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Abstract Obesity is associated with various metabolic and
cardiovascular diseases caused by chronic, low-grade inflam-
mation that is initially observed in obese adipose tissue. In
addition, many etiological studies in humans have shown a
strong correlation between obesity and inflammatory autoim-
mune diseases. In this review, we focus on the involvement of
apoptosis inhibitor of macrophage (AIM), a macrophage-
derived blood protein, in both types of immune response.
Through differential mechanisms, AIM thereby plays key roles
in the pathogenesis of atherosclerosis, metabolic diseases, and
obesity-associated autoimmune diseases. Thus, the regulation
of blood AIM levels or AIM function has the potential to serve
as a next-generation therapy against these inflammatory dis-
eases brought about by modern lifestyle.
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Obesity-associated inflammatory diseases in modern
society

The prevalence of obesity is rapidly increasing due to drastic
changes in lifestyle, particularly eating habits. Obesity is

closely associated with insulin resistance, which triggers
and/or accelerates multiple metabolic disorders including type
2 diabetes, cardiovascular diseases, and fatty liver dysfunc-
tion. It is widely known that insulin resistance is caused by
chronic, low-grade inflammation in obese adipose tissue
[1–5]. This subclinical state of inflammation is dependent
mainly on the innate immune system through the activation
of Toll-like receptors (TLR) expressed on adipocytes by fatty
acids, a process which leads to the production of inflammatory
adipokines and the recruitment of classically activated inflam-
matory macrophages (M1 macrophages) into obese adipose
tissue [6–8]. Lean adipose tissue contains a resident popula-
tion of alternatively activated macrophages (M2 macro-
phages), which can suppress the inflammatory response in-
duced by both adipocytes and macrophages partly via the
secretion of interleukin-10. Hence, obesity induces a switch
in the macrophage activation state in adipose tissue towards
M1-polarization, which subsequently leads to inflammation
[9–12].

In addition to metabolic and cardiovascular diseases, many
etiological and clinical studies in humans have shown a strong
correlation between obesity and autoimmune diseases. These
conditions are largely accompanied by increased levels of
autoantibodies such as diabetes-associated antibodies against
pancreatic β-cell antigens (e.g. insulin, glutamic acid decar-
boxylase (GAD), and protein tyrosine phosphatase-like pro-
tein, IA2), chronic thyroiditis-associated anti-thyroid peroxi-
dase or anti-thyroglobulin antibody, and infertility-associated
anti-sperm antibody [13–17]. In addition, pathogenic immu-
noglobulin (Ig) G antibodies, including a unique profile of
autoantibodies, have been found in obese humans and mice
[18].

The association between obesity and inflammatory dis-
eases can be attributed to two distinct immunological re-
sponses: chronic inflammation through stimulating innate im-
munity leading to insulin resistance and activation of a hu-
moral immune response that triggers autoantibody production.
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In this review, we discuss the pathogenesis of obesity-
associated inflammatory diseases from the immunological
perspective by focusing on the apoptosis inhibitor of macro-
phage (AIM, also known as Spα and CD5L) [19]. We initially
identified AIM as an apoptosis inhibitor that supports the
survival of macrophages against various apoptosis-inducing
stimuli [19]. However, our recent studies revealed that AIM is
involved in the progression of both types of obesity-associated
inflammatory response though differential mechanisms.

Apoptosis inhibitor of macrophage

AIM protein is a secreted protein of the scavenger receptor
cysteine-rich superfamily [20]. Although the protein se-
quences of human and mouse AIM are well conserved, large
differences exist in the glycosylation states; mouse AIM is
heavily glycosylated with N -glycans, whereas human AIM is
not N-glycosylated. We previously demonstrated that such a
N -glycosylation state influences the activity and secretion
efficiency of AIM protein [21].

AIM is produced solely by tissue macrophages under tran-
scriptional regulation by nuclear receptor liver X receptor/
retinoid X receptor (LXR/RXR) heterodimers [19, 22–24]
and is therefore expressed in lipid-laden macrophages in ath-
erosclerotic lesions. We demonstrated that AIM induction is
associated with atherosclerogenesis by supporting the survival
of macrophages within lesions [24]. Indeed, atherosclerotic
plaques were markedly reduced in size in mice doubly defi-
cient for AIM and the low-density lipoprotein (LDL) receptor
(AIM−/−LDL−/−) compared with AIM+/+LDL−/− mice fed a
high-cholesterol diet [24, 25].

As a secreted molecule, AIM is detected at varying levels
in human and mouse blood [26–32]. Interestingly, serumAIM
increased with the progression of obesity in mice fed a high-
fat diet (HFD) [31]. Other studies have suggested that AIM is
multifunctional and effective in cell types other than macro-
phages, including B and natural killer T lymphocytes [33–35].
In addition, Lozano's group reported that AIM attaches to
certain bacteria and induces their coagulation [36]. This
“sticky” characteristic is a hallmark of scavenger receptor
cysteine-rich superfamily proteins [20, 37–39].

AIM induces lipolysis in adipocytes suppressing
an increase in fat mass

In addition to its apoptosis inhibitory effect, we found that
AIM induces lipolysis in adipose tissue. When differentiated
3T3-L1 adipocytes in culture were challenged with AIM, the
size and the number of lipid droplets of triacylglycerol within
the adipocytes markedly decreased [31]. Through this AIM-
induced lipolytic response, a certain amount of glycerol and

free fatty acids (FFA), the constituents of triacylglycerol, were
effluxed from the cells [40, 41]. In support of these in vitro
observations, production of both visceral and subcutaneous fat
tissue was accelerated in AIM−/− mice fed a HFD (60 % fat)
compared with AIM+/+ mice fed the same diet. In addition,
basal levels of serum FFA and glycerol were lower in obese
AIM−/−mice than in obese AIM+/+ mice [31]. These differ-
ences in AIM−/− and AIM+/+ mice were corrected by the
intraperitoneal administration of recombinant AIM [31]. In-
terestingly, both obese AIM−/− mice and AIM+/+ mice
showed comparable metabolic parameters (e.g., body temper-
ature, oxygen consumption, and food intake) and locomotor
activity [31]. Thus, AIM influences adipose tissue mass,
which essentially regulates fat and body weight, through
specifically affecting adipocytes.

Interestingly, unlike most ligands in the blood, such as
cytokines and growth factors, which bind to specific receptors
and mediate signal transduction to affect their target cells,
blood AIM is incorporated into adipocytes via endocytosis
mediated by the CD36 scavenger receptor and functions di-
rectly in the cytosol of the target cells [31]. Such direct
functioning in the absence of signaling is unusual in secreted
molecules, with only a limited number of reported examples,
including fibroblast growth factors-1 and -2 [42, 43] and
epidermal growth factor [44], in which the cytosolic delivery
of exogenous proteins was shown to mediate the biological
effects in mammalian cells, and also in some plant and bacte-
rial toxins [45, 46]. In addition, some exogenous antigens in
dendritic cells can access the cytosol via machinery similar to
that for intracellular transport where they are presented by
major histocompatibility complex class I molecules [47, 48].
The mechanism responsible for AIM translocation from the
endosomal compartment into the cytosol remains unknown.

Two independent modes of lipolysis induction

Lipolysis usually occurs during periods of energy deprivation.
Under fasting conditions, increased amounts of catecholamine
are released from the hypothalamus and bind to the β-
adrenergic receptor, thereby mediating the cyclic adenosine
monophosphate (cAMP)-dependent signaling cascade. This
response phosphorylates protein kinase A (PKA), which acti-
vates hormone-sensitive lipase (HSL) and increases the levels
of the adipose triglyceride lipase (ATGL) mRNA [49–55].

In contrast, AIM does not mediate signals. Despite lipolytic
consequences, no HSL phosphorylation was observed in
AIM-treated adipocytes in vitro [31, 56]. In vivo phosphory-
lation of HSL or its upstream PKA in epididymal adipose
tissue was not enhanced in obese wild-type mice compared
with lean mice, although lipolysis was apparently enhanced,
given the elevated serum levels of FFA and glycerol [56].
Similarly, AIM−/− mice fed a HFD showed no increase in
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HSL phosphorylation. In addition, forced induction of lipoly-
sis in obese AIM−/− mice by intravenous injection of AIM
activated neither HSL nor PKA phosphorylation in epididy-
mal adipose tissue [56]. In accordance with these observa-
tions, increased HSL and PKA phosphorylation levels were
comparably detected in the epididymal adipose tissue of
AIM−/− and AIM+/+ mice in response to 24-h fasting [56].

In the cytosol of adipocytes, incorporated AIM associates
with fatty acid synthase (FASN), which is highly expressed in
adipose tissue and catalyzes the synthesis of saturated fatty acids,
such as palmitate, from acetyl-CoA andmalonyl-CoAprecursors
[31, 56]. This binding of AIM remarkably reduces the enzymatic
activity of FASN [31, 56]. Consistent with this finding, FASN
activity was significantly increased in the epididymal fat of
AIM−/− mice compared with AIM+/+ mice and was subsequent-
ly decreased following direct injection of AIM. Since treatment
of adipocytes with AIM or the FASN inhibitor C75 has similar
lipolytic consequences, the lipolytic effect of AIM on adipocytes
is likely due to the suppression of FASN activity [31, 56]. Thus,
two distinct modes of lipolysis occur in different physiological
situations: catecholamine-dependent lipolysis under fasting con-
ditions and AIM-induced lipolysis under obese conditions.

AIM targets lipid droplet-coating proteins via regulating
PPARγ activity

Numerous studies have suggested that polyunsaturated fatty
acids and related molecules can activate peroxisome

proliferator-activated receptor (PPAR)γ, a master transcrip-
tion factor for the differentiation of adipocytes, although the
identity of the biological ligand(s) for PPARγ has not been
elucidated [57–60]. Metabolomics analysis revealed that the
proportion of palmitic acid (C16:0), the primary product syn-
thesized by FASN, was significantly reduced in adipocytes
treated with AIM. Similarly, the proportions of multiple satu-
rated fatty acids harboring longer chains such as stearic acid
(C18:0) and related unsaturated fatty acids are also reduced in
response to AIM [56].

Interestingly, the transcription of different lipid coating
genes, including FSP27 and Perilipin , whose mRNA levels
decrease in response to AIM in adipocytes [31], is directly
regulated by PPARγ [61, 62]. It is plausible then that suppres-
sion of FASN activity by AIM reduces the production of
PPARγ biological ligand(s), thereby decreasing the transcrip-
tional activity of PPARγ and resulting in downregulation of
the droplet-coating gene expression that leads to lipolysis
(Fig. 1). We corroborated this idea as follows [56]. First, we
assessed whether the presence of rosiglitazone, a selective
PPARγ agonist, or T0070907, a selective PPAR antagonist,
influenced the lipolytic effect of AIM in 3T3-L1 adipocytes.
Several parameters with remarkable involvement in AIM-
induced lipolysis (i.e. increased glycerol efflux, downregula-
tion of FSP27 and Perilipin mRNA levels, and increased
inflammatory gene expression) were inhibited by the presence
of rosiglitazone in a dose-dependent fashion. In contrast, a
synergistic effect of these lipolytic consequences was detected
following combined administration of recombinant AIM and

Fig. 1 Two modes of lipolysis
distinguished by AIM.
Catecholamine mediates signals
thereby activates and/or augments
lipases which directly degrade
TG, leading to lipolysis. In
contrast, AIM decreases lipid
droplet-coating proteins via
reducing FASN activity, without
influencing lipases
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T0070907. Second, we assessed the effect of AIM on the
transcriptional activity of PPARγ more directly by creating
3T3-L1 adipocytes stably transfected with a luciferase report-
er gene conjugated with a PPAR-binding element (PPRE) at
the 5' end [57]. Challenge with AIM significantly decreased
the luciferase activity in a dose-dependent fashion, as with
T0070907. In addition, the luciferase activity induced by
rosiglitazone was significantly suppressed by AIM.

AIM-induced lipolysis mediates migration
of macrophages into adipose tissue

The suppressed lipolytic state of adipose tissue in AIM−/−

mice [31] results in more advanced adipocyte hypertrophy
than in AIM+/+ mice, and the overall mass of visceral fat
and body weight is markedly greater [31]. It is interesting to
note, however, that the obesity-associated infiltration of in-
flammatory macrophages (M1 macrophages) into adipose
tissue was dramatically suppressed in AIM−/− mice compared
with AIM+/+ mice after being fed a 12-week HFD [63]. In
addition, the administration of AIM to obese AIM−/− mice
resulted in an accumulation of M1 macrophages in adipose
tissue [63]. Thus, the presence of AIM is indispensable for
obesity-associated recruitment of adipose tissue macrophages.
However, AIM exhibits no chemoattractive activity in a mac-
rophage migration assay. By contrast, conditioned medium
from adipocytes that had been challenged with AIM efficient-
ly attracted macrophage cells [63]. Furthermore, conditioned
medium from adipocytes treated with AIM in the presence of
a CD36-neutralizing antibody to inhibit AIM-dependent lipol-
ysis [31] did not efficiently attract macrophages, suggesting
that AIM-induced lipolysis in adipocytes is responsible for
macrophage recruitment.

Previous studies have demonstrated that saturated fatty
acids activate TLR4 and that this response is tightly associated
with obesity-induced inflammation [64–68]. Thus, it is plau-
sible that an increase in blood AIM induces vigorous lipolysis
in obese adipose tissue and that saturated fatty acids effluxed
from adipocytes as a result of lipolysis might activate chemo-
kine production in adipocytes via the stimulation of TLR4 in a
paracrine/autocrine fashion [69–71]. Indeed, palmitic acid and
stearic acid, the major fatty acids comprising triglyceride
droplets [72] and well-known stimulators of TLR4 [18, 68,
73, 74], were identified as the components released by adipo-
cytes in response to AIM-induced lipolysis. Consistent with
this finding, conditioned medium from adipocytes treated
with AIM efficiently activated the TLR signaling cascade in
adipocytes, inducing the degradation of I-kappa-B-alpha
(IκBα) and the production of chemokines such as monocyte
chemotactic protein (MCP)-1, chemokine (C-C motif)
ligand 5/RANTES, MCP-2, and MCP-3. Similar effects of
TLR activation and chemokine production were observed when

3T3-L1 adipocytes were treated with palmitic acid and stearic
acid [63]. Similarly, when AIM was injected into wild-type or
TLR4−/− mice, induction of chemokine mRNAwas significant-
ly less efficient compared with wild-type mice, although lipol-
ysis was induced in bothwild-type and TLR4−/− mice, as shown
by the increased serum FFA and glycerol levels [63].

Taken together, lipolysis induced by increased blood AIM
under obese conditions releases large amounts of saturated
fatty acids from adipocytes. This response stimulates chemo-
kine production in adipocytes via TLR4 activation, resulting
in M1 macrophage migration (Fig. 2).

Absence of inflammation and insulin resistance in obese
AIM−/− mice

The progression of obesity-associated inflammation is
prevented both locally and systemically in obese AIM−/− mice
due to the abolished infiltration of inflammatory macro-
phages. Accordingly, substantial insulin-stimulated phosphor-
ylation of AKT/ protein kinases protein kinase B and glyco-
gen synthase kinase 3-beta [75] was observed in adipose
tissue, skeletal muscle (the gastrocnemius), and liver of
AIM−/− mice in contrast to the markedly diminished phos-
phorylation inAIM+/+ mice [63]. Thus, insulin sensitivity was
maintained in obese AIM−/− mice. Similarly, whole-body
glucose intolerance and insulin resistance observed in obese
AIM+/+ mice were ameliorated in obese AIM−/− mice, as
shown by intraperitoneal glucose and insulin tolerance tests
[63]. Thus, the absence of AIM apparently prevents insulin
resistance under obese conditions.

AIM and autoimmune-susceptible natural IgM

Another recent topic regarding AIM is its involvement in
obesity-associated autoimmune diseases. As briefly described
earlier, it is well known that obesity in humans often increases
the serum levels of multiple autoantibodies, definitively caus-
ing autoimmune diseases. However, the elements involved in
this autoimmune process and the overall contribution of obe-
sity to autoantibody production remain unclear.

Due to the germline V gene segment, a large proportion of
natural IgM is polyreactive to not only foreign antigens but
also autoantigens, including nucleic acids, heat shock pro-
teins, carbohydrates, and phospholipids [76–78]. Thus, IgM
is believed to be important for the progression of autoimmu-
nity. Moreover, natural IgM has a relatively low antigen-
binding affinity that is compensated for by the pentameric
nature of secreted IgM. This forms an immune complex (IC)
with antigens and the complement component C3 which is
subsequently deposited on splenic follicular dendritic cells
(FDC) [79–82]. Antigen presentation by FDC ICs to follicular
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B cells is required for the development of long-lived plasma
cells that produce high-affinity IgG [83]. Therefore, IgM-IC
bound to autoantigens should stimulate the autoantibody re-
sponse that mediates the progression of autoimmunity.

Interestingly, the potential association between AIM and
natural IgM in human blood has been suggested, although its
physiological significance is entirely unknown [84]. Indeed,
when size-fractionated wild-type mouse serum was assessed
for the presence of AIM and IgM, the fractions containing
AIM and IgM overlapped precisely at a highmolecular weight
(>500 kDa), suggesting that most circulating AIM is associ-
ated with IgM pentamers [32]. Experiments with different
monoclonal IgM clones revealed that AIM likely binds to
the Fc region, since AIM binds to IgM regardless of the type
of variable region. In contrast, AIM does not bind to IgG
in vivo or in vitro.

Association between AIM and IgM maintains blood AIM
levels

Before discussing autoimmunity, we would like to briefly
mention the beneficial association between IgM and AIM. A
strong correlation between AIM and natural IgM levels in the
blood has been found in both humans and mice. Accordingly,
the serumAIM level was far lower in mice lacking blood IgM,
such as secreted-type IgM-deficient (Δsμ) mice [85], than in
wild-type mice, although the AIM mRNA level in

macrophages was comparable in various tissues in all types
of mice [32]. Hence, the association between AIM and IgM
increases the protein stability of AIM in the blood. In agree-
ment with these findings, intravenous injection of monoclonal
mouse IgM rapidly increased serum AIM levels inΔsμmice.

The mechanism of how the association between IgM and
AIM stabilizes blood AIM levels is as follows: Free AIM is
excreted in the urine, but this response is prevented whenAIM
forms a complex with IgM, resulting in accumulation of AIM
in the blood [32]. This complex formation maintains the blood
AIM level at a relatively high concentration (~10 μg/ml).
Indeed, when AIM was injected into mice doubly deficient
for sμ and AIM (Δsμ AIM−/−) and into AIM−/− mice, the
decrease in serum AIM levels was more prominent in theΔsμ
AIM−/− mice. In parallel, AIM excretion in the urine was
notably higher in Δsμ AIM−/−. By contrast, AIM did not
appear to contribute to the protein stability of IgM as both
AIM+/+ and AIM−/− mice showed comparable levels of blood
IgM.

AIM involvement in IgM-dependent antibody maturation
in the spleen

It is well known that IgM-IC is deposited on splenic FDC
through an interaction between the complement component
C3 within the complex and the FDC complement receptor
(CD21/CD35), and presents antigens to germinal center (GC)
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B cells [79–83]. Interestingly, IgM-IC remains on the FDC
surface for a long time, which increases the probability of
coming into contact with highly matched B-cell receptor-
bearing GC-B cells. Such contact induces differentiation into
mature plasma cells.

When spleen specimens from wild-type mice were stained
for AIM, IgM, and FDC, accumulations of both AIM and IgM
were specifically observed in FDC within splenic GCs [32].
Notably, this co-existence of AIM is required for the retention
of IgM-ICwith antigens on the FDC surface [32] and has been
corroborated by two sets of experiments. First, IgM alone or in
association with recombinant AIM (IgM/AIM) was intrave-
nously injected into Δsμ AIM−/− mice, and the presence of
IgM on the FDC cell surface was tested kinetically. Injection
of IgM alone showed no significant deposition on the FDC
surface, whereas injected of IgM/AIM revealed profoundly
increased FDC IgM levels. The increase was still obvious 48 h
after the injection. Second, the retention of antigens on the
FDC surface was tested using the 2,4,6-trinitrophenyl (TNP)
antigen, which was shown to be bound to IgM. When TNP
conjugated with Ficoll was injected into AIM+/+ and AIM−/−

mice, the TNP antigen was maintained on the FDC surface
more efficiently in AIM+/+ mice than in AIM−/− mice. Con-
sistent with this finding, the splenic FDC area stained positive
for TNP 48 h after the injection in both mice strains, but there
was markedly less staining in AIM−/− mice.

AIM interferes with the binding of IgM to the Fcα/μ
receptor

Then, what is the mechanism of how AIM supports the
retention of IgM-IC on the FDC surface? We focused on the
Fcα/μR, the Fc-receptor for both IgM and IgA [86], because
Fcα/μR expression is detected mainly on the FDCs [86, 87]
and the Fcα/μR induces internalization of IgM, thereby re-
ducing IgM retention on the cell surface [86]. To analyze the
influence of AIM on IgM binding to the Fcα/μR, we treated
HEK293T cells expressing the Fcα/μR with a monoclonal
IgM with or without AIM association. Flow cytometry
showed that the association between AIM and IgM markedly
decreased the binding of IgM to the Fcα/μR. Similarly, Fcα/
μR-expressing HEK293T cells incubated with serum from
AIM+/+ mice showed reduced surface staining for IgM com-
pared with cells incubated with AIM−/− serum. Consistent
with the binding results, incorporation of IgM by the cells
through the Fcα/μR was also drastically disturbed by the
association of AIM. Thus, AIM interferes with the binding
of IgM to the Fcα/μR and its internalization through antago-
nizing the receptor. Taken together, it is likely that the presen-
tation of IgM-dependent antigens on the surface of splenic
FDC to GC-B cells is deficient in AIM−/− mice due to rapid
internalization of IgM-IC via the Fcα/μR.

B-cell TLR4 mediates the obesity-associated increase
in natural IgM levels

As expected from the correlation between AIM and natural
IgM levels in the blood, IgM levels were markedly increased
in line with AIM levels [31] in wild-type mice fed a HFD.
Evidence suggests that stimulation of cell surface TLR4 acti-
vates splenic marginal zone B cells, a major producer of
natural IgM [88–90], and subsequently induces high amounts
of polyclonal IgM production in an antigen-independent fash-
ion [91, 92]. Indeed, no significant increase in blood IgM
levels was observed in TLR4−/− mice fed a HFD for 6 weeks,
suggesting that the increase in natural IgM levels in obese
mice was brought about by the stimulation of TLR4 expressed
on B cells. It is very likely that increased levels of fatty acids,
which are effluxed from obese adipocytes and/or directly
supplied by a HFD, may activate B-cell TLR4 [64].

Obesity-associated autoantibody production is supported
by AIM

Because of the self-reactive nature of natural IgM, its aug-
mentation might stimulate IgG autoantibody production in
obese mice. This was tested in a proteome microarray con-
taining 70 autoantigens [93–95], using the serum from obese
wild-type mice. Compared with lean mice, serum from mice
fed a HFD for 12 weeks contained significantly increased
levels of IgG autoantibodies against more than 30 variable
autoantigens related to DNA, U1RNP, histone, SSA/SSB, and
the cell matrix. In contrast, serum from AIM−/− mice fed a
HFD for the same period revealed markedly lower levels of
IgG antibodies against most of the autoantigens to which the
AIM+/+ serum responded [32]. Consistent with these findings,
flow cytometry showed a decreased number of long-lived
plasma cells [96], which produce high-affinity IgGs, in the
bone marrow of obese AIM−/− mice compared with obese
AIM+/+ mice. Thus, the lack of AIM annuls the IgM-
dependent maturation of high-affinity IgG-producing plasma
B cells, tempering obesity-associated IgG autoantibody pro-
duction (Fig. 3).

Conclusion

In this article, we have reviewed the key roles of AIM in
controlling the progression of multiple obesity-associated in-
flammatory diseases. The relationship between obesity and
blood AIM levels is analogous to that of the accelerator and
brake in a car. The more speed (body fat) we gain, the more
braking (blood AIM) we need to reduce the speed to keep the
car under control. In this regard, AIM is beneficial for imped-
ing the progression of obesity. Under “severely obese”
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conditions, however, body fat and blood AIM behave as if the
accelerator and brake are applied simultaneously at very high
intensity: such a situation will cause extensive damage to the

car. Similarly, severe damage will occur to our body. Excess
fatty acids are effluxed from adipocytes due to excessive
AIM-induced lipolysis. This process stimulates adipocyte

Fig. 3 The role of AIM in obesity-associated autoantibody production.
In blood, AIM is associated with IgM pentamer, and thus translocates to
splenic GC with IgM/autoantigen complex (upper scheme). There, AIM
supports the retention of IgM on the FDC cell surface by interfering with
the IgM incorporation into FDC which is mediated by Fcα/μ receptor.

This results in efficient autoantigen presentation to GC-B cells, leading to
development of high-affinity autoantibody producing plasma cells (WT).
In contrast, in the absence of AIM, the IgM/autoantigen complex is
internalized by Fcα/μ, resulting in less efficient autoantigen presentation,
overall leading to suppression of autoimmunity (KO)

Fig. 4 To prevent obesity-
associated inflammatory diseases

Semin Immunopathol (2014) 36:3–12 9



TLR4 levels, which results in the release of chemokines,
which in turn recruits inflammatory macrophages into the
adipose tissue, leading to insulin resistance. In this regard,
AIM is detrimental for metabolic disorders. Thus, during the
early phases of metabolic syndrome prior to developing prom-
inent obesity with limited lipid storage in adipocytes, AIM can
prevent the progression of obesity via lipolysis, while the
reduction of blood AIM levels or inhibition of AIM function
will protect very obese individuals from developing metabolic
inflammatory diseases such as diabetes, cardiovascular dis-
eases, and autoimmune diseases.

To conclude, the combined application of AIM (i.e., AIM
agonists) and anti-AIM (i.e., AIM antagonists) has the poten-
tial to serve as a next-generation therapy for preventing harm-
ful obesity-associated inflammatory diseases brought about
by modern lifestyles (Fig. 4). We are currently conducting
large-scale cohort studies to determine the blood AIM levels
in both healthy individuals and patients with various diseases.
We anticipate that our results will be useful for establishing the
threshold levels of blood AIM, which will subsequently help
us decide whether an AIM agonist or AIM antagonist should
be used.
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