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Abstract Transition metals are essential nutrients to virtu-
ally all forms of life, including bacterial pathogens. In
Staphylococcus aureus, metal ions participate in diverse
biochemical processes such as metabolism, DNA synthesis,
regulation of virulence factors, and defense against oxida-
tive stress. As an innate immune response to bacterial
infection, vertebrate hosts sequester transition metals in a
process that has been termed “nutritional immunity.” To
successfully infect vertebrates, S. aureus must overcome
host sequestration of these critical nutrients. The objective
of this review is to outline the current knowledge of
staphylococcal metal ion acquisition systems, as well as to
define the host mechanisms of nutritional immunity during
staphylococcal infection.
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Introduction

Staphylococcus aureus is a remarkably successful human
pathogen. It is the most common cause of skin and soft

tissue infections [1, 2], endocarditis [3], and osteomyelitis
[4] and a common cause of bloodstream infections, surgical
site infections, and pneumonia. Invasive staphylococcal
infections are a source of considerable morbidity and
mortality [5]. Treatment of staphylococcal disease is
complicated by the prevalence of antimicrobial-resistant
strains. Penicillin-resistant S. aureus emerged in the 1940s
[6], followed by the initial description of methicillin-
resistant S. aureus (MRSA) in 1961 [7]. The development
of subsequent anti-staphylococcal antibiotics has almost
uniformly been followed by reports of resistance or
treatment failure [8]. Additionally, attempts to design and
implement effective staphylococcal vaccines have been
unsuccessful thus far [9]. Also complicating the control of
staphylococcal infection is the emergence of virulent,
community-acquired MRSA (CA-MRSA) strains [10].
Because CA-MRSA infection can occur in those individu-
als with no known predisposing factors for acquisition of S.
aureus, it is difficult to predict which populations are at the
greatest risk.

The capability of S. aureus to cause disease is facilitated
by production of a diverse array of virulence factors [11,
12]. Staphylococcal adhesins allow effective binding and
colonization of host tissues. After colonization of host
tissues, expression of secreted toxins and exoenzymes leads
to degradation of host tissues, further tissue invasion, and
metastasis to other sites. A subset of staphylococcal
virulence factors counteracts the host immune response.
This includes factors that destroy neutrophils or inhibit their
activity [13–18], prevent activation of the complement
cascade [19–22], disrupt phagocytosis [23–25], limit the
efficacy of antimicrobial peptides [26–28], and interfere
with or augment the function of T cells [29, 30]. The
spectrum of human disease following staphylococcal
infection is therefore a function of the success of the host
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immune system in controlling staphylococcal virulence. If
the host immune system is effective in controlling staphy-
lococcal infection, the clinical outcome is that of asymp-
tomatic colonization or localized disease, such as a soft
tissue abscess. If S. aureus succeeds in overcoming the host
immune system, the result is invasive and disseminated
disease. In this way, human infection by S. aureus represents
a constant battle between host and pathogen.

The concept of nutritional immunity exemplifies the
struggle between S. aureus and the human immune system
[31]. Nutritional immunity describes the process whereby a
host sequesters nutrients essential to bacterial growth, thus
limiting the ability of invading pathogens to proliferate in
the host environment. The most well characterized example
of nutritional immunity during staphylococcal infection is
iron sequestration, in which iron is maintained predomi-
nantly intracellularly or in complex with high-affinity host
binding proteins [32]. The result of this sequestration is an
extracellular iron concentration insufficient to support
bacterial growth [33]. Since iron is necessary for bacterial
proliferation, S. aureus must circumvent iron sequestration
in order to successfully infect host tissues. Accordingly,
staphylococci have evolved systems for the acquisition,
processing, and detoxification of iron and iron-containing
host molecules and proteins. Emerging evidence suggests
that the principle of nutritional immunity extends to other
transition metals, including zinc and manganese [34].

The objective of this review is to provide a comprehensive
analysis of both the mechanisms by which S. aureus acquires
transition metals, as well as the host mechanisms aimed at
sequestration of these essential nutrients. We focus on the
impact of metal ion acquisition on staphylococcal virulence
and the host immune response to staphylococcal infection.

S. aureus overcomes nutritional immunity to obtain iron
from the host

Iron is a critical nutrient for both humans and pathogenic
bacteria. In humans, iron-containing compounds participate
in a number of important cellular processes including
energy metabolism, cellular proliferation, DNA repair, and
protection against oxidative stress [35–37]. However, iron
is also essential to invading bacterial pathogens; therefore
vertebrates sequester iron as an innate immune response
against bacterial infection. Strict regulatory control of iron
homeostasis also protects the host from damage associated
with either iron overload or iron deficiency. Iron excess, as
manifested in hemochromatosis or in individuals requiring
chronic transfusions, results in tissue damage and organ
dysfunction. Conversely, iron deficiency, encountered in
patients with chronic inflammation or inadequate dietary
intake, results in ineffective erythropoiesis [35].

A number of factors contribute to the sequestration of iron
in the vertebrate host (Fig. 1). The iron content of vertebrates
is mostly intracellular, either maintained within the iron
storage protein ferritin, or complexed to the tetrapyrrole ring
of heme. Heme is the major iron reservoir in vertebrates,
accounting for up to 80% of total body iron [38]. The
majority of vertebrate iron is therefore inaccessible to
predominantly extracellular pathogens such as S. aureus.
Furthermore, any iron released into the extracellular envi-
ronment is tightly bound to the high-affinity iron-scavenging
glycoproteins transferrin and lactoferrin. Together, these
mechanisms ensure that the amount of free extracellular iron
that is available to invading pathogens is negligible. In
response to infection, mammalian hosts can further limit iron
availability through a number of mechanisms including
decreased dietary iron absorption, reduced release of iron
from macrophages, and release of apolactoferrin from
neutrophil granules at the site of infection [32]. The
importance of iron sequestration as an immune response to
invading pathogens is illustrated by individuals with iron
overload, who have an increased susceptibility to bacterial
infection. For example, patients with hemochromatosis are
more susceptible to infection by Yersinia enterocolitica,
Vibrio vulnificans, and Listeria monocytogenes [39–42].

In order to successfully infect humans, bacteria must
overcome iron limitation in host tissues. Pathogenic bacteria
have evolved five primary mechanisms to circumvent host
iron sequestration. The first mechanism, utilized by Borrelia
burgdorferi and Lactobacillus plantarum, is to substitute
manganese for iron in metal-containing enzymes, eliminating
the cell’s requirement for iron [43, 44]. A second mechanism
is the production of secreted iron-binding compounds known
as siderophores. Siderophores bind iron with high affinity
and thus can effectively compete with extracellular iron
sequestration by transferrin and lactoferrin. Third, bacteria
utilize heme acquisition systems to obtain host iron. Bacterial
heme acquisition systems involve cell surface receptors that
recognize either free heme or heme bound to hemoproteins, a
transport apparatus to move heme across the cell membrane
into the bacterial cytoplasm, and enzymes that liberate iron
from heme. A fourth mechanism used by bacteria to obtain
iron is the expression of ferric or ferrous iron transporters.
Finally, bacteria may express transferrin and lactoferrin
receptors to obtain iron directly from high-affinity host
proteins. To successfully infect humans, S. aureus utilizes
siderophores and a heme acquisition system to overcome
host iron sequestration (Fig. 1).

S. aureus produces siderophores to steal iron
from transferrin

S. aureus produces two polycarboxylate-type siderophores,
staphyloferrin A and staphyloferrin B, which were initially
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isolated and characterized from Staphylococcus hyicus [45].
An additional staphylococcal siderophore, aureochelin, has
been proposed but not further characterized [46]. Iron
acquisition by staphyloferrin A and staphyloferrin B is

regulated by the ferric uptake regulator (Fur) in response to
environmental iron concentrations [47–49]. Fur is an iron-
dependent transcriptional regulator that is conserved among
Gram-positive and Gram-negative bacteria [50]. In iron-
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Fig. 1 S. aureus overcomes nutritional immunity to obtain iron from
the host. a During infection, staphylococcal hemolysins lyse red blood
cells to release hemoglobin, which can be further degraded to heme
and free iron. b In response to infection, vertebrate hosts fortify iron
sequestration. Free iron is bound by transferrin and lactoferrin, free
heme by hemopexin, and hemoglobin by haptoglobin to limit iron
availability to invading pathogens. c S. aureus produces two side-
rophores, staphyloferrin A and staphyloferrin B, which bind iron with
high affinity and allow competition with iron sequestration by

lactoferrin and transferrin. Import of iron bound to staphyloferrin A
and staphyloferrin B is mediated by HtsABC and SirABC, respec-
tively, in processes powered by the FhuC ATPase. d The Isd system
mediates acquisition of heme, the preferred iron source during S.
aureus infection. IsdB and IsdH are cell-surface receptors for
hemoglobin and hemoglobin-haptoglobin, respectively. IsdB and IsdH
pass heme to IsdA, or alternatively to IsdC or IsdE, culminating in
transport across the cell membrane by IsdDEF. In the cytoplasm, heme
is degraded by IsdG or IsdI to release iron
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replete conditions, Fur binds a consensus DNA sequence
(Fur box) upstream of Fur-regulated genes, leading to
transcriptional repression. In iron-deplete conditions, Fur
no longer binds to Fur boxes, and transcription of Fur-
regulated genes can proceed. In this way, S. aureus can
initiate a transcriptional program based on the amount of
iron available in the environment [51].

Staphyloferrin A is a 479 Da molecule encoded by the
sfaABCD gene cluster [47, 52]. Following iron complexa-
tion by staphyloferrin A, transport across the staphylococ-
cal membrane is mediated by the ABC transporter HtsABC,
in a process powered by a separate ATPase, FhuC (Fig. 1)
[47, 53]. The name of the htsABC operon is derived from
its initial characterization as a heme transport system [54].
Subsequent crystallographic studies of HtsA demonstrate
that this protein clearly binds staphyloferrin A [55]. Staph-
yloferrin B is a 448 Da compound composed of L-2,3-
diaminopropionic acid, 1,2-diaminoethane, and α-
ketoglutaric acid [56]. Staphyloferrin B is a product of the
sbnABCDEFGHI operon, of which only SbnC, SbnE,
SbnF, and SbnH are required for in vitro synthesis [57].
Transport of staphyloferrin B across the staphylococcal cell
membrane is mediated by the staphylococcal iron-regulated
transporter SirABC (Fig. 1) [58, 59]. The advantage of
producing two siderophores is unclear, although there is
precedence for this phenomenon in other bacteria including
Pseudomonas aeruginosa (pyoverdines and pyochelin) and
Bacillus anthracis (bacillibactin and petrobactin). Concom-
itant inactivation of the genes responsible for the produc-
tion of staphyloferrin A and staphyloferrin B results in
severe growth limitation in iron-deplete media [47].
Inactivation of the sbn locus alone, but not the sfa locus,
also yields a growth defect in iron-restricted media [47].
Thus, under in vitro conditions, staphyloferrin B seems to
have a more prominent role in staphylococcal growth
during iron limitation. Yet both staphyloferrin A and
staphyloferrin B can remove iron from human holotrans-
ferrin to support S. aureus growth in iron-deplete conditions
[60]. Whether or not staphyloferrin A and staphyloferrin B
have distinct in vivo roles remains to be tested.

In addition to siderophore-mediated iron acquisition by
staphyloferrin A and B, S. aureus has the capability to
liberate iron from heterologous siderophores and mamma-
lian catecholamine hormones. Brock and Ng demonstrated
that S. aureus is capable of utilizing the hydroxymate-type
siderophore desferrioxamine as an iron source [61]. Uptake
of desferrioxamine is dependent on the fhuCBG operon,
which encodes the membrane-spanning and ATPase com-
ponents of a classical traffic ATPase [62]. Subsequent
experiments identified FhuD1 and FhuD2 as the lipoprotein
receptors for FhuCBG-mediated siderophore uptake [63].
The ability of S. aureus to utilize desferrioxamine as an iron
source is clinically relevant given its use as a chelating

agent, and previous reports that this compound enhances
the growth and virulence of other bacterial and fungal
pathogens [64–66]. S. aureus also has the capability to
utilize mammalian catecholamine hormones as an iron
source. Beasley et al. demonstrated that catecholamine
hormones enhance the growth of siderophore-deficient S.
aureus grown in the presence of human serum or transferrin
[60]. Uptake of catecholamine iron is dependent on
SstABCD, a previously described iron-regulated ABC
transporter [67].

Iron acquisition by siderophores contributes
to staphylococcal virulence

Siderophore-mediated iron acquisition is essential to the
virulence of a number of bacterial pathogens. Inactivation
of siderophore production reduces virulence in B. anthracis
[68], P. aeruginosa [69, 70], Y. enterocolitica [71], Legion-
ella pneumophila [72], and Escherichia coli [73], among
others. A limited number of experiments have investigated
the role of siderophore-mediated iron acquisition in S.
aureus. Beasley et al. examined the virulence of S. aureus
possessing mutations in either sirA, hts, sbn, sfa, sst, or
combinations thereof [60]. Mutation of the loci encoding
staphyloferrin A or staphyloferrin B alone does not lead to
a statistically significant reduction in colony recovery from
the organs of intravenously infected mice. This result is in
contrast to previously published data in which mutation of
sbnE significantly decreased colony recovery in a murine
kidney abscess model [74]. Inactivation of either the
catecholamine transporter (Sst) alone, both siderophore
operons (sfa and sbn), or both siderophore transporters
(Hts and Sir) yields a reduction in colony recovery from the
hearts of systemically infected mice. Additionally, com-
bined inactivation of sfa, sbn, and sst results in reduced
colony recovery from the heart and liver, whereas com-
bined inactivation of sst, sirA, and hts decreases colony
recovery in heart, liver, and kidney. Mutation of the gene
encoding FhuC, the ABC-type ATPase required for both
staphyloferrin A and B uptake, results in decreased murine
morbidity, but not colony recovery, in a kidney abscess
model [53]. Collectively, these results suggest that
siderophore-mediated iron acquisition is important for S.
aureus virulence.

As bacterial pathogens have evolved to use siderophores
to obtain host iron, so have vertebrate hosts evolved to
counteract these processes. Siderocalin, also known as
lipocalin-2 or neutrophil gelatinase-associated lipocalin, is
a mammalian protein capable of binding bacterial side-
rophores. Siderocalin binds enterobactin, a catecholate
siderophore produced by E. coli, resulting in bacteriostasis
in iron-limited conditions [75, 76]. In keeping with this,
siderocalin-deficient mice are more susceptible to E. coli
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infection [76, 77]. Subsequent studies revealed that side-
rocalin is also important for prevention of infection by
Klebsiella pneumoniae and Mycobacterium tuberculosis
[78–80]. Siderocalin production is induced by a number of
stimuli, including TLR4 binding [76], bacterial colonization
of the nasal mucosa [81], and ischemia [82]. Thus,
production of siderocalin is a host strategy to sequester
iron that has been earmarked for bacterial utilization. Not to
be outdone, some bacterial pathogens have evolved
mechanisms to circumvent siderocalin. B. anthracis produ-
ces two siderophores, bacillibactin and petrobactin [83].
Bacillibactin is readily bound by siderocalin, but petrobac-
tin has a unique chelating subunit that precludes siderocalin
binding [84]. Salmonella Typhimurium utilizes a similar
strategy to evade siderocalin by producing a glycosylated
derivative of enterobactin known as salmochelin [85].
These “stealth siderophores” are yet another example of
bacterial subversion of innate immunity. Stealth side-
rophores have not been described in S. aureus.

S. aureus preferentially acquires iron from heme
and hemoproteins

Although siderophore-mediated iron acquisition promotes
staphylococcal growth in iron-limited conditions in vitro
and in vivo, the preferred iron source for S. aureus is heme.
When S. aureus is grown in the presence of isotopically
labeled iron complexed to either transferrin or heme, a
fourfold to fivefold enrichment in the ratio of heme-iron to
transferrin-iron is noted in bacteria as compared with the
media [54]. Thus, S. aureus preferentially imports heme-
iron over transferrin-iron.

In vertebrates, heme is the primary reservoir of iron,
representing up to 80% of total body iron. This is in
contrast to transferrin-bound iron, which represents less
than 1% of total body iron [38]. Heme consists of a
tetrapyrrole ring encircling an iron atom, and is produced in
the bone marrow and liver. Heme is used as a prosthetic
group for many enzymes, and these hemoproteins have
diverse roles, including the transfer of electrons and redox
reactions. The most abundant hemoprotein in vertebrates is
hemoglobin, which consists of four heme moieties bound to
polypeptide chains. One human erythrocyte contains
approximately 280 million molecules of the hemoglobin
tetramer [86]. Other hemoproteins include myoglobin,
peroxidases, and cytochromes. Heme biosynthesis and
catabolism must be carefully regulated, given the potential
toxicity of heme and hemoprotein derivatives [87]. Hemo-
globin liberated from erythrocytes is bound by the high-
affinity binding protein haptoglobin and subsequently
processed by the reticuloendothelial system [88]. Addition-
ally, free heme released into plasma can be sequestered by
albumin, hemopexin, and alpha-1-microglobulin [86, 88,

89]. These mechanisms protect the host from heme toxicity,
while also limiting the availability of heme and hemopro-
teins to invading pathogens.

Given that heme is the major reservoir of iron in
vertebrate hosts, it is not surprising that both Gram-
positive and Gram-negative bacterial pathogens have
evolved mechanisms to liberate iron from host heme [90].
Several classes of bacterial heme acquisition systems have
been described [90, 91]. In S. aureus, heme acquisition is
mediated by the iron-regulated surface determinant (Isd)
system. The isd locus was initially identified during an
examination of the S. aureus genome for homologues of the
transpeptidase Sortase A, which functions to anchor
proteins to the cell wall [92–94]. The only Sortase A
homologue identified in S. aureus, Sortase B (srtB), is
contained within an iron-regulated operon that also contains
genes whose products were homologous to heme-binding
proteins. Upstream of this operon are two additional genes
divergently transcribed from independent promoters. Con-
sensus Fur boxes are located upstream of each operon.
Since the initial description of the isd locus, much has been
learned regarding heme uptake by the Isd system. The Isd
system is encoded by ten genes in five operons: isdA, isdB,
isdCDEFsrtBisdG, isdH, and orfXisdI [95]. IsdB and IsdH
are cell surface receptors for hemoglobin and hemoglobin-
haptoglobin, respectively [96, 97]. Heme is passed from
IsdB or IsdH to IsdA, also located at the cell surface [98,
99]. IsdA transfers heme to IsdC, which mediates transfer
across the cell wall [99, 100]. Alternatively, IsdH and IsdB
may pass heme directly to IsdC or IsdE [98]. IsdDEF is an
ABC transporter in which IsdE is a heme-binding lipopro-
tein, IsdD is an ATPase, and IsdF is a permease. Heme is
passed from IsdC to IsdE and subsequently transported into
the cytoplasm (Fig. 1) [98]. Interestingly, mutation of
isdDEF decreases, but does not abolish, the ability of S.
aureus to grow on heme, suggesting that there are IsdDEF-
independent mechanisms of heme import [101]. Mutations
in the htsABC locus also reduce heme acquisition by S.
aureus, but the crystal structure of HtsA strongly suggests
staphyloferrin A is the ligand [54]. It is therefore possible
that HtsB and HtsC function with an as yet-unidentified
lipoprotein receptor to transport heme across the cell
membrane.

Once heme enters the staphylococcal cytoplasm, the
tetrapyrrole ring is degraded to liberate free iron by two
heme-oxygenases, IsdG and IsdI (Fig. 1) [102, 103]. Unlike
human heme-oxygenases which degrade heme to iron and
the chromophore biliverdin, IsdG and IsdI degrade heme to
iron and a novel chromophore, staphylobilin [104]. Dele-
tion of either isdG or isdI results in a decreased ability to
utilize heme, indicating that these enzymes are not
functionally redundant [105]. Overexpression of either
IsdG or IsdI can complement an isdGI mutant, suggesting
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that the relative amount of each heme-oxygenase may affect
heme utilization [105]. Both isdG and isdI are transcrip-
tionally regulated by iron, such that maximal expression
occurs in iron-limited conditions. IsdG is also post-
transcriptionally regulated by heme, as protein stability is
enhanced in the presence of heme [105]. These findings
suggested a model whereby S. aureus can fine-tune its
capacity for heme utilization based on the environmental
conditions encountered.

Like eukaryotes, bacteria must carefully regulate intra-
cellular heme concentrations to ensure that nutrient iron
needs are met while preventing toxicity. In S. aureus, this is
accomplished by mechanisms to both sense and alleviate
heme toxicity. Staphylococci exposed to subinhibitory
concentrations of heme can subsequently resist heme
toxicity at lethal concentrations, suggesting an adaptive
response to exogenous heme [106]. Proteomic analyses
revealed that 21 S. aureus proteins are regulated by heme
independently of iron [48]. Included among these proteins
is the ATP-binding component of a putative ABC trans-
porter that increases 45-fold in the presence of heme. The
gene encoding this protein is adjacent to a predicted
permease component of the transport system. Inactivation
of these genes, designated heme-regulated transporter genes
hrtA and hrtB, severely impairs the ability of S. aureus to
grow on high concentrations of heme. These and subse-
quent experiments suggest that HrtAB is a transport system
dedicated to the excretion of excess heme or a toxic heme
metabolite [106, 107]. The strong heme-dependent regula-
tion of hrtAB suggests that the expression of these genes
is under the control of a dedicated transcriptional
regulator. Consistent with this, two genes predicted to
encode a two-component system are located immediate-
ly adjacent to the hrtAB locus on the staphylococcal
chromosome. Bacterial two-component systems consist of
a membrane-bound kinase that can transduce environmen-
tal stimuli to the second component, a response regulator
which affects transcriptional changes. The two-component
system upstream of hrtAB, subsequently named the heme
sensor system (HssR and HssS), is required for the
adaptive response to heme toxicity and activates transcrip-
tion of hrtAB [106]. Thus, S. aureus senses heme through
HssRS, increasing transcription of hrtAB, which leads to
alleviation of heme toxicity. However, the exact ligand of
HssS and the identity of the substrate exported by HrtAB
have yet to be identified.

Heme acquisition is essential to the virulence of S. aureus

The ability of staphylococci to acquire heme and hemopro-
teins in vivo is facilitated by lysis of host erythrocytes by
pore-forming toxins such as alpha-hemolysin (encoded by
hla) (Fig. 1). Inactivation of alpha-hemolysin limits the

virulence of S. aureus [108–114]. Moreover, passive
immunization with anti-Hla antibodies or active immuniza-
tion with nontoxigenic Hla is protective in animal models
of staphylococcal infection [108, 115]. After liberation of
hemoproteins from host cells, the ability of S. aureus to
utilize heme via the Isd system is critical for virulence.
Several lines of evidence indicate that disruption of the Isd
heme acquisition system at each step (surface receptor
binding, transport across the cell wall, transport across the
cell membrane, or release of iron from heme) leads to
decreased virulence in animal models of staphylococcal
infection. Mutation of isdA, isdB, and isdC, but not isdH,
decreases bacterial recovery and organ abscesses in murine
models of systemic infection [96, 116, 117]. Additional
support for the role of IsdB in staphylococcal pathogenesis
comes from experiments using mice expressing human
hemoglobin. Compared to wild-type mice, mice expressing
human hemoglobin are more susceptible to S. aureus
infection, as evidenced by increased colony recovery from
infected organs. IsdB binds human hemoglobin more
readily than murine hemoglobin in vitro, and deletion of
isdB abolishes the enhanced virulence of staphylococci
infecting mice with human hemoglobin [118]. Collectively,
these results suggest an important role for surface proteins
of the Isd system in staphylococcal virulence, and have led
to additional experiments investigating the vaccine poten-
tial of these proteins. IsdA and IsdB were identified as
vaccine candidates using “reverse vaccinology” [119], and
subsequent studies confirmed that immunization with these
proteins is protective in murine models of infection [117,
120–123]. Additional human studies are needed to inves-
tigate the vaccine potential of Isd proteins. A phase one
human clinical trial of the IsdB vaccine V710 is complete
[124], and further trials are ongoing.

In addition to its role as a heme-binding protein,
there is evidence that IsdA also contributes to staphy-
lococcal pathogenesis through roles in both adhesion to
host tissues and resistance to innate immune responses.
IsdA binds both fibrinogen and fibronectin in vitro,
indicating a potential role as an iron-regulated adhesin
[125]. Consistent with this hypothesis, IsdA facilitates
binding to human desquamated epithelial cells, and
promotes nasal colonization in rats [122, 126, 127]. IsdA
also plays a role in resistance to the host immune
response. By decreasing staphylococcal cell hydrophobic-
ity, IsdA increases the resistance of S. aureus to
antimicrobial compounds produced by human sebum, as
well as other antimicrobial peptides [128]. This is
reflected in decreased survival of S. aureus isdA mutants
on live human skin. Mutation of isdA also leads to
increased susceptibility to hydrogen peroxide and to
killing by human neutrophils [129]. Finally, IsdA protects
against the bactericidal activity of lactoferrin [130]. Thus,
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the contribution of IsdA to staphylococcal virulence may
extend beyond its role in heme acquisition.

Heme transport across the cell membrane is also required
for staphylococcal virulence. Inactivation of either htsB or
htsC significantly reduces heme acquisition and decreases
bacterial recovery and abscess formation in mice infected
systemically with S. aureus [54]. Similarly, concurrent
inactivation of htsA and isdE leads to a statistically
significant decrease in bacterial burden in the lung, heart
and kidneys of systemically infected mice [131]. Upon
entering the cytoplasm, heme is degraded by IsdG or IsdI to
liberate iron, a process that also contributes to staphylo-
coccal virulence. Mutation of either isdI or isdG results in
decreased colony recovery from the hearts of systemically
infected mice. In contrast, mutation of isdG, but not isdI,
results in decreased recovery from infected kidneys [105].
These findings raise the possibility that IsdG and IsdI have
distinct roles depending on the host environments encoun-
tered in vivo. The presence of two differentially regulated
heme degrading enzymes could allow S. aureus to cope
with changing iron and heme concentrations as infection
progresses. During the early stages of infection, staphylo-
cocci may encounter iron-limiting conditions while not yet
importing substantial amounts of heme. Under these
conditions, IsdG is destabilized by the lack of intracellular
heme, leaving IsdI to degrade the low levels of imported
heme. After seeding and degradation of host tissues,
increased heme acquisition and the concomitant increase
in intracellular heme levels would stabilize IsdG, increasing
the overall capacity for heme degradation.

A surprising result was obtained when assessing the
virulence of S. aureus strains inactivated for the heme
sensing system and heme-regulated transporter. Rather than
compromising virulence, S. aureus strains possessing
mutations in hrtA or hssR grow to an average of two to
three logs higher bacterial density in the livers of infected
mice as compared with wild-type staphylococci [106]. This
hepatic hypervirulence is the result of inhibition of a liver-
specific immune response. Further experiments revealed
that inactivation of HrtA leads to membrane damage which
triggers increased expression and secretion of immunomod-
ulatory factors [132]. The mechanism by which mutation of
hssR leads to immunomodulation remains to be character-
ized, but disruption of heme sensing and detoxification
systems clearly impact staphylococcal pathogenesis.

The role of manganese in staphylococcal infection

The most well characterized model of nutritional immunity
during bacterial infection is sequestration of iron. However,
sequestration of manganese is also an important facet of the
innate immune response to staphylococcal infection [34].

Manganese is an essential nutrient for both eukaryotic and
prokaryotic organisms. In humans, manganese participates
in diverse cellular functions including detoxification of free
radicals, metabolism, bone growth, and support of hemo-
stasis [133]. Like iron, manganese must be carefully
regulated to prevent cellular damage. Manganese intoxica-
tion occurs predominantly as a result of occupational
exposure, particularly in the welding, mining, and smelting
industries. Excessive manganese is neurotoxic, leading to
clinical manifestations ranging from mild dystonia to a
constellation of extra-pyramidal symptoms resembling
Parkinson’s disease [134]. The clinical manifestations of
manganese deficiency are less clear. In a study of seven
men fed manganese-deficient diets, a fleeting dermatitis
developed in five subjects [135]. However, naturally
occurring manganese deficiency has not been described in
humans [133].

Bacteria, like humans, must acquire manganese and
regulate its intracellular concentration. Manganese-dependent
bacterial enzymes are necessary for myriad processes, includ-
ing carbohydrate and amino acid metabolism, signal transduc-
tion, stringent response, and defense against oxidative stress
[136]. Thus, the success of bacterial pathogens in human
infection depends on the ability to obtain this critical nutrient
from host tissues. Likewise, prevention or resolution of
infection is aided by host mechanisms that sequester
manganese from invading pathogens.

Bacterial acquisition of manganese is facilitated
by high-affinity transporters

In 1995, a manganese transporter was characterized in the
cyanobacterium Synechocystis 6803 [137]. The genes
necessary for production of this transporter, named mntABC
for manganese transporter, encode products with sequence
similarity to the ABC superfamily of bacterial permeases.
Further experiments confirmed MntABC as an ABC-type
transporter consisting of a cytoplasmic ATP-binding protein
(MntA), a transmembrane protein (MntB), and solute-
binding protein (MntC). Homologues of MntABC have
since been found to facilitate manganese uptake in a
number of Gram-positive and Gram-negative pathogens.
A second family of bacterial manganese transporters was
identified during characterization of the Bacillus subtilis
protein MntR, a manganese-modulated transcriptional
regulator [138]. Que and Helmann discovered transposon-
insertion mutants that alleviated the increased manganese
susceptibility of an mntR mutant. The most commonly
recovered insertions were in a gene (mntH) predicted to
encode a proton-coupled metal ion transporter of the natural
resistance-associated macrophage protein (Nramp) family.
In a separate report, additional MntH transporters were
characterized in E. coli, Salmonella Typhimurium, Bur-
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kholderia cepacia, and P. aeruginosa [139]. Unlike
mammalian Nramp proteins which mediate transport of a
number of cations, bacterial Nramp transporters are highly
selective for manganese [140].

Compared to the knowledge of bacterial manganese
import systems, considerably less is known about how
bacteria respond to toxic intracellular levels of manganese.
In 1973, Fisher et al. utilized radiolabeled manganese to
demonstrate both uptake and efflux of manganese by B.
subtilis [141]. Almost four decades later, the first bacterial
manganese efflux system was characterized. The Strepto-
coccus pneumoniae gene mntE encodes an efflux system of
the cation diffusion facilitator (CDF) family [142]. Nearly
all bacterial genomes encode CDF family members, most of
which are involved in efflux of zinc or other heavy metal
cations [143]. In contrast, the MntE exporter in S. pneumo-
niae is specific for manganese. Whether other bacterial
pathogens express dedicated manganese efflux systems is
unknown.

The S. aureus genome encodes MntABC-type (mntABC)
and Nramp-type (mntH) manganese transporters, both of
which have been functionally characterized. Mutation of
mntA in S. aureus results in a reduced growth rate in metal-
depleted minimal media, a phenotype that is reversible
upon addition of manganese. In contrast, mutation of mntH
does not lead to an appreciable growth defect in metal-
depleted media, suggesting that MntABC may be the
dominant manganese transporter in S. aureus under in vitro
conditions [144]. The transcriptional regulator MntR affects
expression of both mntABC and mntH. In manganese-
replete conditions, transcription of mntABC is repressed by
MntR. Deletion of mntR leads to constitutive transcription
of mntABC irrespective of manganese levels. In contrast,
mntH transcription is reduced in the absence of MntR,
suggesting that MntR may be a bifunctional regulator in S.
aureus, as previously described for B. subtilis [138]. In
addition to regulation by MntR, mntABC is negatively
regulated by PerR, a manganese and iron-dependent Fur
homologue that controls responses to oxidative stress [144,
145]. It is unknown if the regulation of manganese
homeostasis in S. aureus involves an efflux system. The
S. aureus genome encodes CDF family proteins, but those
that have been characterized are predicted to have roles in
zinc efflux [146, 147].

Aerobically growing microorganisms are at risk for
toxicity from reactive oxygen species, and staphylococcal
manganese acquisition is crucial for defense against
oxidative stress. S. aureus produces two superoxide
dismutases, SodA and SodM, which detoxify superoxide
anion to hydrogen peroxide [148, 149]. Hydrogen peroxide
can be further reduced to water and oxygen by the enzyme
catalase. The activities of SodA and SodM are dependent
on manganese [148, 149]. Manganese limitation therefore

renders S. aureus more susceptible to oxidative stress
(Fig. 2) [150]. Additionally, S. aureus employs superoxide
dismutase-independent mechanisms to detoxify superoxide,
a process that is also dependent on manganese [144].

Manganese acquisition contributes to the virulence
of bacterial pathogens

Disruption of manganese acquisition reduces the virulence of
a number of bacterial pathogens. The Nramp-type manganese
transporter MntH is a critical virulence determinant for
Brucella abortus [151]. Similarly, acquisition of manganese
is required for intracellular survival and virulence of
Salmonella enterica [152]. Disruption of MntABC in
Neisseria gonorrhoeae reduces intracellular survival and
biofilm formation [153]. Several other pathogens also require
manganese uptake for infection, including Enterococcus
faecalis, S. pneumoniae, and Yersinia pestis [154–156].
Inactivation of the manganese efflux protein MntE in S.
pneumoniae reduces nasal colonization and bloodstream
invasion in mice, despite an increased resistance to reactive
oxygen species [142]. This suggests that the ability to
regulate intracellular concentrations of manganese may also
be important for bacterial pathogenesis.

In S. aureus, mutation of mntA, mntH, or mntR in the
laboratory strain 8325-4 does not lead to a significant
reduction in bacterial recovery in a murine skin abscess
model. In contrast, concurrent inactivation of mntA and
mntH significantly decreases bacterial recovery in this
model. Disruption of mntA, mntH, mntR, or both mntA
and mntH also significantly reduces intracellular survival in
human endothelial cells [144]. Additional evidence for the
role of manganese acquisition in staphylococcal virulence
came from studies of host factors that sequester manganese
during infection.

Vertebrate hosts sequester manganese as an innate immune
response to bacterial infection

Sequestration of manganese is an important facet of the
innate immune response to bacterial infection. Two strate-
gies utilized by vertebrate hosts to limit manganese
availability to invading pathogens have been described.
First, the availability of manganese to intracellular patho-
gens is limited by the cation transporter Nramp1. Nramp1 is
an integral membrane protein expressed by professional
phagocytes. Upon phagocytosis, Nramp1 is recruited to the
phagosome, where it remains during the maturation of
phagosomes into phagolysosomes [157]. Experiments using
a fluorescent probe that is readily incorporated into the
phagosome demonstrated that Nramp1 functions as a pH-
dependent transporter capable of manganese efflux from the
phagolysosome [158]. In this way, the availability of
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manganese is limiting for intracellular pathogens. Addi-
tional studies suggest that Nramp1 may also transport other
cations such as iron and zinc [159, 160], and therefore may

participate in limitation of multiple metals to intracellular
pathogens. Consistent with this, disruption of Nramp1 in
mice leads to increased susceptibility to the intracellular
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pathogens Salmonella Typhimurium, Mycobacterium bovis,
and Leishmania donovani [161]. The importance of
Nramp1 during human infection is suggested by studies
linking certain polymorphisms in Nramp1 to an enhanced
susceptibility to both M. tuberculosis and nontuberculous
mycobacteria [162–164]. The precise mechanism by which
Nramp1 polymorphisms enhance susceptibility to myco-
bacteria is unclear.

A second mechanism utilized by vertebrates to limit the
availability of manganese to invading pathogens was
discovered during a search for host factors that limit
bacterial growth in abscesses [34]. One of the most
abundant host proteins identified in tissue abscesses of
mice infected with S. aureus was S100A8, a component of
the heterodimeric protein calprotectin (also known as
SA1008/SA1009, calgranulin A/B, or myeloid-related
proteins 8/14). Calprotectin, which accounts for ~40% of
the cytosolic protein pool of neutrophils [165–167], was
originally identified based on its ability to inhibit the
growth of a variety of fungal and bacterial pathogens in
vitro [168, 169]. Calprotectin is also a component of
neutrophil extracellular traps, fiber-like structures consist-
ing of chromatin and neutrophil granules that bind to and
facilitate killing of microorganisms [170, 171]. A number
of immunomodulatory functions have been ascribed to
calprotectin, including chemotactic activity for neutrophils
and macrophages [166, 167], regulation of inflammation in
response to vascular injury [172], amplification of the
immune response via TLR4 binding [173, 174], induction
of cell death [175, 176], and regulation of myeloid-derived
suppressor cells [177, 178]. Previous in vitro studies
suggested that the antimicrobial activity of calprotectin
was related to its ability to chelate zinc, limiting the
availability to pathogens [179–182]. Subsequent in vivo
analyses revealed that calprotectin also limits bacterial
growth in abscesses via chelation of manganese. Visceral
abscesses in mice infected with S. aureus are essentially
devoid of manganese and zinc. In contrast, abscesses in
mice lacking calprotectin contain manganese levels equiv-
alent to those of surrounding tissue, as well as significantly
increased bacterial burdens compared with wild-type mice.
The concentration of zinc does not differ significantly
between S. aureus abscesses in wild-type and calprotectin-
deficient mice. Collectively, these results demonstrated that
manganese limitation is an important innate immune
response to staphylococci in tissue abscesses. S. aureus
strains possessing mutations in mntA or mntB are more
sensitive to the antibacterial effects of calprotectin, further
supporting the importance of manganese acquisition to
staphylococcal virulence [34].

A partial mechanistic explanation of the in vivo
antibacterial effects of calprotectin has been described
[150]. Treatment of S. aureus with calprotectin results in

enhanced susceptibility to oxidative stress through inhibi-
tion of SodA and SodM. This renders calprotectin-treated S.
aureus more susceptible to killing by neutrophils, which
exert antimicrobial activity partly through the generation of
reactive oxygen species (Fig. 2). Mutation of staphylococ-
cal sodA and sodM results in decreased bacterial recovery
from infected organs in a murine model of systemic
infection. However, in calprotectin-deficient mice there is
no difference in bacterial recovery between wild-type and
sodAsodM-inactivated S. aureus. Therefore, calprotectin-
mediated inhibition of bacterial superoxide defenses is an
important immune response to staphylococcal abscesses.

At least one bacterial species is capable of binding and
inactivating calprotectin. Finegoldia magna is a Gram-
positive anaerobic bacterium that is typically a human
commensal, but is also capable of causing opportunistic
infections [183]. A subset of clinical isolates of F. magna
produce Protein L, which has domains that bind both
immunoglobulins and calprotectin. F. magna strains that
express Protein L are protected from calprotectin-mediated
killing [184]. This is yet another example of bacterial
circumvention of host immune responses aimed at limita-
tion of nutrients. Whether or not S. aureus is capable of
disrupting host-mediated manganese limitation is unknown.
S. aureus produces an arsenal of factors that subvert
neutrophil function, including pore-forming toxins, phenol
soluble modulins, proteases, and molecules that inhibit
chemotaxis [185]. It is possible that destruction of
neutrophils and their antimicrobial contents allows S.
aureus to avoid calprotectin-mediated manganese limita-
tion. However, staphylococcal toxins such as the Panton-
Valentine leukocidin induce the formation of neutrophil
extracellular traps, which are rich in calprotectin and thus
could potentiate local manganese limitation [171, 186].
Further studies are necessary to determine if staphylococcal
destruction of neutrophils is an effective subversion
mechanism against calprotectin-mediated metal chelation.
Nevertheless, the fact that S. aureus can proliferate readily
in abscesses suggests the presence of systems dedicated to
overcoming calprotectin-mediated manganese limitation.

The contribution of zinc to the host-pathogen
interaction

Zinc is an essential nutrient for humans. Zinc deficiency
occurs in several settings, including poor nutrition, mal-
absoprtion, alcohol abuse, liver disease, and genetic
disorders. The manifestations of zinc deficiency are
numerous, and include a profound alteration of immune
cell function. In an experimental human model, mild zinc
deficiency resulted in a decreased CD4+/CD8+ T cell ratio,
decreased IL-2 activity, and imbalance of TH1 and TH2
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responses [187, 188]. Additional studies have demonstrated
deleterious effects of zinc deficiency on all components of
the human immune system, including neutrophils, natural
killer cells, T and B lymphocytes, and monocytes [189].
Both human and animal studies have shown a correlation
between zinc deficiency and enhanced susceptibility to
infection. Zinc-deficient animals are more susceptible to a
variety of viral, bacterial, fungal, and parasitic pathogens
[190]. Conversely, human trials of zinc supplementation
demonstrate protection against infectious diseases. In
children, zinc supplementation reduces the duration and
severity of acute diarrhea, and reduces the incidence of
lower respiratory tract infection [191–193]. Zinc supple-
mentation in patients with sickle cell disease reduces the
incidence of bacterial infections, including S. aureus
pneumonia. In elderly adults, zinc supplementation signif-
icantly reduces the incidence of infection [194]. Taken
together, these findings indicate a critical role for zinc in
protection against infectious diseases.

Bacterial mechanisms of zinc homeostasis

Zinc is also an essential nutrient for bacterial pathogens.
Zinc-binding proteins, which constitute an average of 5%
of bacterial proteomes [195], participate in diverse process-
es such as regulation of virulence factors, metabolism, and
inactivation of antibiotics. Zinc concentrations must be
carefully regulated, as excess zinc can inappropriately bind
to thiol groups of bacterial proteins and interfere with their
function. In bacteria, zinc homeostasis is achieved through
coordinated regulation of import and export. Bacteria
express both high- and low-affinity zinc importers.
ZnuABC is a high-affinity ABC-type zinc transporter best
characterized in E. coli, consisting of a periplasmic binding
protein (ZnuA), membrane permease (ZnuB), and ATPase
(ZnuC) [196]. Zinc import systems homologous to Znu
have been identified in several other bacterial pathogens
[197]. The ZnuABC system is regulated by Zur, a metallo-
regulatory protein of the Fur family, such that zinc import is
repressed in zinc-replete conditions [196]. Zur has two
regulatory metal binding sites, allowing for graded expres-
sion of zinc-responsive genes in accordance with zinc
availability [198]. A low-affinity zinc transporter, ZupT,
was identified in E. coli based on similarity to eukaryotic
zinc transporters of the ZIP family [199]. However, the
precise mechanism of zinc import by ZupT is unknown, as
is its distribution among other bacterial genomes. Zinc
export is essential for maintenance of homeostasis, and is
achieved primarily through P-type ATPases which couple
ATP hydrolysis to transport of zinc and other metals across
the cell membrane. ZntA in E. coli mediates efflux of both
zinc and cadmium [200]. Another zinc exporter (CzcCBA)
was identified in Ralstonia metallidurans, and also medi-

ates efflux of cobalt and cadmium [201]. Czc-type
exporters have subsequently been postulated to mediate
efflux of zinc in other bacteria, including P. aeruginosa and
S. aureus [146, 202].

Efforts to identify the mechanisms of zinc import,
export, and regulation in S. aureus have had mixed
success. Both plasmid and chromosomally encoded zinc
efflux proteins have been functionally characterized in S.
aureus. Resistance to both zinc and cobalt is conferred
by the chromosomally encoded czrAB operon, which
encodes a metal-regulated transcriptional repressor
(CzrA, also known as ZntR) and a CDF antiporter
(CzrB, also known as ZntA) [146, 147, 203]. CadA is
a P-type ATPase encoded by the S. aureus plasmid pI258
that mediates resistant to cadmium, lead, and zinc [204].
In contrast to these functionally characterized exporters,
the proteins mediating zinc uptake in S. aureus have yet
to be identified. Two genes upstream of a Zur homo-
logue, named mreA and mreB for metal-responsive
elements, were predicted to encode the ATP-binding
and membrane permease components of an ABC
transporter. It was postulated that mreA and mreB might
encode elements of a zinc transporter based on sequence
homology. However, there was no appreciable change in
susceptibility to zinc limitation relative to wild type
when mreA and mreB were inactivated [205]. Additional
studies are needed to clarify staphylococcal mechanisms
of zinc homeostasis.

Dynamic changes in zinc distribution occur in response
to infection and inflammation

Imaging mass spectrometry revealed that staphylococcal
murine abscesses are nearly devoid of zinc. Previous
reports suggested that the antimicrobial function of calpro-
tectin is mediated through zinc chelation, implying that
calprotectin may be a mediator of zinc sequestration in
staphylococcal abscesses. However, zinc levels within the
staphylococcal abscess are unaffected by genetic defects in
calprotectin production, raising the possibility that addi-
tional host factors contribute to zinc limitation in abscesses
[34]. The acute-phase response to infection is known to
alter zinc distribution in vertebrates. Administration of
human IL-1 to rats leads to decreased serum zinc concen-
trations with concomitant redistribution to various tissues
such as the liver, bone marrow, and thymus [206].
Similarly, IL-6 administration to mice leads to hypozince-
mia and increased hepatic zinc concentration through
upregulation of the zinc transporter Zip14 in hepatocytes
[207, 208]. Limitation of zinc availability may be beneficial
to controlling S. aureus infection, as several processes that
contribute to staphylococcal virulence are zinc dependent,
including biofilm formation and superantigen activity [209,
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210]. However, the role of zinc acquisition in staphylococ-
cal pathogenesis has yet to be determined in vivo.

Exploiting transition metals to battle bacterial
pathogens: the example of copper

Copper is an important cofactor for a number of bacterial
enzymes, but like other transition metals, it is toxic if
concentrations are not carefully regulated. The precise
mechanism by which copper homeostasis is achieved in S.
aureus has not been fully elucidated. Exposure to copper
induces expression of copA and copZ, which encode a P-
type ATPase (CopA) and copper metalochaperone (CopZ),
respectively. In S. aureus, CopA is involved in copper
efflux, as evidenced by increased intracellular copper
concentrations in a copA mutant [211]. Expression of copA
is regulated by the copper-sensitive operon repressor
(CsoR) [212, 213]. Copper binding by CsoR results in a
conformational change, causing release of operator DNA
and de-repression of the copper-sensitive operon. CopZ has
not been functionally characterized in S. aureus. In B.
subtilis and L. monocytogenes, CopZ interacts and
exchanges copper with CopA, and is therefore predicted
to protect bacteria from the inappropriate binding of copper
to cytoplasmic proteins [214, 215]. Additional studies are
needed to characterize copper homeostasis in S. aureus, and
to assess the role of copper acquisition in virulence.

Disruption of copper homeostasis reduces the virulence
of select bacterial pathogens. Deletion of copA in S.
pneumoniae causes reduced virulence in a mouse pneumo-
nia model [216]. Similarly, inactivation of a putative copper
exporter (MctB) in M. tuberculosis significantly reduces
bacterial burden in the lungs of infected guinea pigs [217].
Finally, mutation of the P. aeruginosa gene cueA, an
ATPase involved in protection from copper toxicity, results
in a 50-fold decrease in virulence in a lethal dose murine
model [218]. Collectively, these results reveal that diverse
bacterial pathogens encounter potentially toxic levels of
copper in vivo, and invite the question of whether
modulation of copper levels in host tissues might be an
innate immune response to infection. The importance of
copper to the vertebrate immune response is demonstrated
by copper-deficient mice, which exhibit an impaired
humoral immune response and enhanced susceptibility to
a variety of bacterial pathogens [219, 220]. In contrast to
iron, manganese, and zinc, the levels of copper increase in
response to infection and inflammation [221, 222]. This
effect is partially mediated by proinflammatory cytokines,
which stimulate hepatic synthesis of ceruloplasmin, the
major plasma copper-binding protein [223]. Inflammatory
cytokines also mediate a copper-dependent antibacterial
response in macrophages. In response to interferon-gamma,

macrophages increase the expression of two copper trans-
porters, CTR1 and ATP7A. ATP7A is trafficked to the
phagosome where it imports bactericidal levels of copper.
Conversely, RNAi-mediated depletion of ATP7A leads to
increased bacterial survival in the phagosome [220].
Therefore, in addition to nutritional immunity mediated by
metal ion sequestration, vertebrate hosts can increase metal
ion concentration in certain environments to kill bacterial
pathogens.

The toxicity of transition metals has been utilized in
the development of new antimicrobials for multi drug-
resistant S. aureus. For example, copper-coated surfaces
exhibit rapid killing of MRSA as compared with brass and
stainless steel [224]. Similarly, orthopedic implants made
of a titanium-copper alloy are antibacterial in a rabbit
model of staphylococcal implant-associated infection
[225]. Copper-containing biocides have shown promise
as hand sanitization gels and environmental disinfectants
[226, 227]. These preliminary studies reveal that copper-
containing compounds are effectively antibacterial at
concentrations that are not cytotoxic to human or animal
cells. How exposure to toxic levels of copper kills S.
aureus is unknown. In response to copper exposure, S.
aureus initiates a transcriptional program characterized by
induction of oxidative stress and misfolded protein
responses, suggesting that copper toxicity results in
increased oxidative stress and protein damage [228]. Like
iron, copper can interact with hydrogen peroxide to
generate damaging reactive oxygen species. S. aureus
strains inactivated for the hydrogen peroxide-reducing
enzymes KatA and AhpC are more sensitive to copper
toxicity, further supporting oxidative stress as a mecha-
nism for copper-mediated staphylococcal killing.

Imaging mass spectrometry, a powerful tool
for the study of metal ion distribution during
bacterial infection

The discovery of calprotectin’s role in manganese
sequestration during staphylococcal infection was facil-
itated by imaging mass spectrometry (IMS). IMS uses
matrix-assisted laser desorption/ionization time of flight
to directly analyze a variety of molecules in tissue
sections. IMS has been used to analyze proteins,
peptides, lipids, drugs, and metabolites [229]. Whereas
sample preparation for conventional proteomic analyses
results in disruption of tissue architecture, IMS allows for
demonstration of sample distribution in intact tissues.
Furthermore, IMS can be combined with additional
imaging modalities such as magnetic resonance imaging
to provide a three-dimensional co-registration of proteo-
mic data with anatomy [230].
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IMS was instrumental in the identification of calprotectin
as an innate immune effector responding to staphylococcal
abscesses [34]. Examination of mice infected with S. aureus
by IMS revealed that calprotectin co-localized to abscessed
tissue in a neutrophil-dependent manner. Given previous
reports that calprotectin functions via metal chelation, laser-
ablation inductively coupled plasma mass spectrometry
(LA-ICPMS) was used to demonstrate metal ion distribu-
tion and concentrations in abscessed tissue. LA-ICPMS is a
highly sensitive form of mass spectroscopy capable of
quantifying elemental abundance within two dimensions.
As discussed above, LA-ICPMS analysis of infected
murine tissues allowed determination of manganese and
zinc distribution in staphylococcal abscesses, and con-
firmed that manganese is limited in abscessed tissue. LA-
ICPMS therefore allows for determination of both spatial
distribution of metal ions as well as their absolute
concentrations in a range of infected tissues. These
technologies will help to determine whether calprotectin-
mediated metal chelation is an immune response specific to
staphylococci in abscesses, or is a more general immune
strategy to limit bacterial growth in a diverse range of
host tissues.

In addition to the study of the host responses to
bacterial infection, IMS offers a number of exciting
microbiologic applications. IMS can be used to image
single microbial colonies, bacteria growing in biofilms,
interactions between two different microbes, and poly-
microbial communities [231]. The ability to characterize
microbial physiology in vivo, together with the capability
to assess host immune responses, provides an opportunity
for comprehensive study of bacterial infections. For
example, IMS analysis of experimental staphylococcal
infection could be utilized to reveal microbial colonization
factors facilitating adhesion, host proteins responding to
colonization and tissue damage, changes in elemental
distribution in response to infection, in vivo proteome
analysis of biofilms, distribution of antibiotics in infected
tissues, and bacterial proteomic changes in response to
antimicrobial therapy. This paradigm could be applied to a
number of different host tissues and pathogens. These
broad applications make IMS an exciting and powerful
tool for study of bacterial infection.

Concluding remarks

The success of S. aureus as a human pathogen is facilitated
by its ability to infect and survive within diverse host
tissues. The ability to acquire nutrients from the host,
including metal ions, is critical for staphylococcal infection.
Despite innate immune mechanisms that limit the avail-
ability of transition metals, S. aureus can proliferate in

vertebrate hosts through the expression of metal acquisition
systems that successfully overcome nutritional immunity.
Our understanding of the pathways that mediate iron
acquisition in S. aureus has increased considerably. During
infection, staphylococci sense low levels of iron in host
tissues and respond by initiating a transcriptional program
that includes expression of iron-acquisition systems. Iron
acquisition is critical to S. aureus virulence, and therefore is
an attractive target for the development of new antimicro-
bials and vaccines.

Emerging data suggest that host limitation of manganese
is also an essential component of the immune response to
staphylococcal infection. Calprotectin-mediated manganese
sequestration limits S. aureus growth in abscesses, in part
by disrupting manganese-dependent oxidative stress
defenses. The expression of high-affinity manganese trans-
porters allows S. aureus to overcome manganese seques-
tration and survive within the hostile environment of an
abscess. Additional studies suggest that infection-induced
redistribution of other metal ions such as copper and zinc
also contribute to resistance to microbial infection. Unlike
iron, manganese, and zinc, host copper concentrations
increase in response to infection, suggesting that the human
immune system may exploit the toxicity of copper as an
innate immune mechanism against bacterial pathogens.

There are several questions yet to be answered regarding
staphylococcal metal ion acquisition and the host mecha-
nisms that limit metal availability. Thus far, the contribution
of metal acquisition systems to staphylococcal virulence
has been assessed primarily in defined organ abscesses.
Although skin and soft tissue abscesses are common
clinical manifestations of staphylococcal disease, infection
of other tissues such as bone, lung, or heart may not be
accompanied by formation of defined abscesses. Further-
more, the availability of essential metal nutrients may differ
among host tissues, raising the possibility that the contri-
bution of metal acquisition to staphylococcal pathogenesis
may vary according to the route and primary focus of
infection. For example, concomitant inactivation of both
isdB and isdH leads to a significant reduction in bacterial
recovery from the lungs, heart, and kidneys of mice
infected intravenously with S. aureus. In contrast, when
mice were infected intranasally with S. aureus isdBH
mutants, there is no significant difference in bacterial
recovery from the lungs in comparison to wild type [131].
Additional experiments are therefore needed to establish the
importance of staphylococcal metal acquisition, and con-
versely host-mediated metal sequestration, for infection of
diverse host tissues.

The kinetics of host-mediated metal sequestration during
staphylococcal infection are unknown. LA-ICPMS studies
reveal that mature staphylococcal abscesses are essentially
devoid of manganese and zinc. However, the metal
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concentrations encountered by invading staphylococci prior
to abscess formation have not been determined. An
understanding of the role of staphylococcal metal acquisi-
tion during earlier phases of infection is valuable, as there
may be opportunities for therapeutic intervention prior to
dissemination and formation of destructive tissue lesions.
Further experiments are also necessary to clarify the
mechanisms of metal ion homeostasis in S. aureus. In
contrast to our knowledge of S. aureus iron acquisition and
homeostasis, little is known about how staphylococci
procure and regulate the concentration of other transition
metals such as copper and zinc. The availability of sensitive
imaging mass spectrometry methods will facilitate further
study of the struggle for metals between host and
bacterium. Determination of additional mechanisms by
which staphylococci overcome nutritional immunity may
generate new targets for antimicrobial design and vaccine
development.
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