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Protein C anticoagulant system—anti-inflammatory effects
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Abstract Activated protein C (APC) plays active roles
in preventing progression of a number of disease
processes. These include thrombosis due to its direct
anticoagulant activity which is likely augmented by its
cytoprotective activity, thereby limiting exposure of
procoagulant cellular membrane surfaces on cells.
Beyond that, the pathway signals the cells to prevent
apoptosis, to dampen inflammation, to increase endo-
thelial barrier function, and to selectively downregulate
some genes implicated in disease progression. Most of
these functions are manifested to APC binding to
endothelial protein C receptor (EPCR) allowing PAR1
activation, but activation of other PARS is also
implicated in some cases. In addition to EPCR orches-
trating these changes, CD11b is also capable of
supporting APC signaling. Selective control of these
pathways offers potential in new therapeutic approaches
to disease.
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History

The protein C system is best known for its anticoagu-
lant activity seen most clearly in the clinical observation
that patients born with a total protein C deficiency
exhibit massive neonatal thrombosis that is usually
lethal unless treated, reviewed in [1]. Indeed this is also
one aspect of the anti-inflammatory functions of the
pathway since coagulation, particularly thrombin genera-
tion, can trigger a wide variety of pro-inflammatory events
including expression of adhesion molecules like P-selectin
and activating the Nf-κB pathway [2]. While this is an
important aspect of the anti-inflammatory function of the
pathway, it does not distinguish the pathway from other
anticoagulants. Indeed, heparin has long been noted to
have apparent anti-inflammatory functions, in part likely
due to its anticoagulant activity.

Some of the first suggestions that this pathway might
have additional anti-inflammatory activity came from the
treatment of newborns with protein C deficiency. The
thrombotic lesions that developed in the newborns were
surrounded by an intense red area that retracted rapidly
following the administration of protein C, suggesting that
protein C was preventing the inflammation in addition to
decreasing the thrombosis, reviewed in [1].

These studies were followed by examination of the roles
of thrombosis in sepsis. In an early study, Hinshaw and
colleagues [3] observed that heparin could prevent the
consumptive coagulopathy associated with Escherichia
coli-induced sepsis in baboons but did not rescue the
animals. Later we demonstrated that an active site blocked
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form of factor Xa could prevent the disseminated intravas-
cular coagulation (DIC) but again failed to protect against
sepsis [4]. Subsequently, Hinshaw and colleagues showed
that extracorporeal perfusion without exogenous anticoagu-
lation was protective against endotoxin-induced sepsis [5].
They also observed that an associated anticoagulant was
being generated during these studies. Interestingly, the
pump could be removed subsequently and the animals
were still protected from subsequent bacterial challenge.
With the identification of thrombomodulin [6] and demon-
stration of thrombin-dependent protein C activation in vivo
[7], it was possible to test whether the anticoagulant might
be activated protein C (APC) generated by thrombin
formed by the pump. Indeed, thrombin infusion into dogs
challenged with endotoxin was protective [8] despite the
fact that the animals would develop DIC without the
thrombin infusion. Thrombin infusion decreased both the
DIC and inflammation. With the advent of a rapid means
for purification of protein C from human plasma [9], it was
possible to test the ability of APC to protect baboons from
E. coli-induced sepsis. When APC was administered with
the E. coli, the animals survived a normally lethal dose and
exhibited reduced coagulation, protection from shock, and
decreased inflammation [10]. These older studies highlight
that APC could protect against an inflammation-induced
disease like sepsis when other comparable anticoagulants
could not. In contrast, inhibition of the pathway in the E.
coli sepsis model, in this case with C4 binding protein,
elevated cytokine production in response to E. coli
challenge [11].

Either reducing protein C levels [12, 13] in mice or
blocking protein C activation [10] in baboons increased a
sublethal to a lethal challenge with bacteria or endotoxin.
In order to perform its full anti-inflammatory functions,
the APC must bind to the endothelial protein C receptor
(EPCR) [14]. Mice overexpressing EPCR are resistant to
endotoxemia [15], whereas those with low-level expres-
sion are sensitized [16, 17]. Furthermore, mice with low
levels of EPCR have cardiac dysfunction from the
challenge [16]. These studies illustrate the important role
of the pathway in regulating the host response to acute
inflammatory challenges.

How does activated protein C influence inflammation
directly?

One of the major mechanisms that augment inflammation is
mediated through Nf-κB activation and nuclear transloca-
tion from the cytosol [18, 19]. This turns on synthesis of a
variety of inflammatory mediators including cytokine
production. APC can decrease the synthesis of Nf-κB
components [19, 20] and decrease Nf-κB nuclear translo-

cation [18]. Together these activities probably constitute the
major mechanisms by which APC downregulates inflam-
matory cytokine production in inflamed endothelium in
culture [21] and in animal models of sepsis [22, 23].

APC signaling

These effects are dependent on APC, EPCR, and protease-
activated receptor 1 (PAR-1) [14, 24]. Activation of PAR-1
by the APC–PAR-1 complex leads to different cellular
signaling than when thrombin activates PAR-1 despite
cleaving the same site on the receptor [25] (Fig. 1). The
mechanisms for this change in signaling are currently being
elucidated. In one model, protein C binding to EPCR leads
to migration of EPCR out of the lipid rafts at which time it
interacts with PAR-1 coupled to a different G protein than
when it was in the lipid rafts, thus resulting in the altered
signaling profile [26–28]. In support of this model, EPCR
did appear to migrate from rafts in the presence of protein C
[26] and recombinant mutant molecules containing the
protein C Gla domain that could elicit signaling similar to
that of APC [26].

Inhibition of leukocyte adhesion

Leukocyte adhesion and trafficking APC reduces leukocyte
adhesion and activation and protects capillary function in
endotoxemia [22, 29–31] in part by reducing chemotaxis
[32] and cytokine production [23]. This inhibition of
leukocyte attachment could be mediated by decreases in
thrombin-dependent mobilization of selectins from Weible
Paladi bodies in the endothelium, suppression of ICAM,
synthesis, and decreased synthesis of monocyte chemotac-
tic protein-1 [21]. In central venous sinus thrombosis, APC

Fig. 1 Cytoprotective signaling by APC. APC binds to EPCR at
which time it cleaves PAR1 to generate the active signaling molecule.
The APC cleaved PAR1 appears to be linked to a G protein that
generates cytoprotective functions—see text for discussion. APC
activated protein C, EPCR endothelial cell protein C receptor, PAR1
protease-activated receptor-1
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decreases inflammatory cell recruitment and protects the
microvasculature in this manner [33].

Endothelial barrier function

Endothelial barrier function is compromised in a number of
diseases resulting in edema. Thrombin is known to decrease
endothelial barrier function, a process that is reversed by
APC [26, 34, 35]. APC accomplishes this, at least in part,
through the generation of shingosine 1-phosphate receptor
transactivation [34, 35]. Improving endothelial barrier
function is likely to provide anti-inflammatory effects since
it should reduce leukocyte trafficking into the extravascular
space. While not directly related to inflammation, one of
the features of APC is that it diminishes both endothelial
cell and neuronal apoptosis [36–38]. Excessive apoptosis or
cellular necrosis leads to release of relatively large amounts
of nuclear material in the form of nucleosomes and also the
release of mitochondrial contents. Both of these events will
trigger inflammation. The histones on nucleosomes induce
leukocyte migration into the tissue, platelet activation, and
thrombosis [39] and induce cytokine formation, and the
mitochondria induce leukocyte activation [40].

Histone neutralization

Extracellular histones are cytotoxic [39], and APC can
cleave and neutralize this activity of histones. The
importance of the latter observation was apparent in
studies that demonstrated that histones were much more
toxic in mice where the protein C pathway was blocked
and that blocking histone function was protective in
endotoxemia [39].

Signaling is required for APC protection in sepsis

Mutants of APC have been developed that retain signaling
activity but have very low anticoagulant activity [41].
These mutant forms of APC (5A- aPC and other similar
mutants) were effective in preventing mortality in mouse
models of sepsis [24, 42].

The original signaling studies were done in endothelium
[20]. More recent studies have detected EPCR on leuko-
cytes, particularly CD8+ dendritic cells [43]. Mice with low
levels of EPCR (EPCR low) were studied and were less
effectively protected from endotoxin-induced sepsis toxicity
by 5A aPC than wild-type mice [43]. When bone splenic
CD11chi dendritic cells from wild-type mice were trans-
planted into EPCR-low mice, they supported protection
from endotoxin by 5A- aPC whereas similar cells from

EPCR-low mice did not. In vitro, 5A-aPC inhibited the
inflammatory response of dendritic cells which appeared to
be independent of a requirement for normal levels of EPCR
[43]. Thus, protective function seems EPCR dependent but
there are cell populations that are responsive to APC in
suppressing inflammation that do not appear to require
EPCR. A likely receptor for APC on macrophages is CDllb/
CD18, also known as Mac-1. APC administration in wild
type, but not CD11b null mice, reduced mortality. CD11b
was also required for suppression of the endotoxin-induced
macrophage inflammatory response [44]. These results
indicate that the cellular signaling mechanisms play a
dominant role in protection from endotoxemia [45].

Role of APC in specific disease states

Coronary reperfusion injury One of the events that occur in
reperfusion injury is apoptosis. Blocking protein C activa-
tion exacerbates reperfusion injury in pig hearts [46]. The
ischemia reperfusion also leads to rapid protein C activation
in this model [46]. In mouse models of coronary reperfu-
sion, APC reduced coronary apoptosis and decreased
inflammation and leukocyte adhesion resulting in improved
heart function [47, 48].

Fig. 2 The links between infection, coagulation, and inflammation.
Infection either directly triggers the activation of the intrinsic pathway
through activation of factor XII or activates a series of toll-like
receptors that can generate cytokines that initiate tissue factor
expression. Coagulation leads to platelet activation, releasing CD40
ligand that amplifies inflammation, expression of P-selectin on cell
surfaces which aids in leukocyte trafficking, and with ischemia
reperfusion injury which leads to the release of HMGB 1 or histones
that further trigger inflammation and tissue damage. The resultant
amplified inflammatory response leads to additional tissue factor
formation, thrombomodulin downregulation, complement activation,
and leukocyte activation, further stimulating coagulation. Unchecked,
this has the potential for devastating inflammatory and coagulation-
mediated injury
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Stroke protection APC treatment of ischemic brain endothe-
lium prevents apoptosis in part by blocking P53 function [49].
APC also prevents tissue plasminogen activation-induced
Nf-κB-dependent upregulation of matrix metaloproteinase-9
and can prevent neuronal apoptosis by PARs 1 and 3 [37].

Diabetes Diabetes also results in apoptosis of kidney cells.
Increasing endogenous APC production decreased apopto-
sis and improved kidney function in mouse models of type
1 diabetes [50]. As mentioned above, the large degree of
apoptosis and necrosis would be anticipated to increase
inflammation which is thus indirectly prevented by APC.

Inflammatory bowel disease In inflammatory bowel dis-
ease, EPCR and thrombomodulin are downregulated. APC
treatment reduced cytokine production, inhibited leukocyte
adhesion, diminished weight loss, and reduced the magni-
tude of the pathological lesions [51].

Tumor adhesion and propagation Endogenous APC
decreases the adhesion of tumor cells to the lung and
reduces the number of metastatic sites [52, 53]. It does so in
part by activating the sphengosine-phosphate-1 system [52]
in a PAR-1 dependent reaction.

Trauma Trauma, even sterile trauma, is associated with an
increase in inflammation. This may be due to the release of
intracellular components that activate the innate immune
system, see [54] for a brief review. In mouse models of
trauma, APC appears to contribute to the coagulopathy
associated with trauma [55]. By use of a selective antibody
to murine APC [45], the coagulopathy can be largely
prevented by the selective inhibition of endogenous APC’s
anticoagulant activity with preservation of its cytoprotective
functions [55]. APC’s cytoprotective/anti-inflammatory
functions play a key role in preventing death in this model,
in part apparently by preventing excessive thrombosis that
might result from tissue necrosis or apoptosis.

Amyotrophic lateral sclerosis A mutant superoxide dismu-
tase gene has been found in amyotrophic lateral sclerosis
(ALS) patients, and this gene insertion will elicit ALS-like
symptoms in mice [56]. APC mutants with cytoprotective
activity can suppress the mutant gene expression and slow
the progression of ALS symptoms apparently by crossing
the blood–brain barrier and signaling through a PAR1- and
PAR3-dependent pathway [56].

Conclusions

APC is a potent modulator of disease processes. Both direct
anticoagulant activity and cell signaling are involved. The

anti-histone activity of APC has also been implicated.
Either the native protein or genetically modified versions of
the molecule have potential therapeutic utility. In some
clinical conditions like trauma, excess activation of the
endogenous protein C seems to contribute to morbidity and
mortality. With exogenous APC, mutations of the molecule
can selectively alter its function, whereas antibodies can be
utilized to modulate the functions of the endogenous APC.
As we gain better understanding of the details of the
interplay of APC with the complex regulatory systems in
vivo, the potential is high to be able to exploit this system
for even greater selectivity and clinical benefit. In partic-
ular, APC may be able to prevent the autoamplification of
inflammation and coagulation depicted in Fig. 2.
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