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Abstract Staphylococcus aureus is a common human path-
ogen highly evolved as both a component of the commensal
flora and as a major cause of invasive infection. Severe
respiratory infection due to staphylococci has been increasing
due to the prevalence of more virulent USA300 CA-MRSA
strains in the general population. The ability of S. aureus to
adapt to the milieu of the respiratory tract has facilitated its
emergence as a respiratory pathogen. Its metabolic versatility,
the ability to scavenge iron, coordinate gene expression, and
the horizontal acquisition of useful genetic elements have all
contributed to its success as a component of the respiratory
flora, in hospitalized patients, as a complication of influenza
and in normal hosts. The expression of surface adhesins
facilitates its persistence in the airways. In addition, the highly
sophisticated interactions of the multiple S. aureus virulence
factors, particularly the α-hemolysin and protein A, with
diverse immune effectors in the lung such as ADAM10,
TNFR1, EGFR, immunoglobulin, and complement all con-
tribute to the pathogenesis of staphylococcal pneumonia.
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Introduction

Staphylococcus aureus is a ubiquitous pathogen associated
with a wide range of infections affecting the respiratory

tract that range from asymptomatic colonization to fulmi-
nant necrotizing pneumonia. Despite extensive epidemio-
logical studies that include whole-genome sequencing, it
remains unclear exactly which staphylococcal properties are
required for invasive infection versus status as a part of the
commensal flora. While in the past the analyses of S.
aureus virulence mechanisms have focused almost entirely
upon bacterial factors, it has become increasingly
apparent that the nature of the host immune response
that is evoked by these organisms is a significant
determinant in the ultimate outcome of the infection.
This has become especially apparent in the ongoing
epidemic of MRSA infection in the USA due to the
USA300 clone of S. aureus that has been associated with
over 18,000 deaths in 2005 [1]. These strains elicit an
intense pro-inflammatory response often associated with
high morbidity and mortality [2, 3].

The success of S. aureus in general as a respiratory
pathogen, and the USA300 strains specifically, may be
attributed to several factors: substantial metabolic capabil-
ities; genetic flexibility, both the ability to acquire and to
mutate specific genetic elements, and the unique ability to
exploit the immune responses that are evoked. In this
review, we will examine a few of the important metabolic
capabilities of these organisms that enable them to flourish
in the airways focusing specifically on the genes involved
in iron acquisition, which is a critical factor for a human
pathogen. We will review the data supporting the contribu-
tion of USA300-associated virulence factors in pathogene-
sis and discuss the relevance of murine models in
understanding the pathogenesis of staphylococcal pneumo-
nia in humans. As the interactions of staphylococci and the
immune system are likely to be the key factors in the
pathogenesis of pneumonia, the many S. aureus virulence
factors that interact directly with immune components (IgG,
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complement, T cell signaling) or activate specific immune
cascades (type I IFN signaling, inflammasome activation)
will be reviewed in some detail.

Epidemiology of staphylococcal pneumonia

Historically, staphylococcal pneumonia was an especially
virulent infection of young infants and the elderly,
particularly following influenza infection [4, 5]. A major
cause of concern has been the emergence of methicillin-
resistant strains of S. aureus (MRSA). Resistance to
methicillin is encoded by the mec element [6]. MRSA has
been typically associated with hospital-acquired strains that
infect individuals with preexisting conditions. However, the
early part of the twenty-first century saw the emergence of
community-acquired strains of MRSA (CA-MRSA) that
infect otherwise healthy individuals. The majority of cases
of MRSA are caused by a single clonal group USA300.
This was initially reported in athletes with close body
contact to one another or other close-quartered situations
such as in correctional facilities [7–11]. Pneumonias caused
by USA300 have been steadily increasing over the past
10 years [12–14]. The typical pathology associated with
fatal MRSA pneumonia consists of loss of alveolar
architecture, hemorrhage, and consolidation of the lung
parenchyma [16, 17] (Fig. 1). With the dissemination of the
USA300 clones across the USA in the last decade [1, 6],
MRSA pneumonia has become much more widespread [12,
13, 15], responsible for a significant number (13%) of the
over 18,500 deaths attributed to MRSA in 2005 [1]. Not only
did this group include the expected immunocompromised
patients, but a large number were also previously healthy
individuals in close contact with infected individuals [7–11].

Animal models of pneumonia have shown that USA300
S. aureus is more virulent than other strains of MRSA [3,
18, 19]. There is substantial debate as to which virulence
factors are responsible for the increased lethality, and it is

likely that the success of the pathogen is due to the co-
expression of several virulence determinants. At the
genomic level, USA300 contain mobile elements with
unique coding sequences, such as the arginine catabolic
mobile element that appears to have been transferred from
Staphylococcus epidermidis. This may confer a growth
advantage in systemic infection [20–22] and effect the
expression of other virulence factors [23]. A typical
feature of MRSA strains acquired in the community is a
large (20%) portion of the genome that contains unique
genomic elements from horizontal transfer. These genomic
elements include pathogenicity islands and exotoxins that
cause host damage as well as counteract the immune
response [24]. USA300 strains express the toxin Panton–
Valentine leukocidin (PVL) which, along with the
increased expression of core genome virulence factors
such α-hemolysin and phenol-soluble modulins [19],
appears to contribute to overall virulence. Perhaps the
single most important virulence factor is the α-hemolysin
which contributes significantly to the pathogenesis of
pneumonia in murine models of infection through mech-
anisms detailed below [25–27]. However, it is important to
note that the susceptibility of mice to staphylococcal
infection is significantly less than that of humans due to
the inability of S. aureus to release iron from murine
hemoglobin [28]. Thus, while the data generated in mouse
models have been very important, particularly in under-
standing the genetics of the host response to infection, the
data that delineate the importance of specific virulence
factors in the pathogenesis of pneumonia are subject to
considerable debate [29].

Regulation of MRSA virulence factors in pneumonia

An important property of staphylococci is their metabolic
flexibility and ability to adapt to environmental pressures.
Although typically considered extracellular aerobic pathogens,

PBS USA300

Fig. 1 Pathology of USA300 lung infections. H&E sections of C57Bl6/J
mouse lung. Mice were infected with 2×107 cfu S. aureus USA300 for
24 h. In the uninfected lung, two bronchioles and a blood vessel are
visible, along with clear alveolar architecture. The USA300-infected

animal shows loss of alveolar architecture, necrosis, hemorrhage,
infiltration of immune cells, and consolidation of the lung parenchyma.
Scale bars, 100 µm
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they also grow and disseminate intracellularly [30–32] and
tolerate anaerobic conditions [33], all of which are relevant to
pulmonary infection.

A number of regulatory systems are present in the genome
of S. aureus to coordinate virulence factor expression. One of
the more important of these is the accessory gene regulator
(Agr) system which coordinates the expression of both
surface proteins and secreted toxins, divergently (such as the
positive regulation of α-hemolysin and the negative regula-
tion of protein A expression) [34]. The regulon encodes a
quorum sensing peptide (AgrD) and its export protein
(AgrB), a sensor histidine kinase (AgrC), and a response
regulator (AgrA) [35]. AgrA autoregulates by binding its
own promoter. Regulation by Agr is accomplished by an
RNA molecule, RNAIII. The expression of both Agr and
RNAIII has been shown to be higher in USA300 strains as
well as community- versus hospital-acquired infection,
which may provide some rationale for the prevalence and
severity of this clonal group [3, 19, 36]. Agr mutations are
also found in clinical isolates [37]. Although Agr and its
regulon are dispensable for inflammatory signaling in the
lung, they are necessary for invasive pulmonary infection
[38], and the role of Agr in animal models of pneumonia has
been well documented [25, 38, 39].

Intracellular lifestyle of an extracellular organism

One role Agr plays in pathogenesis relates to the intracellular
life stage of S. aureus. S. aureus persists intracellularly within
a variety of cells types, including epithelial cells, macro-
phages, and neutrophils (Figs. 2 and 3) [30–32]. The
expression of Agr is required for these intracellular organ-
isms to escape from endosomes. Induction of agr expression
has been observed just prior to endosome release and no
doubt is correlated with the expression of toxins that facilitate

its escape and contribute to virulence in the lung (Fig. 2) [40,
41]. Although epithelial cells are considered non-phagocytic,
small numbers of S. aureus have been observed in some
epithelial cells lines [40, 42–44] and associated with
apoptosis (mammary epithelial cells) [32]. In phagocytic
cells following uptake, S. aureus can persist inside vacuoles
for up to 4 days before the escape into the cytoplasm and the
induction of cell lysis (Fig. 3) [45]. S. aureus can survive for
prolonged periods of time in neutrophils and in some cases
divide within dying cells [31], an effect which may
contribute to a systemic dissemination of the organisms
[46]. Staphylococcal isolates from the community (CA-
MRSA) display greater propensity to avoid neutrophil killing
and also cause more lysis of neutrophils compared with
strains from hospital infections [47]. An appreciation for the
potential of staphylococci to assume these diverse lifestyles is
critical for the development of vaccines as expecting
antibodies alone to clear these organisms, which have an
intracellular niche, seems unlikely to be successful.

Contribution of specific virulence factors
to the pathogenesis of pneumonia

The coordinated expression of many staphylococcal viru-
lence components is required for the establishment of a
successful infection. This includes surface proteins (such as
the microbial surface components recognizing adhesive
matrix molecules, MSCRAMMS) to establish colonization,
the expression of iron acquisition systems for proliferation
in mammals where iron is tightly sequestered and secreted,
and surface components to elude innate and adaptive
immunity. There are several toxins whose activity appears
to be primarily the lysis of target cells, but increasing data
have documented that many staphylococcal virulence
factors act by triggering pathological immune response as

Fig. 2 Virulence factors and host signaling cascades activated by S. aureus in the airway epithelium. Depicted are some of the virulence factors
mentioned in the text and their effects on the host epithelium. See text for details
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well as avoid immune clearance by thwarting complement
and IgG-mediated phagocytosis.

Iron acquisition

Iron is essential for both prokaryotic and eukaryotic
metabolic pathways, and as such, numerous mechanisms
have evolved to assure its acquisition from the environ-
ment. Mammals normally express a number of high-affinity
binding proteins such as transferrin and hemoglobin to
sequester iron for storage and prevent access by invading
pathogens. S. aureus produces siderophores that bind free
iron for utilization by the cell [48–50]. S. aureus express
two heme acquisition systems that are able to utilize
hemoglobin as an iron source and a transport heme, heme
transport system (Hts) and iron-regulated surface determi-
nant (Isd) groups of proteins. Both of these systems
contribute to virulence in mouse models of infection [51,
52]. One disadvantage of working with murine models of
staphylococcal infection is that S. aureus has greater
affinity for human as compared with murine hemoglobin.
Mice that express human hemoglobin are more susceptible
to systemic S. aureus infection [28]. S. aureus expresses a
homologue of the iron regulatory protein ferric uptake
regulator (Fur) that senses iron limitation and regulates a
number of virulence factors, including α-hemolysin and
PVL [53]. In a murine pneumonia model, Fur was required
for full virulence, with fur mutants expressing increased
levels of exotoxins and reduced immunomodulary proteins
(Fig. 4). These immunomodulary proteins include factors
that decrease the organisms’ ability to avoid neutrophil
killing as well as evade the complement cascade.

Microbial surface components recognizing adhesive
matrix molecules

The pathogenesis of staphylococcal pneumonia is usually
initiated by aspirated organisms that first colonize the nasal

cavity. There are substantial epidemiological data confirm-
ing the greater likelihood of colonized patients to develop
invasive infection than those who are non-colonized, and
the “de-colonization” of such patients prior to surgery is
common practice and cost-effective [54–56]. Thus, there is
significant interest in identifying the critical staphylococcal
proteins that mediate nasal colonization. Magnus Hook first
coined the term MSCRAMMS to describe the numerous
surface proteins that specifically recognize host compo-
nents, especially those relevant to soft tissue infection, such
as collagen, fibrinogen, and fibronectin (Fig. 2) [57]. These
have been extensively analyzed in models of murine
infection, trying to identify a “critical” factor for staphylo-
coccal adherence. However, the obvious redundancy in the
binding capabilities of the staphylococcal surface compo-
nents suggests that a single entity is unlikely to emerge as
“THE” adhesin required for the pathogenesis of either nasal
colonization or invasive infection.

The collagen-binding protein of S. aureus (encoded by
the cna gene) binds collagen substrates and tissues. While
the involvement of collagen binding in virulence has been
shown in models of endocarditis and keratinitis [58, 59],
with respect to the airway, only an association with PVL-
positive isolates that cause increased pulmonary pathology
has been observed [60]. Fibronectin-binding proteins are

Fig. 3 S. aureus interactions with neutrophils and monocytes. S. aureus
is able to persist intracellularly in neutrophils for days; their escape from
vacuole compartments is reliant upon exotoxin production. Both PVL

and PSMs have shown an ability to lyse neutrophils. In monocytes,
interaction with S. aureus and the action of α-hemolysin lead to the
activation of the inflammasome

exotoxins Hts, Isd 

Immunomodulary proteins 

CHIPS SCIN 

Protein A 
Sbi 
Staphylokinase 

Iron transport 
Fur 

complement evasion 

Fig. 4 Iron-dependent regulation of virulence by Fur. In the presence
of iron, Fur is able to increase the expression of iron transport systems
(Hts, Isd) and the complement evasion proteins CHIPS and SCIN
while decreasing exotoxin production. Other proteins known to aid in
complement evasion are also shown
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involved in the adherence of S. aureus to undifferentiated
human airway epithelial cells. This does not extend to
differentiated cells, where binding is reduced [61]. The
ability of S. aureus to bind fibronectin does not facilitate
nasal colonization, but does mediate internalization into
epithelial cells [62]. Lung injury, as well as bacterial load,
was increased in a rat model of pneumonia with a
fibronectin null strain [63]. Adherence to fibrinogen by S.
aureus is accomplished by clumping factors A and B.
Clumping factor A (ClfA) plays an antiphagocytic role in
both neutrophils and macrophages [64, 65]. ClfA is
important in animal models of arthritis, sepsis, and
endocarditis, but not in models of respiratory tract infection
[66–69].

Clumping factor B

Clumping factor B (ClfB) is involved in respiratory
infection, mediating the attachment to cytokeratins on
nasal epithelial cells. Mutants lacking ClfB reduce the
ability of S. aureus to adhere [70]. Similarly, a sortase
mutant lacking the gene that links surface proteins during
cell wall assembly via cleavage of an LPXTG motif [71]
was also reduced in nasal colonization. Immunization with
ClfB or treatment with monoclonal ClfB antibody both
decreased the ability of S. aureus to persist in the nares
[62]. The role of ClfB in nasal colonization was further
confirmed in human subjects as those infected with a clfB
strain cleared S. aureus faster (median clearance, 3 days)
than the wild-type organism (7 days) [72]. Following nasal
colonization, via ClfB or other staphylococcal ligands, the
participation of several conserved gene products, both
surface components and secreted toxins, all contribute to
invasive infection.

α-Hemolysin

Following aspiration into the lower respiratory tract, the
secretion of multiple cytolytic toxins has been thought to
contribute to pathology, as reviewed below. It is important
to note that many studies have relied upon recombinant or
purified toxins delivered at concentrations unlikely to be
achieved in vivo. Studies comparing mutant versus wild-
type strains seem more likely to reflect the impact of
specific virulence factors expressed by S. aureus.

The α-toxin or α-hemolysin (encoded by hla) of S.
aureus is a major pore-forming toxin that assembles into
heptamers at the cell membrane to create small pores
sufficient for the movement of ions [73]. Hla expression is
Agr-dependent and increased upon interaction with epithe-
lial cells, infection in vivo, and is higher in USA300 strains

[3, 19, 32, 74]. In airway epithelial cells α-hemolysin has
been associated with calcium fluxes, pro-inflammatory
signaling [75], and alteration of ciliary beat frequency of
cells (Fig. 2) [76]. α-Hemolysin binds to the metal-
loproteinase ADAM10, which is necessary for the toxin to
cause cytotoxicity at low concentrations [77]. The interac-
tion of ADAM10 with α-hemolysin activates a number of
intracellular signaling events. The application of α-
hemolysin to perfused lungs results in increased vascular
leakage and damage, and increased permeability of airway
epithelial cells [74, 78–80]. Infection with α-hemolysin null
strains is associated with significantly lower mortality
compared with wild-type strains in pneumonia models
[25–27], associated with reduced pulmonary inflammation,
neutrophil influx, and bacterial counts. The mechanism of
α-hemolysin toxicity is associated with the activation of
pyroptosis, induction of the inflammasome via caspase-1
activation, its targeting pro-IL-1β, and the generation of IL-
1β and IL-18, highly pro-inflammatory cytokines (Fig. 3).
This has been well described in immune cells and is likely to
be important in other cells in the infected lung [81–86]. The
lack of pathology associated with murine infection with hla
mutants is consistent with studies demonstrating a correlation
between α-hemolysin expression levels and virulence in the
lung [87]. The use of α-hemolysin as a vaccine target for
pneumonia has shown promise. Immunization of mice with
mutant forms of α-hemolysin that cannot form pores protect
mice from lethal pulmonary challenge [87]. Mice also show
a decreased bacterial burden when immunized with an
inactive α-hemolysin variant. Antibodies raised against α-
hemolysin can be transferred and subsequently protect naive
mice, while the treatment of epithelial cells in vitro with α-
hemolysin antibody reduces epithelial injury [87]. Monoclo-
nal antibodies raised against α-hemolysin as well as β-
cyclodextrin compounds (that have symmetry to α-
hemolysin) are also effective in preventing mortality in mice
and in decreasing epithelial cell injury [88, 89].

β-toxin

The contribution of the beta and delta toxins of S. aureus to
pulmonary infection is less well studied. As both target
erythrocytes, they may contribute to the iron-scavenging
mechanisms for the organism, but that has not been
demonstrated experimentally. The β-toxin of S. aureus
(expressed in 96% versus 56%) bovine versus human
carrier isolates [90] is a sphingomyelinase that targets the
membranes of host cells to generate ceremide (Fig. 2) [91].
β-toxin lyses a variety of cells types, including red blood
cells, monocytes, lymphocytes, and neutrophils [92–94]. In
airway epithelial cells, purified beta toxin has been shown
to inhibit ciliary beat frequency [95]. Hayashida et al. [96]
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observed a β-toxin-associated pathology of the lung with
increased airway permeability as well as a neutrophilic
response, which was decreased in infections with β-toxin
null strains. Instillation of a recombinant toxin caused
comparable loss of alveolar architecture as in S. aureus-
infected mice. The effect of beta toxin in the lung may not
be direct as injury was ameliorated in neutropenic mice,
indicating that the immune response played a significant
role in injury.

Phenol-soluble modulins

Phenol-soluble modulins (PSMs) are small peptides originally
isolated in the phenol-soluble lysate during extraction from S.
epidermidis [97]. They are referred to as modulins due to
their ability to induce cytokine release. The PSMs identified
in USA300 MRSA [98] include four short (alpha, ∼20 amino
acids) and two longer (beta, ∼40 amino acids) types that are
produced in greater amount than in other S. aureus strains
[19]. The PSMs are sensed by the formyl peptide 2 receptor
and lead to the recruitment, activation, and lysis of
neutrophils and play a role in virulence in skin models of
infection (Fig. 3) [99, 100]. PSMs also possess antimi-
crobial activity against other species such as Streptococcus
pyogenes [101]. This antimicrobial function may be a
factor that has influenced the prevalence of USA300
within the community. It has also been proposed that
PSMs impact upon biofilm development, as seen in S.
epidermidis. Due to their surfactant-like properties, they
may be involved in biofilm structure as well as detach-
ment and dissemination [102]. Since the initial identifica-
tion of PSMs in S. aureus, another PSM has been
identified in the methicillin resistance locus (mec). This
mec-PSM also plays a role in skin models when the
expression of the other PSMs is low [100]. The role PSMs
play in pneumonia models of infection have yet to be
determined, but an increased PSM expression has been
detected in epidemic (USA300) isolates. The δ-toxin of S.
aureus is a 26-amino acid cytolysin encoded by RNAIII
[103] and is similar to the α-PSMs. δ-toxin is lytic to a range
of cell types and structures such as erythrocytes, bacterial
protoplasts, and lysosomes [104]. δ-toxin acts synergistically
along with β-toxin to facilitate staphylococcal escape from
endosomes in airway epithelial cells (Fig. 2); however, its
role in vivo is yet to be determined [42].

Panton–Valentine leukocidin

PVL is a toxin encoded by two co-transcribed genes, lukF-
PV and lukS-PV, carried on a bacteriophage [105]. PVL
forms octomeric protein pores at the cell membranes of

neutrophils and macrophages and is specific to humans and
rabbits, but not mice or non-human primates [106–112].
PVL causes the apoptosis of neutrophils via caspases 3 and
9 (Fig. 3) [113], and a role for TLR2 in causing
inflammation in the lung by PVL has been observed
[114]. TLR2 null mice displayed reduced production of
IL-1β, TNF, and KC in the lung after the administration of
PVL [114], and the toxin alone has dermonecrotic
capabilities [115].

While PVL is epidemiologically linked to invasive
pneumonias caused by USA300 strains, there has been
significant controversy over its role in pathogenesis [5, 21,
29, 116–118]. It is clearly not required for severe CA-
MRSA infections in humans [119]. PVL has shown
variable roles of involvement in murine models of
pneumonia [26, 120–123]. Since PVL has specificity for
neutrophils from humans and rabbits [106–112], rabbit
models of USA300 do show a necrotizing pneumonia that
suggests the contribution of PVL to pathology [112] with
lung necrosis, pulmonary edema, and other outcomes
consistent with the necrotizing pneumonia seen in humans.
Rabbits infected with pvl strains showed decreased mortal-
ity, and complementation was able to restore virulence to
the pvl strain. However, the extremely high inocula used in
these studies and the length of infection have led many to
remain skeptical of PVL being important in the pathogenesis
of acute MRSA pneumonia in humans [29].

Staphylococcal gene products that activate immune
signaling

In addition to the immunological effects of the hemolytic
toxins, other S. aureus proteins activate T and B cells and
numerous other immune effectors. These include T cell
activation via superantigens (TSST and SEA/SEB) [124–
126], complement evasion [127], polyclonal B cell and
platelet activation via protein A [128, 129], immunoglob-
ulin sequestration by S. aureus IgG-binding protein (Sbi)
and protein A [130–132], and activation of the inflamma-
some by α-hemolysin [83, 84]. The production of the
staphylococcal superantigens that are able to activate clones
of T cells through V beta recognition alone has been well
characterized for decades (Fig. 5). It is unclear whether this
is a direct cause of pulmonary pathology, but more likely,
the massive immunoactivation caused by S .aureus super-
antigen production is likely to contribute to pulmonary
pathology. Superantigens evoke a massive immune response,
stimulating Tcells by cross-linking Tcell receptors withMHC
class II molecules on target T cells [124–126], resulting in T
cell proliferation, cytokine production, and apoptosis [133].
Macrophages are accessory cells in this process [134],
although a direct interaction with superantigens can induce
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cytokine production [135]. Two groups of superantigens
produced by S. aureus are the toxic shock syndrome (TSS)
toxin (TSST-1) and the enterotoxins.

TSST-1 is the toxin responsible for TSS, a syndrome
defined by fever, rash, hypotension, and multisystem
involvement, initially associated with the use of highly
absorbent tampons during menstruation [136–138] but is
now well recognized in many patient populations [139].
Cases that involve the respiratory tract have been reported,
including pneumonia, post-influenza infection, pharyngitis,
and laryngotracheitis [140–144], although it is unclear what
direct role TSST-1 has in pathogenesis. The enterotoxins
(SE—A and B) of S. aureus are a group of structurally
related toxins [145–147] suggested to play a role in the
allergic response to infection in model systems [148]. A
correlation exists between the levels of IgE antibodies to
enterotoxin and asthma [149]. A similar observation is seen
between enterotoxin IgE antibodies and higher eosinophil
cationic protein, a marker for asthma and rhinitis as well as
IgE levels for dust mites [150], suggesting that the presence
of enterotoxin can mediate or potentiate the inflammation
associated with asthma. Cytokine release by epithelial cells
in response to SEA has also been observed [151].

Analogous to SEA, SEB also induces an inflammatory
response in the lungs (Fig. 2). Consistent with SEA and SEB
potentiating an allergic response, SEB shifts the T cell
response from Th1 to Th2 and suppresses Treg activity to
cause a state of persistent inflammation [152]. At low doses,
SEB induces cytokine production in the lungs and leads to
increases in eosinophil counts, while higher doses lead to
increases in neutrophils and monocytes and are capable of
producing an interstitial pneumonia [133, 153–156]. SEB
also enhances the inflammation caused by allergens [157].
The interaction of human epithelial cells with SEB results in
the production of IL-5 and GM-CSF [158].

Evasion of complement

The complement system performs a variety of functions to
clear invading pathogens. S. aureus expresses a number of
proteins to circumvent this response [127]. S. aureus
expresses IgG-binding proteins that are also able to bind
complement. Protein A (discussed below) is an IgG-binding
protein that can bind to C1q, which is highly expressed on
platelets [159]. A second IgG-binding protein, Sbi, binds to
the Fc region of IgG and aids in avoiding neutrophil-
mediated opsonophagocytosis (Fig. 4) [130, 160]. Sbi is
also able to bind complement, interacting with the C3
portion of the cascade [161]. In vivo models have shown
that Sbi promotes survival in blood [130].

Two additional complement evasion proteins are staphylo-
coccal complement inhibitor (SCIN) and chemotaxis inhibi-
tory protein of staphylococci (CHIPS; Fig. 4). Both SCIN and
CHIPS are present on an immune evasion cluster located on
a bacteriophage, which also contains staphylococcal entero-
toxin B (described below) and staphylokinase. Staphyloki-
nase activates human plasminogen to plasmin at the bacterial
cell surface, creating a surface-bound protease capable of
digesting IgG and complement [162]. Staphylokinase also
releases α-defensins from neutrophils and interacts with α-
defensins directly to inhibit bactericidal activity [163]. This
immune evasion cluster is highly prevalent in carrier strains
(90%), although it is not essential for nasal colonization
[164]. SCIN is produced by the majority of strains. SCIN
prevents the formation of the C3 convertases, resulting in a
reduced phagocytosis and killing by neutrophils [165].
CHIPS is also capable of complement evasion via binding
of the C5a receptors. CHIPS inhibits neutrophil and
monocyte chemotaxis by interacting with the formylated
peptide receptor [166, 167]. There are a number of other
complement evasion proteins in the genome of S. aureus,
including homologues of SCIN and CHIPS [168]. As with
all of the complement evasion proteins, a direct role in
pneumonia is yet to be established.

Protein A

Protein A (SpA) is perhaps the most complex of the
staphylococcal components in terms of its multiple
interactions with host immune signaling. Protein A
(SpA) is an abundant surface protein of S. aureus
expressed by virtually all strains that is shed during
growth [169]. SpA contains an N-terminal signal sequence
followed by five repeated domains (E, D, A, B, C) that
bind IgG [131, 132], a property which is commercially
utilized in biochemistry. SpA is anchored to the surface of
the bacterial cell through a carboxy terminal LPXTG motif
and the action of a sortase enzyme [71, 170]. The carboxy

Proliferation
Cytokines
Apoptosis

TSST-1
SEA/B

Th1 Th2

Superantigens

APC

T-cell

MHCII

TCR

SEB

Fig. 5 S. aureus superantigens. S. aureus superantigens cause T cell
proliferation, cytokine production, and apoptosis by simultaneously
cross-linking MHCII molecules on antigen presenting cells with T cell
receptors
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terminus of SpA contains variable numbers of a 24-bp
repeat sequence known as the Xr region. The Xr region of
SpA is successfully used in the typing of S. aureus isolates
and has high concordance with genomic microarray data
[171, 172]. This region is associated with a high
mutational rate in S. aureus isolates from the airways of
patients with cystic fibrosis [173]. The Xr region likely
participates in immune signaling [174], although the
mechanism remains to be defined.

S. aureus also induces the expansion of B cells through
the binding of protein A. Protein A interacts with the Fab
portion of V(H)3-type B cell receptors, reducing the
adaptive immune response [175]. This induces polyclonal
nonspecific B cell expansion and is thought to interfere
with the use of staphylococcal mutants in vaccine develop-
ment. Mutant forms of protein A unable to interact with B
cells have shown promise as vaccine candidates in murine
models of infection [176].

The role of protein A in the virulence of S. aureus has
been demonstrated in models of sepsis and pneumonia [25,
176–178]. Neonatal mice infected with a spa mutant show
reduced numbers of bacteria in both the lung and spleen, in
addition to a significant reduction in pro-inflammatory
signaling [177]. The spa strain was also significantly
attenuated in its ability to activate signaling (CXCL8) in
airway epithelial cells. In an adult model of murine
staphylococcal pneumonia, mortality was significantly less
with a spa mutant compared with the wild-type strain [25].
Several mechanisms have been proposed for the role of
protein A in virulence, including its interaction with
TNFR1 and epidermal growth factor receptor (EGFR;
Fig. 2).

TNFR1 signaling by SpA

The TNF receptor (TNFR1) is expressed on many
different cell types and initiates the activation of the
pro-inflammatory and anti-apoptotic TNF cascade [179].
In the lung, epithelial TNFR1 is localized on the cell
surface before being shed into the extracellular milieu
after exposure to S. aureus through the action of
ADAM17 (which is also activated by protein A) [177].
Protein A directly binds to TNFR1 via its IgG-binding
domains, mimicking the TNF–TNFR1 interaction [177,
180]. This TNFR1–protein A interaction induces CXCL8
via TRAF2/p38 mitogen-activated protein kinase (MAPK)
and NF-κB [181].

Protein A–TNFR1 responses play an important role in
pathogenesis. Tnfr1−/− mice display significantly reduced
levels of pneumonia and bacteremia when infected with S.
aureus compared with wild-type mice. The levels of
pneumonia and bacteria observed in TNFR1 null mice with

the wild-type strain are comparable to those observed with
the spa strain [177]. Wild-type mice infected with the spa
strain as well as Tnfr1−/− mice infected with the wild-type
organism both display reduced neutrophil numbers in the
lung. TNFR1 signaling in response to S. aureus is a primary
mechanism for inflammatory signaling since the TLR
adaptor molecule MyD88 is dispensable for S. aureus
pneumonia models in vivo [182].

EGFR signaling by SpA

A slightly different domain of the IgG-binding region of
SpA initiates signaling events from EGFR. The apically
displayed EGFR mediates a number of signaling events in
the airway epithelium and responds to several different
ligands.

SpA stimulates EGFR and ERK phosphorylation and
stimulates ADAM17 (or TACE-TNF alpha-converting
enzyme), the TNFR1 sheddase [180]. ADAM17 activity is
also responsible for shedding IL-6Rα, trans-signaling
which cleaves off the cytokine receptors that would
perpetuate the pro-inflammatory response. Thus, S. aureus
activates not only an epithelial pro-inflammatory response
via both TNFR1 and EGFR but also ADAM17 that
regulates this response.

Additional consequences of EGFR activation include the
stimulation of epithelial wound repair and cytoskeletal
contraction. Exposure of damaged epithelial cells to heat-
killed S. aureus results in an increased wound closure and
transepithelial resistance. This is in addition to the
increased proliferation and survival of uninjured epithelial
cells [183]. The initiation of epithelial wound repair is the
result of TLR-EGFR signaling. A further consequence of
EGFR activation is the induction of mucin production, an
important physical component of the innate defenses of the
lung [184].

Host responses to S. aureus in the respiratory tract

Perhaps the most important factor in the pathogenesis of
staphylococcal pneumonia is the intensity of the innate
immune response to the aspirated organisms. This is a
response to the intact organisms as well as to shed
components from the bacteria enmeshed in airway secre-
tions. The initial immune signaling is accomplished by
airway epithelial cells that immediately recruit several types
of immune cells including dendritic cells (DCs), macro-
phages, and T cells. The net result of this immune signaling
is the recruitment of polymorphonuclear neutrophils
(PMNs) which are critical in staphylococcal clearance. It
has long been thought that PMNs themselves are the single
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most important component in the host response to S.
aureus. This observation is borne out by the increased
susceptibility to staphylococcal infection of humans with
deficiencies in neutrophil chemotaxis, oxidative burst, and
granule production [185]. However, the cells that actively
recruit PMNs and activate them may also be potential
targets to modulate the intensity of the inflammatory
response to the organisms.

TLR signaling in the airway

The pattern recognition receptors on the surface of exposed
airway epithelial cells readily respond to the surface
components of S. aureus. The airway epithelium expresses
the full complement of Toll-like receptors (TLRs). High
levels of gene transcription are observed for TLRs 2–6,
while the expression for 7/8 is variable, depending upon the
cell type [186–189]. Adaptors such as MyD88 and MD2
are also present in addition to RNA receptors like MDA5
ad RIG-I [186, 190].

TLR2, which recognizes lipoteichoic acid (LTA) in the
staphylococcal cell wall, is important in the response to S.
aureus airway infection (Fig. 2). The instillation of LTA into
human airways results in a significant inflammation and
neutrophil recruitment, an observation mimicked in murine
models [191, 192]. TLR2 is upregulated in response to S.
aureus [193]. The virulence factor PVL also directly
activates a small group of genes via TLR2 signaling that
incorporates the adaptors CD14 and MyD88, leading to NF-
κB signaling [114]. TLR2 is important in some models of
systemic S. aureus infections [194, 195]. Consistent with
this, strains lacking lipoproteins avoid immune recognition
and cause increased disease [196]. However, in respiratory
infection, MyD88 is dispensable for bacterial clearance, even
with a significantly abrogated NF-κB-dependent cytokine
response [182], consistent with the observations that several
other pathways (TNF and type I IFN) are also critical for the
immune response to S. aureus. The airway epithelium
responds to this TLR–S. aureus interaction with a variety
of cytokines, including GM-CSF, G-CSF, CXCL8, and TGF-
α, as well as the antimicrobial peptides beta-defensins [180,
193, 197, 198]. The activation of G-CSF and GM-CSF is
important in the airway as this promotes neutrophil survival
[197]. S. aureus is capable of activating CXCL8 production
via the MAPK p38 and ERK1/2, which leads to the
activation of the NK-κB transcription factor [199].

Type I interferons

Intracellular receptors, such as those linked to type I
interferon (IFN), can also recognize staphylococci in the

airway as bacterial cells often secrete and shed components
that may be internalized by airway epithelial cells. Type I
IFN signaling has long been known as an important viral
defense pathway in the lung [200] resulting in the
transcription of hundreds of genes [201]. S. aureus, as well
as several other extracellular bacterial pathogens, activate
this pathway (Fig. 2) [202, 203]. The role type I IFN
signaling plays in bacterial infection is variable, depending
upon the organisms [204]. Bacteria activate type I IFN
signaling through a number of TLR, NOD-like receptors
(NLR), and cytosolic receptors that sense products such as
cell wall components, DNA, and RNA [205–208]. The
activation of type I IFN signaling leads to the production of
IFN-β via the phosphorylation of an interferon regulatory
factor (IRF), namely, IRF3, IRF5, and IRF7 [209–212].
IFN-β interacts with its receptor, IFNAR (interferon alpha/
beta receptor), leading to the phosphorylation of STAT1/2
via the kinases Jak1 and Tyk2 [213]. The activation of type
I IFN signaling also activates MAPK [214] and NF-κB
responses [215].

S. aureus activates type I IFN signaling in airway
epithelial cells as well as in in vivo models of pneumonia
[173]. Incubation of epithelial cells with live organisms
activates Ifnb as well as a number of downstream genes,
including Lif and Mx-1, as early as 2 h after stimulation via
the expected pathways [173]. In vivo, the activation of type
I IFN signaling in response to S. aureus is detrimental to
the host; Ifnar−/− mice were significantly less likely to
succumb to pulmonary infection than their wild-type
counterparts [173]. Consistent with this phenotype being
host-derived, Ifnar−/− mice had less TNF and IL-6 in their
bronchoalveolar lavage (BAL) fluid while having similar
bacterial loads when inoculated with non-lethal doses.

The amplification of potentially damaging inflamma-
tion that is initiated through type I IFN signaling is
mediated by the CXCR3 chemokines. The CXCR3
chemokines—CXCL9 (MIG), CXCL10 (IP-10), and
CXCL11 (I-TAC)—perform a variety of functions in-
cluding the recruitment of Th1 and Th17 cells [216–
218], increasing PMN accumulation and inflammation
[216, 219]. Depletion of macrophages had a detrimental
effect on the outcome of MRSA pneumonia in mice,
which in part was due to the increased expression of the
CXCR3 ligands [219]. Blocking CXCR3 resulted in
reduced CD4+ cells in the BAL and reduced pulmonary
pathology [219]. Given the multiple pro-inflammatory
pathogen-associated molecular patterns (PAMPs) associ-
ated with virulent staphylococci, strategies to modulate the
host responses to these effectors may be useful to control
pulmonary damage. While it is not fully understood how
S. aureus causes lung damage, certainly a portion of the
pathology is due to the host itself, as activated by these
organisms. Moreover, from the murine models, it seems
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that PMNs, despite their damaging release of reactive oxygen
intermediates and elastase, are not the sole cause of pulmonary
destruction due to staphylococcal pneumonia.

The inflammasome

Much of the pathology caused by infection with S. aureus
is a result of the intense immune response. A known cause
of pulmonary pathology, the cytokine IL-1β, is produced in
response to TLR2 recognition of staphylococcal lipopro-
teins and membrane perturbation by α-hemolysin as part of
pyroptosis, a highly inflammatory form of cell death
(Fig. 3) [84, 220]. Pyroptosis involves the activation of
the inflammasome, characterized by the activation of
caspase-1 and the production of IL-1β and IL-18 [221,
222]. Activation of the inflammasome is a two-step process
that typically involves the activation of a TLR (such as via
microbial PAMPs) to induce the production of pro-IL-1β
then membrane perturbation (e.g., via a toxin to generate
K+ efflux and the proteins NLRP3/NALP3/cryopyrin and
ASC) to produce active caspase-1 that cleaves pro-IL-1β to
enable the secretion of mature IL-1β [223]. This is
accomplished in immune cells by S. aureus expressing α-
hemolysin and TLR2-MyD88 signaling from lipoproteins
[83, 84, 224, 225]. An additional S. aureus component that
activates the production of IL-1β is peptidogylcan and cell
wall degradation products [226]. Inflammasome activation
in known to occur in monocytic cells; the IL-1β generated
from this process is likely to contribute to pulmonary
pathology. The role epithelial cells play in this process is an
area of active investigation.

Staphylococcal superinfection following influenza
and the Th17 response

The importance of host immune signaling in the successful
clearance of S. aureus from the respiratory tract is well
illustrated in the common clinical presentation of bacterial
superinfection following influenza. The high mortality
associated with staphylococcal pneumonia following influ-
enza was first documented during the 1918 influenza
pandemic in which many young, previously health individ-
uals died of staphylococcal pneumonia, having previously
recovered from influenza [227, 228]. Infecting mice with S.
aureus after influenza exposure significantly increases
mortality and lung pathology [18, 229–231]. Several
components of immune signaling may contribute to this
excess mortality. Influenza-infected mice were observed to
have impaired NK cell responses upon S. aureus infection
[230], which were essential in producing TNF to mediate
bacterial clearance.

A major component of the immune response to influenza
is the activation of type I IFN signaling, which increases
susceptibility to S. aureus pneumonia [173]. It seems likely
that excessive IFN-β signaling contributes to this pathology
[229]. Kudva et al. [231] reinforced the negative impact of
type I IFN signaling in staphylococcal pneumonia, linking
the significantly higher levels of type I IFNs that resulted in
a reduced Th17 response, contributing to a reduced
bacterial clearance. When the co-infection was repeated in
Ifnar−/− mice, an improved clearance of S. aureus was
observed.

Airway epithelial cells are highly dependent on typical
pro-inflammatory as well as Th17 cytokines to produce
anti-staphylococcal factors [232]. It has been observed that
S. aureus can activate IL-17 in DCs and blood monocytes
[233, 234]. Deficiency in the Th17 pathway increases
susceptibility to cutaneous staphylococcal infections [235]
and is also the mechanism attributed to the frequent
staphylococcal infection in patients with hyper-IgE syn-
drome [236]. Hyper-IgE patients possess mutations in the
STAT3 transcription factor, resulting in a failure of CD4 T
cells to differentiate into Th17 cells. Influenza-infected mice
have reduced Th17 cytokines. A decrease in Th17 cytokines
(IL-17, 22, and 23) is observed in influenza-infected mice
[231] in part due to increased type I interferons. Consistent
with this observation, Th17 knockout mice exhibited
impaired clearance to S. aureus [231]. Transgenic mice
overexpressing IL-23 and co-infected with influenza and S.
aureus had improved outcomes. These studies provide
examples of how viral infections (namely influenza) and
their profound immunological consequences can predispose
individuals to potentially lethal secondary pneumonia.

Conclusion

S. aureus has evolved into the consummate respiratory
pathogen able to not only persist in the respiratory tract
but also thrive as an invasive pulmonary pathogen.
Through the horizontal acquisition of genetic material
and positive selective pressure, successful clones of
staphylococci, as typified by the USA300 strains, express
virulence factors that enable the organisms to successfully
exploit the immune response that is evoked in the lung.
Strategies to prevent invasive infection will not only need
to target the virulence determinants that mediate coloni-
zation, iron acquisition, biofilm production, and immune
evasion but will also need to be effective against
organisms that can disseminate intracellularly. Approaches
to the management of staphylococcal pneumonia, perhaps
by modulating the host immune response, could be
considered as an adjunct to the conventional antimicrobial
therapy.
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