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Abstract Immune-mediated inflammation in the retina is
regulated by a combination of anatomical, physiological
and immuno-regulatory mechanisms, referred to as the
blood–retina barrier (BRB). The BRB is thought to be part
of the specialised ocular microenvironment that confers
protection or “immune privilege” by deviating or suppress-
ing destructive inflammation. The barrier between the
blood circulation and the retina is maintained at two
separate anatomical sites. These are the endothelial cells
of the inner retinal vasculature and the retinal pigment
epithelial cells on Bruch’s membrane between the fenes-
trated choroidal vessels and the outer retina. The structure
and regulation of the tight junctions forming the physical
barrier are described. For leukocyte migration across the
BRB to occur, changes are needed in both the leukocytes
themselves and the cells forming the barrier. We review
how the blood–retina barrier is compromised in various
inflammatory diseases and discuss the mechanisms control-
ling leukocyte subset migration into the retina in uveor-
etinitis in more detail. In particular, we examine the relative
roles of selectins and integrins in leukocyte interactions
with the vascular endothelium and the pivotal role of
chemokines in selective recruitment of leukocyte subsets,
triggering adhesion, diapedesis and migration of inflamma-
tory cells into the retinal tissue.
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Introduction

Immune-mediated inflammation in the retina is regulated
by a combination of anatomical, physiological and
immuno-regulatory mechanisms, referred to as the blood–
retina barrier (BRB). The BRB is thought to be part of the
specialised ocular microenvironment that confers protection
or “immune privilege” by deviating or suppressing destruc-
tive inflammation [120, 121]. These mechanisms are
designed to prevent normal immune surveillance and delete
or inactivate cells migrating across the BRB to mitigate the
effects of deleterious immune responses [15, 99]. Never-
theless, retinal inflammation does occur, and in addition to
well-defined inflammatory diseases such as uveoretinitis,
immune mechanisms affecting the integrity of the BRB and
leukocyte infiltration of the retina are implicated in other
ocular diseases such as diabetic retinopathy [76] and age-
related macular degeneration (ARMD) [72].

The barrier between the blood circulation and the retina
is maintained at two separate anatomical sites. These are the
endothelial cells of the inner retinal vasculature and the
retinal pigment epithelial cells (RPE) on Bruch’s membrane
between the fenestrated choroidal vessels and the outer
retina. For leukocyte migration across the BRB to occur,
changes are needed in both the leukocytes themselves and
the cells forming the barrier [9, 137]. The retina is an
extension of the central nervous system (CNS), and as such,
many of the molecular structures making up the inner BRB
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are similar to those found in the vascular blood–brain
barrier (BBB) [1]. However, there are also important
differences between the tissues, including vascular hetero-
geneity in the brain and numbers of microglia in the retina.

Much research has been carried out into mechanisms
controlling inflammatory cell adhesion and extravasation of
leukocytes from the circulation into neural tissues, and a
paradigm invoking sequential, separate events involving
interacting pairs of selectins and their ligands, chemokines
and cell adhesion molecules (CAM) has evolved to be one
of the central tenets in immunology (Fig. 1) [12]. Less is
understood about the process of extravasation, and there is
evidence for leukocyte extravasation in the CNS both
through intercellular endothelial tight junctions (paracellular
route) and for transcellular migration through the endothelial
cell itself [45].

To date, many studies have been based on neutrophil
migration, or undefined mixed leukocyte populations, but
recent research, including our own, has revealed that
different leukocyte subsets have distinct requirements for
endothelial cell interactions and subsequent migration.
These requirements may also vary depending on the type
of tissue, whether normal surveillance or inflammatory
trafficking is involved and if inflammatory on the type of
stimulus. Mononuclear cells including monocytes and T

lymphocytes are primarily involved in the pathologies
observed in various retinal inflammations and will be the
focus for this review. Understanding these processes and
whether mechanisms really differ between peripheral
tissues and ocular or other CNS sites such as the brain is
important as every stage of the process, from initial
engagement to migration into the tissue, is a potential
target for immunotherapy to control retinal damage [53].

Leukocyte adhesion cascade

Adhesion molecules in the leukocyte adhesion cascade

The process of the inflammatory response and how blood
leukocytes are recruited from the blood to the tissues has
been described as the leukocyte adhesion cascade. Rolling
of leukocytes on the luminal endothelial cell wall is usually
the first step in the adhesion cascade that culminates in
leukocyte extravasation, and the mechanisms underlying
the various stages involved has been recently reviewed
[82]. Selectins, such as L selectin, expressed on microvilli
of most leukocytes and P and E selectin, which may be
expressed by activated or inflamed endothelium, mediate
both tethering and rolling [119]. These molecules interact

Fig. 1 Mechanisms involved in leukocyte trafficking across the blood-
retina barrier at the endothelium. Initial interactions between leukocyte
and endothelium are usually mediated by selectins that induce tethering
and rolling (1). If G-protein-coupled receptors on the leukocyte engage
appropriate chemokines on surface of endothelium, then the leukocyte
may become activated (2), leading to conformational changes in integrin
molecules allowing firm adhesion to the endothelium and leukocyte
spreading (3). Diapedesis across the endothelium and into the retina can
then take place (4). This is triggered by additional chemokine and

cytokine signals and gradients and mediated by matrix metalloproteinases
secreted by the leukocyte and alterations in the signalling and regulatory
molecules of the TJ that control the interaction between the membranous
component and the cytoskeleton of the endothelial cell, leading to
breakdown of the BRB (5). How inflammatory responses in the retina are
initiated or resolved is still controversial. There is evidence that resident
and/or infiltrating cells may influence the progression (+Ve signal?) or
resolution (−Ve signal?) of the inflammatory response
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with ligands such as P-selectin glycoprotein ligand-1
(PSGL-1), expressed on other leukocytes or endothelium
only when correctly glycosylated [89]. This initial tethering
and fast rolling allows adherence under flow, and shear
stress forces support the adhesive and signalling interac-
tions taking place that then mediate slow rolling. Integrins
are also involved in rolling, and α4β1-integrin (VLA4)
dependent rolling and LFA-1/ICAM-1 interactions have
been shown to be important for firm adhesion and
lymphocyte trafficking in the CNS [44, 59]. Leukocyte
rolling via low-affinity interactions can then be converted to
firm adhesion as chemokine-receptor G-protein dependent
activation takes place, resulting in conformational changes
in the binding domains of LFA-1 to high-affinity state and
in membrane clustering of the integrins giving increased
avidity [6, 78]. This leads to firm adhesion and is the prelude
to spreading, crawling and migration through the endothe-
lium, either by the paracellular route involving release of
endothelial adherens junctional proteins [87, 113, 126] or
the transcellular route via small continuous membrane
associated structures or vesiculo-vacuolar organelles.

Chemokines in the leukocyte adhesion cascade

Leukocyte migration is controlled to a large extent by
members of a family of chemoattractants, the chemokines
[109]. The panel of chemokine receptors that a leukocyte
carries enables it to respond to chemokine signals either
from normal tissue thus controlling immune surveillance or
from an inflammatory site. Forty-three human chemokines
have now been officially named, and these do not include
isoforms, polymorphisms, splice variants and those chemo-
kines encoded by viruses. There are currently 18 chemo-
kine-specific G-protein-coupled receptors [92]. As these
chemokines can be allocated to four groups based on the
position of 2 N-terminal conserved cysteines, this has been
used as the basis for their systematic nomenclature [7, 143].
The two main groups of chemokines are now designated
either CCL, where there is no amino acid separating the
cysteines, or CXCL, where there is one amino acid between
the cysteine molecules.

Chemokines can bind to more than one receptor, and
receptors can bind to more than one chemokine. Receptor
affinity varies between the ligands but does not necessarily
determine the functional potency of the chemokine [32,
130]. In response to ligand binding, the receptors trigger
numerous secondary mediators, which initiate functional
responses such as cell migration. The resulting functions
may differ depending on the cell type and the prevailing
microenvironment [77, 111]. The multiple different combi-
nations of chemokines and receptors, expressed either
simultaneously or sequentially [13], plus the cell type and
the local microenvironment ensure that the chemokine

communication system can deliver a precise and accurate
communication message to the required cell based on local
circumstances, which may be rapidly changing.

Chemokines add additional specificity to the adhesive
interactions initiated by the adhesion molecules during the
recruitment of leukocytes from the circulation. Chemokines
produced within the tissue are transported by transcytosis to
the luminal surface of the endothelium. The transport across
the endothelium is active and may involve the chemokine
binding protein DARC [110]. Once at the luminal surface,
the chemokines are displayed by glycosaminoglycans
(GAGs) [124] at the tips of endothelial processes [95, 96].
This prevents the desensitisation of leukocyte chemokine
receptors by chemokines in the blood stream and focusses
the action of the chemokines on leukocyte adhesion and
emigration. Chemokines have a GAG-binding site as well
as specific receptor binding site [5], and GAG binding has
been shown to be important in vivo [104].

Chemokines presented on the endothelium stimulate
firm adhesion by increasing integrin affinity and avidity
[6, 20, 26, 74] and then the spreading of cells, their
migration to the endothelial cell junction [129] and the
initiation of leukocyte transmigration [23, 24]. More than
one chemokine is likely to be needed for the complete
process of leukocyte extravasation with specific chemo-
kines at distinct steps [142]. It is thought that chemokines
do not need to form a gradient across the endothelium to
enable adherent cells to move from the luminal surface into
the tissue as surface immobilised chemokines and a shear
force may be sufficient for transendothelial migration [24].

Normal retina and immune surveillance

In normal physiology, one function of the immune system
is to recognise and destroy cells that are abnormal (e.g.
transformed tumour cells) or that display foreign or non-self
antigens (e.g. virus-infected cells). This entails recirculation
of relatively long-lived lymphocytes through the blood
stream and lymphatics, moving from one lymph node to
another and to peripheral inflammatory sites. In contrast,
myeloid monocytes and dendritic cells, generated in the
bone marrow, recirculate in the blood for only a few days
before migrating into the tissues, forming extensive net-
works of phagocytic antigen presenting cells (APC). Some
of these cells differentiate into long lived, highly
specialised cells such as the osteoclasts of bone and
microglia of the nervous system. In the tissues, APC may
be stimulated by ingesting apoptotic tissue cells or by
contact with microbes. They then migrate via the lym-
phatics to local draining lymph nodes where interaction
with T and B lymphocytes can occur, and either tolerance to
self-antigens or immunity to altered-self or foreign antigens
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is generated. Immune surveillance must be regulated in
vulnerable tissues such as the brain and retina where tissue
repair cannot take place, so structures that anatomically
separate the central nervous system have evolved. Thus, the
BRB may protect the delicate neural tissue from local,
damaging inflammation but at the cost of defective
peripheral tolerance to retinal antigens. Consequently, the
retina remains vulnerable to autoimmune inflammation,
increasing the importance of the BRB in excluding,
eliminating or suppressing infiltrating inflammatory cells
[15, 99].

Structure and function of the blood–retina barrier

The inner BRB formed at the endothelium is supported by
perivascular cells such as smooth muscle cells, pericytes or
retinal macrophages [53]. Astrocyte foot process contact is
known to be essential for formation of intercellular tight
junctions (TJ) and maintenance of structural integrity [1].
Other complex interactions between other constituents of
the microenvironment surrounding the endothelial cells,
such as the basement membrane, nerve endings, microglial
cells and the extracellular fluid, are all required for the
proper functioning of the barrier. The outer BRB formed at
the RPE cell layer is simpler, the barrier being maintained
by tight junctions between polarised epithelial cells on
Bruch’s membrane. Barrier function develops during
embryogenesis, and once formed, is highly selective
excluding molecules above 300 kDa. It is also effective in
excluding most migrating cells, repopulation of the retina
with bone-marrow-derived cells such as microglia taking
from 6 to 12 months [4, 132], the rate of haematopoetic-
derived cell turnover probably being dependent upon
integrity of the RPE cell layer [134].

In normal retina, two distinct molecular structures form the
physical BRB; these are the TJ and the adherens junctions
(Fig. 1). These closely resemble TJ found in neural tissue in
the brain [46, 102]. The TJ are highly organised pericellular
structures that appear as multilammellar, usually continuous
strands containing several integral membrane proteins that
seal adjacent endothelial or epithelial cells, creating distinct
membrane domains that restrict soluble and ion transport to
apical and basal surfaces and block paracellular passage of
macromolecular fluids and cells. The two major components
are the claudins and the occludins, which are linked via
zonula occludin (ZO) proteins to signalling proteins and the
actin cytoskeleton. The junctional adhesion molecules
(JAMs) are also located in the TJ, JAM A and C being
particularly highly expressed in the RPE consistent with a
role in establishing and maintaining cell polarity [33, 90].
Adherens junctions are formed mainly by cadherins (mainly
VE cadherin), which interact with catenins to bind the
cytoskeleton. PECAM/CD31 expressed by endothelial cells

in the junction also binds to the cytoskeleton via catenins
and has been implicated in the migration of monocytic
myeloid cells [98]. The general structure and regulation of
neural tight junctions in retina and brain has been recently
reviewed [46, 63].

Leukocyte infiltration of normal retina

Despite an apparently intact BRB, lymphocytes have been
shown to infiltrate the normal retina. If both the leukocytes
and the endothelium are normal, leukocytes do not cross the
blood–retina barrier [135, 137], but if lymphocytes are
activated, they are able to initiate a transient breakdown in
the BRB, enabling sampling of the retinal environment and
possibly further recruitment of inflammatory cells [103,
139]. The mechanisms controlling this sampling or immune
surveillance of the retina in the absence of retinal
inflammation are not clear, and similar observations have
been made in the CNS [65, 66]. Using scanning laser
ophthalmoscopy, we have shown that circulating, activated
T cells induce changes in the retinal vasculature that allow
T cell firm adhesion to venule endothelium without rolling
(secondary tethering), inferring a role for chemokine or
integrin signalling in T cell capture and subsequent
diapedesis in the absence of selectin-mediated rolling.
Furthermore, recirculation of as few as 1×105 activated
cells for 8–16 h is sufficient to allow a permissive
endothelium to develop, allowing T cell adhesion and
diapedesis. This compares with a minimum of 1 h for
diapedesis when both leukocytes and endothelium are
activated [138]. Interestingly, retinal antigens have been
identified as having chemotactic properties for T cells via
chemokine receptors, providing a mechanism for recruit-
ment of lymphocytes to the retina in the absence of
inflammation [68, 101]. Whether this occurs in vivo and
contributes to induction of autoimmune inflammation
remains to be proven but is consistent with the observation
that migration of activated retinal antigen-specific T cells
into the retina is not enhanced compared with non-
specifically activated T cells [103].

Leukocyte infiltration of the retina during inflammation

Various inflammatory conditions in the eye involve
dysfunction of the BRB, and in addition to overt inflam-
mation of the retina in diseases such as uveoretinitis,
immune dysfunction leading to vascular permeability and
angiogenic changes is linked to pathologies as diverse as
retinopathy of prematurity, ARMD and diabetic retinopa-
thy. In premature infants, where the retinal vasculature is
underdeveloped, changes in oxygen level in the retina can
signal release of vascular endothelial growth factor (VEGF)
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and development of abnormal vessels [21], and anti-VEGF
therapies for ARMD, although possibly harmful to normal
circulation, are widely used [88]. VEGF mediates increased
vaso-permeability through p38 MAP kinase and ERK1/
ERK2-dependent mechanisms that alter occludin expres-
sion. VEGF activity, in turn, is regulated by eNOS-
dependent dephosphorylation of the VEGF receptor-2,
indicating close regulation of these pathways in normal
retina [11, 14]. Decreased localisation of occludin at both
endothelial and RPE cell borders has been shown to be
linked to increased serine and threonine phosphorylation in
occludin, which in turn reduces binding to ZO-1 and
connection with the cytoskeleton [46].

Angiogenesis and inflammation

VEGF can be secreted by many retinal cell types under stress,
including pericytes, astrocytes and RPE, and although not
normally considered an inflammatory mediator, VEGF is
chemotactic for monocytes, adhesion and migration through
endothelium being mediated by increased integrin expression
at sites of angiogenesis [64]. VEGF164, in particular, has
been shown to induce inflammation and cellular immunity
during pathological but not physiological ischaemia- induced
sites of retinal angiogenesis [70]. Thus, pathologies involving
VEGF are increasingly considered to have an inflammatory
component. However, in the absence of adaptive immune
responses to antigen in these non-infectious conditions, the
inflammatory response is limited to the immediate vicinity by
the naturally immunosuppressive ocular microenvironment,
avoiding the mononuclear cell influx that characterises
infectious or autoimmune inflammation [15, 120].

Diabetic retinopathy caused by systemic changes in
metabolic and cardiovascular control is a well-described
complication of diabetes and also linked to ischaemic release
of VEGF, leukostasis and BRB breakdown [69, 105].
Hyperglycemia and advanced glycation end products also
promote pathology in a number of cell types including
endothelium, neurons and glia. Thus, retinopathy may be
considered a chronic inflammation involving all major cell
types within the retina [52]. What first triggers retinal
microvascular changes and breakdown of the BRB in diabetic
retinopathy is unclear. In a rat model of diabetes, retinal
vascular endothelial cells and RPE showed elevated levels of
the matrix metalloproteinases (MMP) MMP-2, MMP-9 and
MMP-14 with specific degradation of occludin [56]. Ad-
vanced glycation end products also increased leukostasis
through NFκB upregulation of integrins as early events [97].

There is also a direct relationship between the VEGF and
prostaglandin-cyclo-oxygenase (COX-2) pathways. These
pathways have vasoactive effects and interact with the nitric
oxide synthase pathway (NOS), which in turn also
increases vasodilation [57, 128]. Endothelial NOS (eNOS)

is constitutively expressed by endothelium and is important
for maintaining normal vascular physiology, in part by
maintaining smooth muscle tone, but the inducible isoform
(iNOS) has also been shown to have a predominant role in
leukostasis and BRB breakdown in diabetic iNOS knock-
out mice [80]. Expression of ICAM-1 and protein levels of
all isoforms of NOS were increased in diabetic mouse
retinas whilst occludin and ZO-1 protein decreased. These
effects were prevented by the NOS inhibitor N(G)-nitro-L-
arginine methyl ester (L-NAME) and absent in the iNOS
knock-out diabetic mouse.

Leukocyte infiltration of the retina in uveoretinitis

Endogenous posterior uveoretinitis (EPU) or more correct-
ly, posterior intraocular inflammation, can take many
clinical forms such as multifocal choroiditis, sympathetic
ophthalmia and pars planitis. These clinical forms have
features in common, including retinal vasculitis, macular
edema, focal chorioretinal infiltrates and inflammatory cells
and exudates in the vitreous, which develop as a result of
BRB breakdown. EPU appears to be autoimmune- or
immune-mediated rather than infectious in nature. Howev-
er, it is becoming clear that infectious agents may be linked
to autoimmunity through molecular mimicry, polyclonal
activation and failure of bystander suppression [49].

Experimental autoimmune uveoretinitis (EAU) is a
Th1-type organ-specific autoimmune disease induced by
immunisation with retinal antigens such as S antigen and
interphotorecepter retinoid-binding protein (IRBP), at distant
sites, in susceptible strains of rats or mice. It serves as an
animal model of posterior intraocular inflammation, closely
mimicking effects seen in the human situation [17, 50]. The
BRB is breached in EAU, allowing leukocytes, both CD4+
T lymphocytes and macrophages to move into the retina,
resulting in extensive tissue damage [38, 83]. Macrophages
are thought to be the main effector cell responsible for tissue
damage. EAU can also be induced by adoptive transfer of
5×105 retinal antigen-specific T cells [16, 17, 50, 103, 114,
122], and in particular, Th1 cells [18].

Mechanisms of leukocyte migration
across the blood–retina barrier in uveoretinitis

Adhesion molecules involved in leukocyte–endothelial
cell interactions

Appropriate adhesion molecule expression on both leuko-
cytes and cells of the BRB is clearly important in enabling
the migration of leukocytes into the inflamed retina.

During the initial stages of the inflammatory reaction,
the endothelium is activated by locally produced cytokines,
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TNFα and IL-1β in particular. The cytokines up-regulate
adhesion molecules, particularly the selectins [108] and
chemokines on the luminal surface of the endothelium.
Leukocytes in the circulation then respond to the activated
endothelium. In vitro studies have shown clear differences
in adhesion molecule expression between human RPE and
retinal endothelial cells [85]. ICAM is constitutively
expressed at high levels on RPE cells, whereas endothelial
cells expressed ICAM-1 only after induction with IFNγ.
Binding of CD4+ lymphocytes to RPE was dependent on
ICAM-1, although after maximal stimulation, there was
also an ICAM-1-independent component. Migration of T
lymphocytes across retinal endothelial cells in the rat used
both LFA-1-dependent and LFA-1-independent mecha-
nisms [58, 61, 94]. Migration of T lymphocytes across
unstimulated RPE was dependent on ICAM-1 and LFA-1,
whereas after activation of RPE with IFNγ, migration was
dependent on both ICAM-1 and VCAM-1 [37].

Receptors for various integrins and adhesion molecules
are up-regulated on human RPE and vascular endothelial
cells in vivo during ocular inflammation such as sympa-
thetic ophthalmia. These include enhanced or de novo
expression of ICAM-1, VCAM-1, CD62E and CD44,
which in vitro, may be induced by the cytokines IL-1 and
TNF-α. Kuppner et al. [79] compared adhesion molecule
expression in acute and fibrotic sympathetic ophthalmia
with normal human eyes. Expression of several integrins of
the VLA family, which form receptors for extracellular
matrix proteins, were found to be expressed by the RPE.
However, VLA-4, the ligand for VCAM-1 and fibronectin,
VLA-5 (fibronectin) and VLA-6 (laminin), which were
increased on endothelium in the inflamed eyes, were not
up-regulated on RPE cells. In contrast, ICAM-1 and CD44
expressions were greatly enhanced. Electron microscopy
studies have also shown differences in the manner in which
leukocytes cross the retinal endothelium and the RPE [40].
Inflammatory cell diapedesis through Bruch’s membrane
involved separation of its constitutive layers, migration
through the pores in the membrane and between the RPE
cells without apparent significant physical disruption of the
RPE cell layer. Retinal vascular diapedesis, however, involved
changes in post-capillary venules to high endothelial cell
morphology, indicating endothelial cell activation [93], with
migration appearing to be via the paracellular route [60]. As
RPE cells fail to express iNOS during inflammation whilst
endothelium does, [19, 67] it has been proposed that the RPE
maintains a predominantly immunosuppressive role during
inflammation [84].

Mechanisms of leukocyte subset migration into the retina

To study the role of adhesion molecules and leukocyte
induced breakdown of the BRB, we have developed

scanning laser ophthalmoscopy (SLO) methods for use in
rodent EAU models. In this technique, syngeneic fluores-
cently labelled (eGFP CFSE or calcein AM) splenocytes, T
helper cell subsets or monocytes are injected into the tail
vein of normal or transgenic mice at various disease stages.
These transferred cells can then be tracked in vivo in real-
time and their interaction with the retinal vascular endothe-
lium quantified in terms of rolling efficiency, rolling
velocity and adhesion. These images can then be analysed
to investigate the role of various molecules involved in
leukocyte recruitment at the BRB [131]. This can be
followed by confocal microscopy of retinal wholemounts,
which allows both the quantification of cells entering the
retina and further immunostaining to reveal changes in
phenotype of endothelial cells and trafficking leukocytes.

The earliest changes observed are 24 h prior to
detectable leukocyte infiltration. Vascular changes occur,
which reduce shear stress in retinal veins and venules from
approximately 30 to 20 dyn/cm2. Although still consider-
ably higher than in normal fenestrated endothelium, as
shear stress falls, rolling and sticking efficiencies of
leukocytes increase in the post-capillary venules, correlat-
ing with selective upregulation of P and E selectin and
ICAM-1 on these vessels, particularly at sites of extrava-
sation [137]. This effect is not observed in arteries or
arterioles, although ICAM, VCAM, PECAM, E selectin, P
selectin and CD44 are also up-regulated on other retinal
endothelium as EAU progresses [135, 140]. As CD44 is
widely expressed on most leukocyte subsets, it is required
for leukocyte rolling under flow and is involved in early
stages of extravasation in non-neuronal tissues [34, 35]. We
investigated the role of CD44 in retinal inflammation in our
model. Treatment of a mixed leukocyte population with
neutralizing antibody against CD44 significantly suppressed
the rolling of these cells on inflamed retinal venules and
reduced infiltration into the retina. The importance of CD44
in leukocyte recruitment in EAU was also supported by the
fact that EAU severity was diminished by administration of
the anti-CD44 antibody at the stage of disease in which
leukocytes are first seen to infiltrate the retina [140].

Both Th1 cells and Th2 subsets of T lymphocyte are
implicated in the pathogenesis of uveitis [10, 27]. So to
investigate the role of adhesion molecules in the trafficking
of different T cell subsets across the BRB in Th1-mediated
EAU, naive CD4+ T lymphocytes were isolated from
lymph node cells and polarised in vitro into Th1- and
Th2-like cells. Surface PSGL-1 and LFA-1 were up-
regulated on both populations but expressed at higher
levels on Th1-like cells, whereas CD44 expression was up-
regulated to a greater extent on Th2 cells. Pretreatment of
the polarised T lymphocyte populations with anti-PSGL-1
inhibited rolling and infiltration of Th1-like cells but not
Th2, providing direct in vivo evidence for the inability of
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Th2 to respond to P/E selectin despite increased expression
of PSGL-1. Anti-LFA-1 pretreatment inhibited infiltration
of both Th1- and Th2-like cells, but this inhibition was
more substantial for the Th-1 cells. Thus, preferential
recruitment of Th1 cells in EAU is mediated by PSGL-1:
P/E selectin, whereas non-selective trafficking of activated
T cells (both Th1 and Th2) across the BRB is mediated by
CD44:CD44r and LFA-1:ICAM-1 [137].

Monocytes are also necessary for full expression of
disease in EAU. We have established a model for studying
bone-marrow-derived monocyte trafficking in vivo, and
found that, whereas T cells, whether antigen specific or not,
roll on inflamed endothelium and rapidly migrate into the
retina, monocytes can only traffic into the inflammatory site
once they have acquired a specific phenotype [136]. This
phenotype was consistent with the CCR2+ phenotype
described by others but was also found to be a constitutive
time-limited property of the transferred monocytes and
independent of an existing inflammation. Monocytes
purified from bone marrow failed to roll on inflamed
endothelium until they had undergone in vivo recirculation
for at least 24 h, with maximum retinal infiltration not
occurring until 48-h post-transfer. Of note was the ability of
transferred monocytes to undergo further differentiation
during trafficking into the retina. Transferred cells matured
into classical tissue macrophages or CD11c+ dendritic cells
that persisted within the retina for several days. Several
striking contrasts between inflammatory monocyte and
Th1 cell trafficking were observed. Monocyte rolling in
inflamed venules was faster and CD62-L dependent rather
than LFA-1 dependent. While PSGL-1 was found to play a
role in regulating diapedesis to the inflammatory site,
CD62-L was shown to have a key role in regulating
recruitment of monocytes to the lymphoid tissue from the
circulation during inflammation (manuscript submitted for
publication). These observations reveal that different
molecular mechanisms are involved in leukocyte subset
adhesion to endothelium and migration into the tissues.

Mechanisms of blood–retina barrier breakdown in EAU

Whether BRB breakdown is necessary before lymphocytes
and monocytes can infiltrate or whether infiltration results
in BRB breakdown and free movement of leukocytes
between the circulation and the retina is controversial [60,
86]. Blood flow within the CNS and, by extension the
retina, is regulated by interactions between neurons, glia
and the microvasculature, contact between the microvessel
wall and perivascular endfeet of astrocytes, mediated by
agrin, being important for maintaining barrier function in
the brain [1]. Other cellular components include pericytes
and perivascular macrophages, contributing to what has
been termed the “neurovascular unit”. Astrocytes can

secrete a range of cytokines and chemical mediators that
up-regulate TJ and polarised expression of transporters and
other enzyme systems that control transendothelial transport
of molecules and ions to maintain a metabolic barrier [62].
In BBB disruption, agrin is lost from the abluminal surface
of the endothelial cells adjacent to the astrocytic endfeet
and contact lost. In the brain, bradykinin activation of
astrocytes has been implicated in BBB breakdown in stroke
or trauma, but the molecular signals responsible for BRB
breakdown in autoimmune inflammation are still not
understood [2].

Using our in vivo cell trafficking model, we have studied
the relationship between changes in vascular permeability,
adhesion molecule expression and leukocyte migration into
the retina. As described above, circulation of activated
lymphocytes induces changes in the endothelium of the
retinal venules, allowing transient breakdown of the BRB.
Where T cells are non-antigen specific, this occurs in the
absence of cell rolling, without any reduction in shear stress
and without generalised inflammation of the retina occur-
ring. In contrast, in EAU where retinal autoreactive T cells
are present, cell rolling occurs, and extravasation of T cells
in the venules (but not arterioles) occurs together with BRB
breakdown in these venules as evidenced by dye leakage
and an influx of inflammatory cells [135].

BRB breakdown involves changes in levels of expres-
sion and localisation of TJ proteins occludin-1, claudins
and ZO-1 [116]. To elucidate mechanisms of BRB and its
regulation by inflammatory cells and mediators in vivo, we
examined wholemount retinas and choroids from normal
and EAU mice. Using confocal microscopy, we showed
that in normal retina, TJ proteins were evenly distributed
along endothelial cell margins with increased expression in
tri-cellular corners, hypothesised to be a “weak spot” in the
TJ network. In EAU, disruption of TJ proteins only
occurred in the venules where leukocyte infiltration was
occurring. Western blot analysis confirmed that claudin 1/3
and occludin proteins were reduced. ZO-1 protein expres-
sion was not reduced but redistributed from the cell
membrane and the TJs to the cytoplasm [133]. Examination
of venules in retinas in early EAU (with few infiltrating
cells) showed that loss of occludin-1 from venule TJ
occurred at the point of contact with adherent leukocytes
undergoing transendothelial migration. In the absence of
other migrating inflammatory cells, TJ appeared to reform.
In contrast, in areas of the retina where there was significant
inflammatory cell infiltration, confocal microscopy re-
vealed that occludin-1 was lost from venules but not
capillaries and arterioles. This correlated with loss of
astrocyte foot process contact with the endothelium of the
venule [133]. These studies are consistent with a major role
for venule endothelium in leukocyte recruitment to the retina
and imply that breakdown of the BRB in uveitis is an active
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event triggered by adherent leukocytes rather than a passive
event driven solely by local cytokine microenvironment.

The role of chemokines in leukocyte migration
across the BRB in EAU

Chemokines are vital for the development of a focussed
immune response, and certain chemokines are associated
with inflammatory responses and the attraction of inflam-
matory cells to the site of infection or injury [91, 111].
Chemokines can be produced by both resident cells at the
inflammatory site, such as epithelial cells, endothelial cells,
fibroblasts and resident macrophages and dendritic cells as
well as early infiltrating macrophages and neutrophils and
then at later stages, infiltrating T cells. Chemokine
production may be via toll-like receptors [36, 71, 115] or
via inflammatory cytokines such as IL-1, TNFα and IFNγ,
in the case of a Th1-type response or IL-4, IL-5 and IL-13
in the case of a Th2-type response [8, 107, 109]. Thus, the
inflammatory stimulus will generate a chemokine “finger-
print”, which will be the basis for determining the tailored
leukocyte response [22, 111].

Production of chemokines is up-regulated in the murine
eye in EAU and generally shows, as expected, a Th1-like
pattern of expression; for example, CCL2, CCL3 and CCL5
[28]. CCL3 and CCL2 were associated with retinal and
choroidal vessels as well as with infiltrating cells, whereas
CCL5 was associated predominantly with infiltrating cells
[28]. RT-PCR analysis found expression of mRNA tran-
scripts for these and several other chemokines including
CXCL9, CXCL10 CCL6, CCL9, CCL19 and CCL22 is
also up-regulated, although some of these studies were
carried out with whole eyes [31, 51]. Recipients receiving
Th1 cells had a similar pattern of expression [51]. Laser
capture microdissection showed that both RPE and infil-
trating leukocytes expressed chemokine transcripts in
distinct but overlapping patterns [51]. In vitro, human cells
of the BRB, both RPE and retinal microvascular endothelial
cells respond to pro-inflammatory cytokines IL-1β, TNFα
and IFNγ by producing substantial levels of CCL2, CCL5,
CXCL8, CXCL10 and CXCL1 [29, 41, 42]. Receptors for
these chemokines are also up-regulated in EAU. Expression
of mRNA transcripts for CCR1, CCR5, CXCR3, CXCR2,
CCR6, CCR8 and CCR2 was detected in whole eyes [51],
and cell surface expression of CCR5, CXCR3 and CCR2
on infiltrating cells was detected by immunohistochemistry
(pers. comm. IJC).

We have investigated the importance of CCL3 in
recruitment of leukocytes in vivo at the inflamed BRB
using SLO. We showed that CCL3, a ligand for CCR5, was
involved in leukocyte recruitment at the BRB and was
linked to the inflammatory process and disease pathogen-
esis in EAU [30]. The effect of short-term anti-CCL3

treatment was examined by injecting anti-CCL3 antibody
into mice with EAU 1 h prior to tracking a labelled
population of activated leukocytes (splenocytes from mice
with EAU) in real-time using SLO. This treatment inhibited
leukocyte slowing and accumulation and subsequent ex-
travasation of leukocytes at the blood–retina barrier. This
was effective predominantly in the post-capillary venules,
which have been shown to be the main site of passage of
leukocytes across the BRB. Long-term anti-CCL3 treatment
also prevented decreased leukocyte velocity and reduced
disease severity as measured clinically, histologically and in
terms of BRB breakdown [30].

To define this further, we examined the trafficking of
Th1-like cells, polarised in vitro. These cells, which expressed
high levels of CCR5, were labelled and adoptively transferred
and their trafficking monitored in vivo at an early disease stage
in EAU using SLO. Treatment of the cells with antibody
against CCR5 prior to transfer resulted in a reduction in their
infiltration into the retina. However, rolling velocity, rolling
efficiency and adherence of the cells to retinal endothelium
was not reduced. CCR5 is clearly important for Th1 cell
recruitment at the BRB and acts at the level of transendothelial
migration rather than at the earlier stage of rolling on the
endothelium [31]. This is consistent with other work on the
arrest of monocytes or Th-1-like T cells by CCL5 (RANTES)
immobilised to activated endothelium under flow conditions.
Arrest was mediated predominantly by CCR1, whereas
CCR5 was responsible for spreading. This was irrespective
of the degree of expression of the receptors on the different
cell types [127].

Interestingly, studies in which CCR1/CCR5 was blocked
in EAU have emphasised the fact that the action of a
chemokine and its receptor in cell recruitment at the BRB
may differ dramatically depending on the antigen used to
induce uveitis and the stage of the disease and the resulting
microenvironment. In Lewis rats in which EAU was
induced with S-antigen peptide, treatment with the CCR1/
CCR5 receptor antagonist Met-RANTES was effective in
reducing uveitis in the efferent phase, possibly inhibiting
migration of activated T cells or monocytes into the retina
[39]. When EAU was induced with IRBP peptide, however,
Met-RANTES appeared to affect activation of T cells,
reducing intraocular inflammation if administered early in the
initiation phase of the response but moderately enhancing
uveitis if given during the efferent phase [39]. Antibody
against RANTES given during the efferent phase in C57BL/6
mice immunised with IRBP peptide also led to exacerbation
of EAU, and this was attributed to a change in the ratio of T
cell subsets recruited favouring CD4 over CD8 T cells [117].

Monocyte trafficking across the BRB has also been
examined, and in particular, the role of two chemokine
receptors which have been shown to be involved in
monocyte recruitment, CCR2 and CX3CR1. This type of
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experiment is constrained by the number of monocytes,
which can be isolated from the blood. However, when in
vitro-cultured bone marrow monocytes, non-activated peri-
toneal monocytes and freshly isolated bone marrow
monocyte precursors were compared, only the latter
precursors continued to circulate and trafficked efficiently
to the inflamed retina in EAU [136]. These were, therefore,
labelled and used to investigate trafficking in EAU, and
interestingly, it was found that these cells could not initially
migrate across the BRB and required 24–48 h in vivo
before they started to infiltrate the inflamed retina as
described above. This coincided with an increase in
expression of CCR2 on these cells. This was only a
transient increase, and CCR2 expression and the migratory
phenotype were lost 72 h after adoptive transfer [136].
However, evidence from further studies indicates that
although CCR2 may improve the efficiency of monocyte
transendothelial migration at the inflamed BRB, it is not
essential for monocyte emigration at this site (manuscript in
preparation).

This would confirm findings from other inflammatory sites
in which it has been shown that although CCR2-positive
monocytes may be recruited preferentially to an inflammatory
site, CCR2-negative monocytes are also able to traffic to these
sites [106, 112, 123]. CCR2 also has a role in facilitating the
egress of monocytes from the bone marrow, with more
monocytes present in the bone marrow in CCR2−/− mice and
fewer circulating even before infection [112], but its role in
monocyte recruitment to an inflammatory site is, in addition
to this, and may be mediated by CCL7 (MCP-3) and CCL2
(MCP-1) [125]. In some inflammatory situations, CCR2 is
clearly more critical for monocyte recruitment than we show
at the BRB; for example, for recruitment into the peritoneum
in response to thioglycolate [125]. Thus, reliance on CCR2
for recruitment of monocytes may vary depending on the
particular inflammatory stimulus and the microenvironment
that is generated.

CX3CR1 has also been implicated in the trafficking of
monocytes, and although it has been proposed to be
important for immune surveillance [55], there are also
reports that it has a role in recruitment in an inflammatory
situation; for example, in atherosclerosis [25, 81], crescen-
tic glomerulonephritis [47] and in cerebral ischaemia [118].
It is possible that this receptor is important for the
recruitment of a subpopulation of inflammatory CCR2-
negative monocytes. However, recently, it has been shown
in an atherosclerosis model that although CX3CR1-positive
monocytes can enter atherosclerotic plaques, CX3CR1 was
not necessary for this entry. In contrast, CCR2-positive
monocytes, which also express substantial levels of
CX3CR1 [55], required CX3CR1 in addition to CCR2 for
the accumulation of monocytes in these lesions [123]. In
EAU, our studies to date indicate that CX3CR1 is not

essential for the trafficking of monocytes into the inflamed
retina (manuscript in preparation).

Conclusions and implications for design
of novel therapies

Current treatment for uveitis is still dependent in the most
part on systemic, non-specific immunosuppression. Addi-
tional therapies such as cyclosporin A, tacrolimus and
rapamycin may act by interfering with the production and
action of cytokines, particularly interleukin-2, targeting T
cell function. Mycophenolate mofetil, an antimetabolite
affecting purine synthesis, is also valuable. Other immuno-
suppressants such as azathioprine, cyclophosphamide and
chlorambucil have severe side effects restricting their use.
Blockade of TNF-α is also effective at least in the short
term and now used clinically in different forms. Despite the
usefulness of these therapies, they are all relatively non-
specific, and in recent years, the quest for specific, tailored
therapies for uveitis has been paramount.

The ability of leukocytes to migrate across the BRB
depends on many different factors, the importance of which
will vary depending on the leukocyte subset, the specific
site and the microenvironment created as a result of the
inflammatory stimulus and genetic background. Therapies
designed to block the passage of cells into the inflamed
retina will, therefore, need to be tailored to the situation to
increase their potential for success. Understanding in depth
the stages in the process of leukocyte migration across the
BRB will be fundamental for this. It is clear that there is a
degree of redundancy in adhesion molecule use as well as
in cytokine, chemokine and integrin signalling, and
different inflammatory cell subsets will require different
strategies to block their recruitment and effector functions.
However, some therapies targeting key intracellular signal-
ling pathways may be beneficial. For instance, lymphocyte
trafficking is dependent upon endothelial cell G-protein
signalling, and recently, lovastatin has been shown to
reduce retinal disease in the mouse model of EAU.
Lovastatin inhibited the synthesis of precursors required
for prenylation and post-translational activation of endo-
thelial Rho GTPase, an essential step in ICAM-1-mediated
leukocyte migration [3, 54]. Although different statins may
have different effects in different diseases, they are proven
safe drugs and provide attractive therapeutic options.

Some therapies that target specific aspects of leukocyte
migration are already in use and in clinical trials in some
inflammatory diseases. Although targeting some adhesion
molecules has not always proved successful [100, 141],
there are some promising results. These include natalizu-
mab, directed against VLA-4, which is in use for MS and
Crohn’s despite a low risk of progressive multifocal
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leukoencephalopathy, a viral infection of the CNS [73]; and
efalizumab, a recombinant humanised antibody, which
binds to LFA-1 preventing binding to ICAM-1, is in use
for the treatment of psoriasis [75]. The possibility of
targetting chemokines and their receptors to prevent
recruitment of inflammatory cells has also received much
attention from pharmaceutical companies. For example, a
number of compounds with anti-CCR2 activity have been
developed and patented with use planned in multiple
sclerosis and atherosclerosis [48]. An antagonist of CCR5
(maraviroc) is also available, which has been designed for
use in HIV [43]. These drugs may have potential use in
inflammatory conditions involving the BRB.
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