Skip to main content
Log in

Microbiome and cancer

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The human intestine is believed to contain approximately 100 trillion intestinal (gut) microbiota, comprising about 500–1000 different species. These intestinal microbiota exist in a symbiotic relationship with their host, by metabolizing compounds that the host is unable to utilize and controlling the immune balance of the host’s body. However, the composition of the intestinal microbiota is known to vary, depending on diet, nutrition status, and other factors. The recently developed meta-omics microbial data and the technical progress for the metabolome analysis provide a substantial understanding of the role of intestinal microbes and their metabolism. Interestingly, accumulating evidence suggests that the intestinal microbiota contributes to the onset of colorectal cancer, not only via the pro-carcinogenic activities of specific pathogens but also via the influence of the bacterial metabolites. Moreover, since the gut microbial metabolites circulate in the host’s body, it has been increasingly recognized that the intestinal microbiota are involved in the pathogenesis of diseases not only in the intestine but also in the organs located distant from the intestine. We recently found that metabolites from obesity-induced intestinal microbiota promoted liver cancer, and elucidated the underlying molecular mechanism. In this review, I first summarize the general understanding on the carcinogenic process by bacterial metabolites, and then discuss on the association between intestinal microbiota and colorectal cancer. In the last part, I will introduce our recent findings on liver cancer promotion by a metabolite of the obesity-induced intestinal microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kamada N, Seo SU, Chen GY et al (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13:321–335

    Article  CAS  PubMed  Google Scholar 

  2. Ley RE, Turnbaugh PJ, Klein S et al (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023

    Article  CAS  PubMed  Google Scholar 

  3. Ley RE, Bäckhed F, Turnbaugh P et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102:11070–11075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Holmes E, Li JV, Marchesi JR et al (2012) Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab 16:559–564

    Article  CAS  PubMed  Google Scholar 

  5. Fritz JV, Desai MS, Shah P et al (2013) From meta-omics to causality: experimental models for human microbiome research. Microbiomedicine 1:14

    Article  Google Scholar 

  6. Ou J, Carbonero F, Zoetendal EG et al (2013) Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am J Clin Nutr 98:111–120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Wu S, Rhee KJ, Albesiano E et al (2009) A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 15:1016–1022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Arthur JC, Perez-Chanona E, Mühlbauer M et al (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338:120–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12:661–672

    Article  CAS  PubMed  Google Scholar 

  10. Gonçalves P, Martel F (2013) Butyrate and colorectal cancer: the role of butyrate transport. Curr Drug Metab 14:994–1008

    Article  PubMed  Google Scholar 

  11. Henao-Mejia J, Elinav E, Jin C et al (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482:179–185

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Koeth RA, Wang Z, Levison BS et al (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19:576–585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Yokote H, Miyake S, Croxford JL et al (2008) NKT cell-dependent amelioration of a mouse model of multiple sclerosis by altering gut flora. Am J Pathol 173:1714–1723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10:735–742

    Article  CAS  PubMed  Google Scholar 

  15. Yoshimoto S, Loo TM, Atarashi K et al (2013) Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499:97–101

    Article  CAS  PubMed  Google Scholar 

  16. Natarajan N, Pluznick JL (2014) From microbe to man: the role of microbial short chain fatty acid metabolites in host cell biology. Am J Physiol Cell Physiol. doi:10.1152/ajpcell.00228.2014

    Google Scholar 

  17. Sleeth ML, Thompson EL, Ford HE et al (2010) Free fatty acid receptor 2 and nutrient sensing: a proposed role for fibre, fermentable carbohydrates and short-chain fatty acids in appetite regulation. Nutr Res Rev 23:135–145

    Article  CAS  PubMed  Google Scholar 

  18. Fung KYV, Cosgrove L, Lockett T et al (2012) A review of the potential mechanism for the lowering of colorectal oncogenesis by butyrate. Br J Nutr 108:820–831

    Article  CAS  PubMed  Google Scholar 

  19. Hamer HM, Jonkers D, Venema K et al (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119

    Article  CAS  PubMed  Google Scholar 

  20. Chang PV, Hao L, Offermanns S et al (2014) The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A 111:2247–2252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Smith PM, Howitt MR, Panikov N et al (2013) The microbial metabolites, short-chain fatty acids, regulate colonic T reg cell homeostasis. Science 341:569–573

    Article  CAS  PubMed  Google Scholar 

  22. Furusawa Y, Obata Y, Fukuda S et al (2013) Commensal microbe-derived butyrate induced the differentiation of colonic regulatory T cells. Nature 504:446–450

    Article  CAS  PubMed  Google Scholar 

  23. Arpaia N, Campbell C, Fan X et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504:451–455

    Article  CAS  PubMed  Google Scholar 

  24. Singh N, Gurav A, Sivaprakasam S et al (2014) Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40:128–139

    Article  CAS  PubMed  Google Scholar 

  25. Ridlon JM, Kang DJ, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259

    Article  CAS  PubMed  Google Scholar 

  26. Zhou H, Hylemon PB (2014) Bile acids are nutrient signaling hormones. Steroids 86C:62–68

    Article  Google Scholar 

  27. Kitazawa S, Denda A, Tsutsumi M et al (1990) Enhanced preneoplastic liver lesion development under ‘selection pressure’ conditions after administration of deoxycholic or lithocholic acid in the initiation phase in rats. Carcinogenesis 11:1323–1328

    Article  CAS  PubMed  Google Scholar 

  28. Ridlon JM, Hylemon PB (2012) Identification and characterization of two bile acid coenzyme A transferases from Clostridium scindens, a bile acid 7a-dehydroxylating intestinal bacterium. J Lipid Res 53:66–76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Payne CM, Weber C, Crowley-Skillicorn C et al (2007) Deoxycholate induces mitochondrial oxidative stress and activates NF-kappaB through multiple mechanisms in HCT-116 colon epithelial cells. Carcinogenesis 28:215–2

    Article  CAS  PubMed  Google Scholar 

  30. Reddy BS, Wynder EL (1973) Large-bowel carcinogenesis: fecal constituents of populations with diverse incidence rates of colon cancer. J Natl Cancer Inst 50:1437–1442

    CAS  PubMed  Google Scholar 

  31. Pai R, Tarnawski AS, Tran T (2004) Deoxycholic acid activates beta-catenin signaling pathway and increases colon cell cancer growth and invasiveness. Mol Biol Cell 15:2156–2163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. d’Adda di Fagagna F (2008) Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 8:512–522

    Article  PubMed  Google Scholar 

  33. Kuilman T, Michaloglou C, Mooi WJ et al (2010) The essence of senescence. Genes Dev 24:2463–2479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Ohtani N, Hara E (2013) Roles and mechanisms of cellular senescence in regulation of tissue homeostasis. Cancer Sci 104:525–530

    Article  CAS  PubMed  Google Scholar 

  35. Coppé JP, Patil CK, Rodier F et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868

    Article  PubMed  Google Scholar 

  36. Rodier F, Coppé JP, Patil CK et al (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11:973–979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Takahashi A, Imai Y, Yamakoshi K et al (2012) DNA damage signaling triggers degradation of histone methyltransferases through APC/C(Cdh1) in senescent cells. Mol Cell 45:123–131

    Article  CAS  PubMed  Google Scholar 

  38. Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kuilman T, Peeper DS (2009) Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer 9:81–94

    Article  CAS  PubMed  Google Scholar 

  40. Acosta JC, O’Loghlen A, Banito A et al (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133:1006–1018

    Article  CAS  PubMed  Google Scholar 

  41. Kuilman T, Michaloglou C, Vredeveld LC et al (2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133:1019–1031

    Article  CAS  PubMed  Google Scholar 

  42. Kortlever RM, Higgins PJ, Bernards R (2006) Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat Cell Biol 8:877–884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Sparmann A, Bar-Sagi D (2004) Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6:447–458

    Article  CAS  PubMed  Google Scholar 

  44. Ancrile B, Lim KH, Counter CM (2007) Oncogenic ras-induced secretion of IL6 is required for tumorigenesis. Genes Dev 21:1714–1719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Park EJ, Lee JH, Yu GY et al (2010) Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140:197–208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Ohanna M, Giuliano S, Bonet C et al (2011) Senescent cells develop a PARP-1 and nuclear factor-kB-associated secretome (PNAS). Genes Dev 25:1245–1261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Yang G, Rosen DG, Zhang Z et al (2006) The chemokine growth-regulated oncogene 1 (Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian tumorigenesis. Proc Natl Acad Sci U S A 103:16472–16477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Cuevas-Ramos G, Petit CR, Marcq I et al (2010) Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci U S A 107:11537–11542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Cougnoux A, Dalmasso G, Martinez R et al (2014) Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut. doi:10.1136/gutjnl-2013-305257

    PubMed  Google Scholar 

  50. Castellarin M, Warren RL, Freeman JD et al (2012) Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 22:299–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Kostic AD, Gevers D, Pedamallu CS et al (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22:292–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Kostic AD, Chun E, Robertson L et al (2013) Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14:207–215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Rubinstein MR, Wang X, Liu W et al (2013) Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 14:195–206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Homann N (2001) Alcohol and upper gastrointestinal tract cancer: the role of local acetaldehyde production. Addict Biol 6:309–323

    Article  CAS  PubMed  Google Scholar 

  55. Bode C, Bode JC (2005) Activation of the innate immune system and alcoholic liver disease: effects of ethanol per se or enhanced intestinal translocation of bacterial toxins induced by ethanol? Alcohol Clin Exp Res 29:166S–171S

    Article  CAS  PubMed  Google Scholar 

  56. Khandekar MJ, Cohen P, Spiegelman BM (2011) Molecular mechanisms of cancer development in obesity. Nat Rev Cancer 11:886–895

    Article  CAS  PubMed  Google Scholar 

  57. Jais A, Einwallner E, Sharif O et al (2014) Heme oxygenase-1 drives metaflammation and insulin resistance in mouse and man. Cell 158:25–40

    Article  CAS  PubMed  Google Scholar 

  58. Calle EE, Rodriguez C, Walker-Thurmond K et al (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348:1625–1638

    Article  PubMed  Google Scholar 

  59. Samanic C, Gridley G, Chow WH et al (2004) Obesity and cancer risk among white and black United States veterans. Cancer Causes Control 15:35–43

    Article  PubMed  Google Scholar 

  60. Møller H, Mellemgaard A, Lindvig K et al (1994) Obesity and cancer risk: a Danish record-linkage study. Eur J Cancer 30A:344–350

    Article  PubMed  Google Scholar 

  61. Wolk A, Gridley G, Svensson M et al (2001) A prospective study of obesity and cancer risk (Sweden). Cancer Causes Control 12:13–21

    Article  CAS  PubMed  Google Scholar 

  62. Haslam DW, James WP (2005) Obes Lancet 366(9492):1197–1209

    Article  Google Scholar 

  63. Ohtani N, Imamura Y, Yamakoshi K et al (2007) Visualizing the dynamics of p21(Waf1/Cip1) cyclin-dependent kinase inhibitor expression in living animals. Proc Natl Acad Sci U S A 104:15034–15039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Sato Y, Murase K, Kato J et al (2008) Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol 26:431–442

    Article  CAS  PubMed  Google Scholar 

  65. Dumas ME, Barton RH, Toye A et al (2006) Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A 103:12511–12516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Ridaura VK, Faith JJ, Rey FE et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214

    Article  PubMed  Google Scholar 

  67. Dapito DH, Mencin A, Gwak GY et al (2012) Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21:504–516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Minamida K, Ohashi M, Hara H et al (2006) Effects of ingestion of difructose anhydride III (DFA III) and the DFA III-assimilating bacterium Ruminococcus productus on rat intestine. Biosci Biotechnol Biochem 70:332–339

    Article  CAS  PubMed  Google Scholar 

  69. Beuers U (2006) Drug insight: mechanisms and sites of action of ursodeoxycholic acid in cholestasis. Nat Clin Pract Gastroenterol Hepatol 3:318–328

    Article  CAS  PubMed  Google Scholar 

  70. Takuma Y, Nouso K (2010) Nonalcoholic steatohepatitis-associated hepatocellular carcinoma: our case series and literature review. World J Gastroenterol 16:1436–1441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Rafter JJ, Child P, Anderson AM et al (1987) Cellular toxicity of fecal water depends on diet. Am J Clin Nutr 45:559–563

    CAS  PubMed  Google Scholar 

  72. David LA, Maurice CF, Carmody RN et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoko Ohtani.

Additional information

This article is a contribution to the Special Issue on Microbiome, Immunity and Inflammation - Guest Editor: Hiroshi Ohno

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohtani, N. Microbiome and cancer. Semin Immunopathol 37, 65–72 (2015). https://doi.org/10.1007/s00281-014-0457-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-014-0457-1

Keywords

Navigation