°

Migratory Properties Lymphoid tissues, Circulation Peripheral tissues Lymphoid tissues Peripheral tissues Resident in peripheral tissue

* Temra subsets found in humans re-express the CD45RA isoform
®Expression only on CD8* TRM

memory T cells are CD69*, suggesting that they are TRM.
During infancy, early mucosal memory T cells in lungs and in-
testines upregulate CD69 as a TRM marker to similar extents as
adult mucosal memory T cells; however, CD103 expression is
reduced on infant mucosal memory CD8* T cells compared to
adult mucosal memory T cells [32]. This result suggests that
differentiation to a fully mature TRM phenotype may require
additional exposures and/or specific factors within the adult tis-
sue environment. In mouse models of influenza infection, there
was reduced generation of CD4" and CD8*TRM in the lung
following infection during infancy compared to mice infected
as adults [84], consistent with reduced TRM found in human
infant lungs. This reduced TRM formation was intrinsic to infant
T cells and could be partially restored by reducing T-bet expres-
sion [84]. Due to the importance of this subset in protection from
repeated infections, an enhanced understanding of TRM genera-
tion in early life will be important in the generation of vaccines
and therapeutics for this vulnerable population.

Vaccines and T cell responses in early life

Vaccination is arguably the most important intervention for
preventing infectious disease in early life although vaccine re-
sponses in young children are often reduced in magnitude and
duration compared to older children and adults [91, 92].
Traditional vaccine approaches rely on generating protective se-
rum neutralizing antibodies, which are a correlate of protection
following vaccination against common childhood diseases in-
cluding diphtheria, tetanus, measles, mumps, and rubella, among
others [93]. Such protection has been extremely successful in
reducing morbidity and mortality. In some cases, however, cir-
culating antibody responses are unable to provide efficient cross
protection between distinct serotypes or strains of the same path-
ogen, such as for Haemophilus influenzae, Streptococcus
pneumoniae or influenza, and in other cases, circulating antibody
responses do not appear to provide consistent, lasting protective
immunity leading to limited protection by antibody-based vac-
cines as in the case of pertussis vaccines [93].

While the ability of vaccines to elicit tissue-localized immu-
nity is not well-understood, there is evidence that mucosal
targeting of vaccines can generate robust tissue-localized im-
mune responses. Both oral poliovaccine (OPV) and inactivated
poliovaccine (IPV) induce virus-specific antibody responses;
however, OPV-induced antibody responses are mostly localized
to the gastrointestinal tract while IPV elicits circulating serum
neutralizing antibody responses [93, 94]. Furthermore, individ-
uals vaccinated with IPV demonstrated enhanced stool shedding
upon subsequent receipt of a single OPV vaccine strain com-
pared to those vaccinated first with OPV, suggesting differences
in site-specific protection elicited by these two vaccines [94].
Similarly, administration of OPV to infants significantly en-
hanced neutralizing antibody titers and reduced stool shedding
compared to [PV-vaccination alone [95].

Given their enhanced functionality and specific tissue
localization, TRM are an important new target for vaccine
development. Factors promoting protective T cell re-
sponses by vaccines, however, are not well understood
and even less is known about requirements for TRM es-
tablishment and the capacities of infants to generate TRM.
Recent vaccine studies in mice have demonstrated that
mucosal administration of antigen or vaccination com-
bined with local chemokines or other molecules necessary
for T cell homing is important for the establishment of
tissue-localized T cell responses [12, 96-98].
Furthermore, administration of live-attenuated vaccine
formulations can establish protective TRM in several dis-
tinct tissue-localized animal disease models [97, 98].
Moreover, children vaccinated at birth with BCG, a live-
attenuated vaccine, generated circulating T cells produc-
ing adult-like, Th1-mediated IFN-y responses [99].
Significantly, this work demonstrated both the capacity
of young children to generate T cell responses to vaccina-
tion as well as robust Th1-type functionality. Interestingly,
neonatal mice immunized with incomplete Freund’s adju-
vant generate Th2-biased responses while complete
Freund’s adjuvant, containing mycobacterial-derived
components, promotes Thl-polarized responses [57]
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Fig.1 Model for T cell responses to infection in adulthood and early life.
Diagram shows schematic of effector and memory differentiation from
adult (upper) and infant (lower) T cells. Proliferation of naive CD4" and
CD8" T cells is enhanced relative to adults following stimulation, driving
differentiation to effector T cells that may likewise be increased in infant

illustrating that the inflammatory nature of an immuniza-
tion significantly influences the quality of the subsequent
T cell response, even very early in life.

Studies of influenza vaccination further highlight differing
immune and specifically T cell responses to inactivated (IIV)
versus live-attenuated (LAIV) vaccines early in life. Compared
to older children and adults, children under four receiving IIV
demonstrated reduced induction of serum-neutralizing antibody
responses and antibody-secreting cells compared to older chil-
dren and adults [100]. Following immunization with IIV, neona-
tal mice showed impaired generation of Tth important for anti-
body and germinal center responses [101] that could be restored
with additional stimulation by the adjuvant MF59 [102], suggest-
ing impaired T cell help during infancy. Live-attenuated influenza
virus vaccine (LAIV) elicits measurable circulating, virus-
specific T cell responses in infants and young children which
are not observed in adults [103]. Furthermore, in a previous
study, LAIV provided enhanced protection against the incidence
of laboratory-confirmed influenza and influenza-like illness in
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compared to adult T cells. Contraction of infant effector T cells by
apoptosis is further augmented compared to adults, resulting in
decreased establishment of memory T cells, both in circulation and
resident in tissues, resulting in decreased protection to repeat pathogen
exposures during early life

children compared to inactivated influenza vaccine (ITV) [104]
and this protection was superior to that observed in adults [104].
Whether this protection was mediated by T cells in humans is not
known, recent mouse studies demonstrate that LAIV generates
protective lung TRM, while vaccination with ITV does not [88].
Vaccination of infant mice with LAIV resulted in reduced TRM
generation compared to adults, consistent with their intrinsic im-
pairments in TRM differentiation [84] The in vivo efficacy of
LAIV in young children can vary between seasons [105], and
more studies are needed to evaluate the contribution of tissue
localized to circulating responses.

Taken together, these results suggest that neonates and infants
are capable of responding effectively following vaccination and
provide evidence that T cell responses in early life are not inher-
ently less functional than those of adults. Identifying the immune
mechanisms underlying effective host T cell responses to vac-
cines and how these factors differ between infants and adults is a
priority in the rational design of future vaccines and therapeutics
for infectious disease. Finally, determining whether vaccines
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elicit lasting TRM populations in early life and establishing
whether circulating T cell responses can predict TRM generation
following vaccination could substantially improve both vaccine
development and response monitoring in childhood and through-
out life.

Conclusions

nfants and neonates are highly susceptible to pathogens encoun-
tered via the respiratory and gastrointestinal tracts, yet the regu-
lation, differentiation, and maintenance of infant T cell responses
during homeostasis and infection or vaccination remains poorly
understood. Infant T cells exhibit distinct intrinsic responses at
the earliest phases of activation, subsequent tissue homing, and
functional differentiation. The generation of memory T cells in
circulation and those localized to tissue sites as TRM has been
shown to be critical for protection against virus infections, par-
ticularly at mucosal sites; however, evidence from human studies
and mouse models indicates that TRM formation is significantly
reduced during infancy. Given the distinct properties of infant T
cells, we propose a model for how infant T cells may be intrin-
sically programmed for a differentiation pathway that promotes
effector responses at the site of infection to promote pathogen
clearance, rather than long-term memory responses, using lung
and respiratory infection as an example (Fig. 1). The high prolif-
erative capacity and apoptosis by infant T cells, together with
their ability to produce IFN-y at mucosal sites, may promote
terminal effector differentiation compared to T cell responses
later in life, which encompass both pathogen clearance mecha-
nisms and in situ memory formation (Fig. 1). As a result, the
generation of TRM and pathogen-specific memory T cells at the
site of infection during infancy is compromised, resulting in re-
duced protective immunity to recurrent pathogen exposures.
Further studies in mouse models and humans to elucidate the
molecular mechanisms and transcriptional and epigenetic differ-
ences in early- compared to later-life T cells at distinct sites will
be essential for developing specific strategies to optimize local-
ized immunity at this critical period of development.
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