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Abstract Autoimmune disorders are characterized by the
destruction of self-tissues by the immune system. Multiple
checkpoints are in place to prevent autoreactivity under
normal circumstances. Coexpression of activating and
inhibitory Fc receptors (FcR) represents such a checkpoint
by establishing a threshold for immune cell activation. In
many human autoimmune diseases, however, balanced FcR
expression is disturbed. Analysis of murine model systems
provides strong evidence that aberrant FcR expression can
result in uncontrolled immune responses and the initiation
of autoimmune disease. This review will summarize this
data and explain how this information might be used to
better understand human autoimmune diseases and to
develop novel therapeutic strategies.
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Introduction

Arthritis, multiple sclerosis (MS), autoimmune diabetes,
and systemic lupus erythematosus (SLE) are autoimmune
diseases that affect millions of people worldwide and
require continuous medical attention. Linkage and associ-
ation studies have established that several genetic and non-
genetic factors contribute to the development of disease [1].
The importance of the adaptive and innate arms of the

immune system in these processes is highlighted by the fact
that immunosuppression is an effective treatment for these
diseases [2]. Systemic immune suppression, however,
renders the patient more susceptible to infections, and
treatment has to be stopped during an acute infection,
leading to the reoccurrence of autoimmune symptoms.
Thus, more specific approaches to eliminate self-reactive
cells might have fewer side effects. Indeed, depletion of B
cells has shown promising results for autoimmune diseases
such as SLE [2, 3]. Research in mouse models that
recapitulate the human disease phenotypes has lead to
important insights into the mechanisms that cause an
uncontrolled immune response and destruction of self-
tissues. A normal immune response is characterized by a
delicate balance of activating and inhibitory signals, which
will determine the strength of the following response [4]. It
must be strong and long lasting enough to eliminate foreign
pathogens or malignant cells but controlled and specific
enough to avoid damage to non-infected or healthy tissues.
Several control mechanisms prevent autoreactive or over-
whelming immune responses, and potentially harmful cells
can be deleted or inactivated at central or peripheral
checkpoints. During early B cell development in the bone
marrow, for example, cells expressing self-reactive recep-
tors are eliminated by mechanisms such as receptor editing,
deletion, or anergy [5–7]. It is widely accepted, however,
that this process is incomplete, and self reactive cells can
escape into the periphery; in addition, autoreactive B cells
can be generated de novo in the periphery during the
germinal center reaction [8, 9]. Therefore, other check-
points must be in place continuously to prevent the
accumulation and activation of autoreactive cells. In
particular, B cells that secrete class-switched self-reactive
antibodies, which can trigger inflammatory effector func-
tions, have to be tightly regulated [10, 11].
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Gene deletion studies in mice have identified the
important role of negative regulatory proteins, such as
CD5, CD22, CD72, PD-1, CTLA-4, and the inhibitory
FcγRIIB (CD32B), which control signals triggered by
activating receptors, thus, setting a threshold for immune
cell activation. Lack of these proteins results in autoim-
mune phenotypes and uncontrolled immune responses [12–
17]. The hallmark of this protein family is the presence of
an immunoreceptor tyrosine-based inhibitory motif (ITIM)
[18]. The Fc receptor (FcR) system has become a paradigm
for such simultaneous triggering of activating and inhibito-
ry signals, and several proteins of this family have been
suggested to be associated with the incidence or severity of
human autoimmune disorders, which will be the focus of
this review. Besides the FcR family, other players of the
innate and adaptive immune system have been associated
with autoimmune disorders in mice and humans, which is
reviewed elsewhere [19, 20].

Research over the recent years has established that FcRs
are central players in several processes that, if not regulated,
can lead to the appearance of autoreactive antibodies or
autoimmune phenotypes [21, 22]. These range from a
failure to delete or prevent the expansion of self-reactive B
cells to maintaining dendritic cells (DCs) in an immature
and tolerizing state; in addition, the rapid clearance of
potential autoantigens such as apoptotic cells by macro-
phages is important to prevent the initiation of autoimmune
processes [23].

A question of balance—coexpression of activating
and inhibitory Fc receptors

The family of FcRs is well conserved among different
species [11], although the human family is most numerous
due to gene duplication and diversification processes [24].
To date, FcRs for all antibody isotypes have been
identified. As IgA and IgE FcRs will be discussed
elsewhere in this issue, this chapter concentrates on the
FcRs for IgG, the FcγRs. Generally, FcRs can be divided
into two classes: the activating and the inhibitory FcRs.
Most activating receptors cannot signal autonomously and
have to associate with additional adaptor molecules to be
functional. A notable exception to this rule is the human
FcγRIIA, which can transmit activating signals by itself.
Therefore, a functional FcR consists of a ligand binding α-
domain associated with signaling adaptor molecules con-
taining immunoreceptor tyrosine-based activation motifs
(ITAM). Depending on the cell type, the associated
signaling adaptor molecules vary. Whereas in the majority
of cells, such as monocytes, macrophages, neutrophils, and
DCs, FcRs are associated with the common gamma chain
(γ-chain); in human natural killer (NK) cells, FcRs are

found in combination with the zeta chain (ζ-chain). In
addition to the signaling function, these molecules are
important for cell-surface expression of the respective α-
chains. Animals deficient in the γ-chain lack cell surface
expression of all activating FcγRs and several other non-
FcR-related proteins such as PIR-A and NK cell cytotox-
icity receptors [22, 25]. As expected, these animals
demonstrated significant defects in antibody-dependent
effector cell responses [26–30]. The inhibitory receptor is
a single chain molecule that contains an ITIM in its
cytosolic tail [18].

Humans have eight genes that encode Fcγ-receptors
(FcγRIA/IB/IC, FcγRIIA/B/C and FcγRIIIA/B) located on
chromosome 1. The majority of other species, including the
mouse, have four different classes of IgG FcRs that
correspond to their human counterparts: FcγRI (CD64),
FcγRII (CD32), FcγRIII (CD16), and FcγRIV. FcγRIV is a
recently identified receptor with intermediate affinity
(107 M−1) and restricted subclass specificity. Based on its
sequence similarity, it could be considered the mouse
homologue to human FcγRIIIA [31–33]. Whereas FcγRI
displays high affinity for the antibody constant region
(108–109 M−1), FcγRIIB and FcγRIII have a much lower
affinity (∼106 M−1) [34, 35]. The low-affinity Fc-receptor
genes are clustered in close proximity to each other in
syntenic regions on chromosome 1 in humans, chimpan-
zees, and mice. In contrast, the high-affinity FcγRI is
located on chromosome 3 in mice and chromosome 1 in
humans and chimpanzees [11]. This Fcγ-receptor complex-
ity is mirrored by the existence of several IgG isotypes that
show differential binding to FcγRs. In the mouse, the high-
affinity FcγRI exclusively binds IgG2a, the medium-affinity
FcγRIV binds IgG2a and IgG2b, and the low-affinity
receptors FcγRIIB and III bind IgG1, IgG2a, and IgG2b
[11]. In humans, IgG1 and IgG3 bind better to FcRs than
IgG2 or IgG4. However, due to the presence of multiple
FcR alleles that influence the antibody–FcR interaction, the
situation is more complex [10]. As will be discussed later,
some of these alleles show a significant association with
autoimmune diseases, which allows to draw some con-
clusions about the role of antibody–FcR interactions in
these disorders.

Establishing the threshold for cell activation: activating
and inhibitory Fc-receptor signaling

As indicated, activating and inhibitory FcRs are coex-
pressed on the same cell. Thus, immune complex (IC)
binding will result in simultaneous triggering of activating
and inhibitory signaling pathways (Fig. 1). Factors that
determine whether this coengagement results in cell
activation or inhibition are the relative affinities of the
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antibody isotype to specific FcRs, the expression level of
activating and inhibitory Fc-receptors, and the cytokine
environment, which can influence their relative expression
levels [11]. Moreover, differential antibody glycosylation
during an inflammatory response can influence the anti-
body–FcR interaction and thus regulate antibody activity in
mice and humans [36]. Effector responses controlled by
these opposing signals most prominently include degranu-
lation of mast cells and neutrophils, release of cytotoxic
mediators and inflammatory cytokines by macrophages,
antibody dependent cellular cytotoxicity (ADCC), DC
activation, phagocytosis, and antigen presentation [22].

Signaling pathways of activating FcRs

The affinity of the majority of activating FcRs for
monomeric antibodies is not sufficient for stable binding
and induction of signaling. High-affinity receptors, like
FcγRI and FcɛRI, can associate with monomeric IgG or
IgE antibodies, but activating signals are only triggered
upon replacement of bound IgG by ICs (in the case of

FcγRI) or upon allergen binding and concomitant cross-
linking of cell-surface-bound IgE [37, 38]. Ligands that
bind with low affinity cannot trigger sustained receptor
aggregation and might even behave as antagonists [39].
FcR aggregation by ICs induces a relocation into cell
membrane subdomains called lipid rafts that are enriched in
signaling molecules such as SRC-protein kinases (Fig. 1a)
[40]. Tyrosine residues in the ITAM motif of the γ-chain
then become phosphorylated by SRC kinases, creating SH2
docking sites for the subsequent recruitment of SYK
kinases. Depending on cell type and the receptor in
question, different members of the SRC-kinase family,
such as LYN, HCK, or LCK, are involved in phosphory-
lation of the γ-chain (Fig. 1a). This enables members of the
SYK-kinase family to bind and to recruit and phosphorylate
a number of downstream targets including the linker for
activation of T cells, multi-molecular adaptor complexes,
and members of the BTK and TEC-kinase family [41–43].
Important downstream events triggered by SYK-mediated
activation of phosphatidylinositol 3-kinase and phospholi-
pase-Cγ (PLCγ) are sustained calcium release and protein
kinase C activation. Moreover, the Ras–Raf–MAPK

Fig. 1 Signaling pathways of activating and inhibitory FcRs. a Immune
complex triggered crosslinking of activating FcRs induces phos-
phorylation of the ITAM motif by members of the SRC-kinase family,
resulting in activation of downstream signaling events and cell
activation. b Simultaneous triggering of the inhibitory FcR interferes
with cell activation by recruitment of the phosphatase SHIP and

inhibition of activating signaling pathways. The strength of activating
versus inhibitory signals triggered by immune complexes is deter-
mined by the affinity of individual antibody isotypes to activating and
inhibitory FcRs and other factors such as the cytokine environment
(see text for details)
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pathway becomes activated through Sos present in the
multimolecular adaptor complex [22, 44].

Inhibitory signaling pathways

Depending on the cell type, alternatively spliced forms of
the inhibitory FcR, FcγRIIB, have been described, which
have a differential capacity to endocytose bound ICs
(termed FcγRIIB-1 and FcγRIIB-2). FcγRIIB-1 is
expressed on B cells, whereas the endocytic FcγRIIB-2
shows a myeloid expression pattern [44]. All of these splice
forms, however, contain the ITIM motif and trigger
inhibitory signaling pathways. On B cells, FcγRIIB
regulates activating signals transmitted by the B cell
receptor (BCR), whereas on mast cells, neutrophils, or
macrophages, it balances activating signals triggered by
Fcɛ- or Fcγ-receptors [22, 44]. Upon co-aggregation with
its activating counterpart, LYN phosphorylates the ITIM
motif, which leads to the recruitment of SHIP (SH2-domain
containing inositol 5′ phosphatase). SHIP activation leads
to enhanced hydrolysis of phosphatidyl inositol intermedi-
ates and thereby interferes with the membrane recruitment
of BTK and PLCγ, resulting in inhibition of ITAM-sig-
naling mediated calcium release and downstream effector
functions (Fig. 1b) [45, 46]. Moreover, tyrosine-phosphor-
ylated SHIP can bind to Shc and Dok, thereby inhibiting
activation of the Ras pathway and ultimately cell prolifer-
ation. A third ITIM- and SHIP-independent signaling
pathway has been described for crosslinking of FcγRIIB
on B cells without concomitant activating signals by the
BCR. This leads to B cell apoptosis via Abl-family kinase-
dependent pathways [47, 48]. Although the in vivo
relevance of this pathway remains to be established, this
situation may arise during the germinal center reaction
when somatic hypermutation generates BCRs that lose
specificity for their cognate antigen retained in the form of
ICs on follicular DCs. Thus, FcγRIIB has been suggested
to be important for keeping tolerance.

Disturbing the threshold—horror autotoxicus

There are several ways how balanced signaling through
activating and inhibitory FcR pairs might be perturbed,
ranging from aberrant expression of FcRs to allelic variants
of activating receptors that have a differential affinity for
certain antibody isotypes [10, 11, 49]. Most of our current
knowledge stems from gene deletion studies and autoim-
mune models in mice and indirect data from human
autoimmune patients. Loss or inactivation of FcRs in
humans has only been described for the high-affinity FcγRI
and FcγRIIIB. Whereas FcγRI deficiency had no apparent

impact on health, a significant amount of individuals that lost
FcγRIIIB expression had autoimmune disorders [50–53].
As activating and inhibitory FcR pairs are expressed on a
variety of cell types, the resulting phenotypes are a complex
mixture of impaired responses at several stages throughout
the adaptive and innate immune response. The following
paragraphs will summarize these phenotypes with respect to
the affected cell types and the molecular changes resulting
in impaired FcR-dependent responses.

Changing the expression level of the inhibitory receptor
on B cells

FcγRIIB, together with other negative regulatory proteins
such as CD22 or CD72, regulates activating signals
triggered by the BCR, thus setting a threshold for B cell
activation [45, 54, 55]. Loss of FcγRIIB was therefore
predicted to result in uncontrolled B cell activation. This was
confirmed by the generation of FcγRIIB-deficient mice that
spontaneously develop a lupus like disease characterized by
the production of autoantibodies and premature death due to
severe glomerulonephritis [12, 16]. This autoimmune
phenotype is strain dependent; mice on the C57BL/6, but
not the Balb/c, background develop autoimmune disease,
suggesting that other epistatic modifiers are involved in
disease susceptibility and severity [56]. Supporting this
notion, Balb/c mice, double deficient in programmed death
1 (PD-1) and FcγRIIB, developed autoimmune hydro-
nephrosis, whereas mice that were only deficient in one of
these inhibitory proteins did not [57]. Moreover, Balb/c
FcγRIIB-knockout mice showed enhanced disease pheno-
types in a model of pristane-induced lupus [58]. In addition,
Balb/c mice have been suggested to be more efficient in
silencing autoreactive heavy chains by receptor editing than
C57Bl/6 mice, making the latter strain more permissive for
the development of autoimmunity [59, 60].

Although genetic deletion of FcγRIIB results in loss of
inhibitory signaling on a variety of cell types, there is
evidence that the appearance of autoantibodies is a B cell
autonomous phenomenon. Autoimmune-prone mouse
strains such as NZB, NOD, BXSB, and MRL express
reduced levels of FcγRIIB on activated and germinal-center
B cells due to a polymorphism in the FcγRIIB promoter
[61–64]. Moreover, FcγRIIB bone marrow chimeras
expressing normal levels of the inhibitory receptor on
radiation-resistant cells but lacking FcγRIIB on B cells
develop autoantibodies and disease [12]. Another important
issue is to understand at which stage(s) of B cell
development FcγRIIB regulates tolerance. As indicated,
autoreactive B cells can be generated throughout B cell
development [6]. There is accumulating evidence that
FcγRIIB mediates its function during late stages of B cell
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maturation in mice and humans, thus representing a distal
checkpoint [59, 65, 66]. By using a mouse strain in which
the endogenous Ig locus has been replaced with an
autoreactive heavy chain, it was shown that the absence
of FcγRIIB resulted in the accumulation of IgG-positive,
autoreactive plasma cells [59]. FcγRIIB deficiency did
neither impact early events in the bone marrow such as
receptor editing nor did it prevent the development of IgM-
positive, autoreactive B cells. After class switching to IgG,
however, FcγRIIB was essential in preventing the expan-
sion of autoreactive B cells and their maturation into
plasma cells. Taking the considerably higher pathogenic
potential of IgG compared to the IgM antibody isotypes
into account, this relatively late stage of FcγRIIB-mediated
negative regulation might be sufficient to prevent the
initiation of severe autoreactive processes. Thus, FcγRIIB
might serve as the final barrier to control class-switched,
autoreactive B cells that would otherwise induce tissue
pathology by secretion of large amounts of pathogenic
antibodies.

The most important question is whether these data
obtained in murine model systems help to explain the
development of human autoimmune disease. Analysis of
human autoimmune patient cohorts indicates that this is
the case, and that some of the underlying mechanisms of
aberrant FcγRIIB expression are quite similar in humans
and mice. For instance, polymorphisms in the human
FcγRIIB promoter have been linked to the development
of SLE [65, 67, 68]. The strongest association was found
with a polymorphism that leads to a decreased binding of
the transcription factor AP-1, resulting in a reduced
surface expression of FcγRIIB on activated B cells of
human lupus patients [65]. Another study showed that
memory B cells of SLE patients failed to upregulate

FcγRIIB expression on memory B cells, and this lower
expression level was correlated with a reduced threshold for
B cell activation [66] consistent with a previous study
describing that B cells from lupus patients showed
enhanced triggering of activating signaling pathways after
BCR stimulation [69]. Such quantitative assessments of
FcγRIIB expression have been complicated until the recent
development of a novel antibody specific for the human
inhibitory FcγRIIB [70]. It will be of interest to determine
what the mechanism of this aberrant expression is and if
any of the known FcγRIIB polymorphisms are involved in
this phenotype. The results of these studies fit to the data
obtained in murine model systems identifying FcγRIIB as a
checkpoint during late stages of B cell development.
Moreover, an allelic variant of FcγRIIB has been associated
with human SLE and arthritis in several Asian populations
(Table 1) [71–74]. In this allele, the exchange of a non-
polar isoleucine residue in the transmembrane domain
(amino acid 232) for a threonine results in an impaired
recruitment to lipid rafts and thus exclusion from produc-
tive signaling [75–77]. This represents a novel mechanism
of impaired FcγRIIB function and is unique to humans.
There are, however, great disparities between different
human populations and ethnicities highlighting the impor-
tance of the genetic background and other susceptibility
factors for the development of autoimmune disease
(Table 1). Thus, although several studies found clear
associations between SLE and the FcγRIIB-I232T allele
in Asian patients, Caucasians did not show this association
[74]. In the latter group, aberrant transcription due to
promoter polymorphisms was found more consistently
[65, 74]. Similarly, the decreased expression of FcγRIIB
on memory cells of SLE patients was overrepresented in the
African–American population [66].

Table 1 Human Fc-receptor alleles associated with SLE

Fc-
receptor

Disease
association

Population Mechanism References

FcγRIIB SLE incidence Caucasian Promoter polymorphism (impaired
transcription factor binding)

[65, 67, 68]

African–American Decreased expression on memory cells [66]
Asian Allelic variant (FcγRIIB232T) excluded

from lipid rafts
[71–77]

FcγRIIA SLE
incidence/
severity

African–American, Brazilian, German,
Korean, Hispanic, Thai

Low-affinity 131R allele [71, 126, 128, 129, 131, 133,
136, 137, 144]

FcγRIIIA SLE
incidence/
severity

Caucasian, Dutch and Korean Low-affinity 158F allele [127, 130, 134, 145]

FcγRIIIB SLE
incidence/
severity

Thai, Spanish, Japanese Low-affinity NA2 allele [71, 138, 139]
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FcγRIIB as a regulator of DC activity

DCs have long been recognized as central mediators that,
depending on their activation state, determine whether an
adaptive immune response or tolerance is induced [78].
Several groups have shown that crosslinking of FcRs on
DCs by ICs results in cell activation and cross-presentation
of endocytosed antigen on MHC class I molecules to CD8+
cytotoxic T cells [79–82]. As low levels of ICs are
constantly present in the serum, FcγRIIB might be crucial
in preventing spontaneous activation of DCs. Indeed,
blocking FcγRIIB on human DCs was sufficient to induce
DC maturation by serum ICs. Besides up-regulation of
costimulatory molecules, these DCs were more potent in
generating and activating antigen specific T cells [70, 83],
as described before for mouse DCs deficient in FcγRIIB
expression [84]. Although beneficial for immunotherapeu-
tic or vaccination approaches, this suggests that a slight
deregulation of FcγRIIB expression might result in the
initiation of autoreactive processes. It will be of great
interest to determine if FcR-mediated uptake of ICs
containing autoantigens by DCs plays a role in autoimmune
diseases that depend on the priming of autoreactive T cells.
In addition, expression of the inhibitory receptor on DCs
present in epithelia has been implicated in establishing
tolerance to air-borne and food allergens [85].

Whereas the essential role of DCs in regulating T cell
responses is well accepted, it has only recently become
clear that DCs are also important for the B cell response
[86–88]. Unlike in macrophages, which rapidly degrade
phagocytosed material, antigen taken up by DCs is
degraded more slowly and therefore present in an intact
form for prolonged times [89]. This might allow antigen
transport from the periphery to lymphoid organs where it
can be presented to B cells. DC–B cell interactions have
been observed in vivo, and it has been suggested that this
interaction is important for the generation of an IgG
response in vitro and in vivo [88]. The role of FcγRIIB in
this process is that ICs taken up via FcγRIIB are
inefficiently degraded and recycled for cell surface presen-
tation to B cells. In contrast, uptake via FcγRIII results in a
faster degradation of the antigen [86]. The importance of
this novel function of FcγRIIB for human or murine
autoimmune diseases remains to be established.

The role of FcγRIIB in the efferent response:
controlling innate immune effector cell activation

Besides its regulatory role on B cells and DCs in the
afferent response, FcγRIIB is an important modulator of
inflammatory effector cells, such as mast cells, neutro-

phils, and macrophages, during the efferent phase of an
immune response [22]. On these cell types, FcγRIIB is
coexpressed with activating FcRs of varying affinities and
isotype specificities and negatively regulates signals deliv-
ered by these receptors. Lack of FcγRIIB leads to elevated
IC-mediated inflammation and phagocytosis, as demonstrat-
ed by an enhanced Arthus reaction, systemic anaphylaxis,
anti-GBM glomerulonephritis, immunothrombocytopenia
(ITP), hemolytic anemia, collagen-induced arthritis, and
IgG-mediated clearance of pathogens and tumor cells [11,
21]. On allergic effector cells such as mast cells and
basophils, FcγRIIB regulates activating signals triggered
by crosslinking FcɛRI, resulting in an enhanced IgE-
mediated anaphylaxis and heightened sensitivity to aller-
gic rhinitis [90]. Moreover, FcγRIIB deficiency renders
otherwise resistant mouse strains susceptible to develop-
ment of certain forms of collagen induced arthritis [91].
As described for human autoimmune disease in some of
these models both increased autoantibody production due
to FcγRIIB deficiency on B cells and heightened effector
cell responses are likely to contribute to the observed
phenotype.

Another long known observation is that IgG2a and IgG2b
antibodies trigger stronger effector responses than IgG1 or
IgG3 in passive antibody transfer models [92–100]. Simi-
larly, in highly pathogenic autoimmune models such as the
accelerated nephrotoxic nephritis (NTN) model, the patho-
genic autoantibodies are of the IgG2b isotype [101]. In
human SLE patients, IgG1, IgG3, and to a lesser extent
IgG2 anti-DNA antibodies dominate in the serum, whereas
all subclasses can be found in kidney biopsies [102–105].

The molecular mechanism of differential antibody
isotype activity was addressed recently [97]. It was shown
that the differences in affinity of different IgG isotypes for
activating and inhibitory FcRs might explain this phenom-
enon [33, 97]. By measuring the affinities of all antibody
isotypes for the various FcRs and dividing the affinities of
antibody isotypes for activating FcRs by the affinity for the
inhibitory receptor a so-called A/I ratio was established
which predicted antibody activity in vivo [11, 97]. Thus,
IgG1 (which only binds to the FcγRIII/FcγRIIB pair) has a
lower affinity for the activating than for the inhibitory FcR
(A/I-ratio ≪1) resulting in lower activity. In contrast,
IgG2a and IgG2b have 20- to 40-fold higher affinity for the
activating FcγRIV than for FcγRIII/FcγRIIB, which results
in preferential triggering of FcγRIV and a lower degree of
negative regulation by the inhibitory FcR. As will be
discussed below, other factors such as cytokines or
differential antibody glycosylation can affect this ratio. In
humans, the presence of different activating FcR alleles that
have differential affinities for certain human antibody
isotypes might result in a similar situation, thus changing
the A/I ratio and antibody activity.
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The activating FcRs in the efferent response

In contrast to the inhibitory FcγRIIB, expression of
activating FcRs is limited to DCs and innate immune
effector cells such as mast cells, basophils, monocytes,
macrophages, neutrophils, and NK cells. There is consid-
erable heterogeneity in the expression of specific activating
FcRs. In the mouse, macrophages express all activating
FcRs (I, III, and IV), DCs mainly express FcγRI and III,
neutrophils express FcγRIII and IV, and NK cells express
FcγRIII. Genetic inactivation of all activating FcRs by
deletion of the common γ-chain in mice results in
abrogated or heavily impaired IC or allergen-mediated
responses, such as ADCC, release of inflammatory medi-
ators, cytokine release, and phagocytosis of ICs [11, 29]. As
several activating FcRs are coexpressed on the same cell,
subsequent deletion of the individual ligand-binding α-
chains was crucial in elucidating the role of the individual
FcRs for the activity of different antibody isotypes.
Identifying the receptor and cell type responsible for tissue
pathology in autoimmune diseases might allow the devel-
opment of more specific therapeutic interventions. Consis-
tent with its in vitro isotype binding profile, activating
FcγRIII was essential for IgG1-mediated effector functions
in a variety of models, like arthritis, glomerulonephritis,
IgG-dependent anaphylaxis, IgG-mediated hemolytic ane-
mia, and ITP [33, 93, 97, 106–110].

In contrast, IgG2b activity was not impaired in FcγRIII
or FcγRI knockout mice but was almost completely
abrogated in mice injected with an FcγRIV blocking
antibody in passive and active models of antibody-mediated
inflammation, including models of ITP and NTN [93, 94,
97, 101]. In the NTN model, mice were injected with a
sheep hyperimmune serum specific for murine glomerular
basement membranes (GBM). To enhance disease devel-
opment, mice were pre-immunized with sheep serum,
which resulted in an IgG2b-dominated antibody response
[101]. After injection of the sheep anti-GBM serum, many
animals died within 8–10 days due to severe inflammation
and kidney failure. In the presence of an FcγRIV-blocking
antibody, however, animals did not develop fatal glomeru-
lonephritis. Despite C3 deposition in the kidneys, the
observed pathology was fully dependent on activating FcRs
as observed before [26, 28, 111–113]. This suggests that
identification and blocking of the responsible activating
FcRs in human autoimmune disease might be a promising
therapeutic intervention.

Similar to IgG2b, IgG2a antibody activity was greatly
impaired in mice with blocked FcγRIVactivity in models of
antibody-mediated clearance of platelets, B cells, or tumor
cells, and neither deficiency in members of the complement
cascade nor in FcγRI or III had a significant effect on
antibody activity [94, 97, 100]. Depending on the model

system, the amount of ICs and effector cell type, FcγRI and
FcγRIII variably contributed to IgG2a activity [93, 114–
116]. For example, in a model of autoimmune hemolytic
anemia (AIHA) that—in contrast to the ITP model—
requires higher antibody doses and several days for
developing a maximal response, FcγRIII was significantly
involved in mediating IgG2a activity [93]; in addition, the
complement component C3 enhanced IgG2b and IgG3
activity [117]. Regarding the role of FcγRIII in this model,
it was recently demonstrated that C5a, a strong inflamma-
tory mediator, induces upregulation of FcγRIII, which is
important for the development of AIHA [118, 119]. Further,
generation of C5a occurred independently of the classical
and alternative complement pathways and was triggered in
an FcR-dependent fashion [118]. Moreover, it was sug-
gested that Kupffer cells in the liver are the main effector
cell type that mediates red blood cell phagocytosis, and it is
not known if FcγRIV is expressed on these cells. Taken
together, this demonstrates the influence of the effector cell
type and the cytokine milieu on the cellular FcR expression
pattern, which will be discussed in greater detail later.

In humans, low-affinity FcγRs bind better to IgG1 and
IgG3 than to IgG2 or IgG4. However, certain FcγRIIA and
IIIA alleles show increased binding to human antibody
isotypes [10]. For instance, the FcγRIIA131H allele binds
IgG2 approximately tenfold better than FcγRIIA with
arginine at that position (FcγRIIA131R). Similarly, human
FcγRIIIA158V has a higher affinity for IgG1 and IgG3 than
its 158F counterpart [10]. This selectively higher affinity of
the activating FcR increases the A/I ratio and predicts that
cytotoxic antibodies show a higher activity in such individ-
uals. Indeed, cancer patients with the FcγRIIIA158V allele
responded better to antibody therapy [120–122]. In auto-
immune patients, the FcγRIIIA158V allele was linked to
more severe arthritis in Caucasians [123, 124]. In the
majority of studies, however, the low-affinity alleles have
been identified as risk factors for the development or
severity of autoimmune disease. Several studies have found
an association of the low-affinity FcγRIIIA158F and the
FcγRIIA131R alleles with the incidence and severity of
lupus nephritis and arthritis [71, 125–137]. In addition, the
low-affinity allele of human FcγRIIIB (FcγRIIIB-NA2) has
been associated with SLE [71, 138, 139]. Alternatively, a
low-copy-number polymorphism of this gene was associated
with glomerulonephritis in humans and rats [140]. The
results of these various studies suggested a model in which
FcRs on macrophages or neutrophils might be involved in
clearance of ICs containing potential autoantigens under non-
inflammatory conditions, thereby preventing the initiation of
autoimmune responses. Data from other model systems
indicate that inefficient or delayed clearance of apoptotic cells
can lead to the loss of tolerance and is associated with
autoimmune diseases such as SLE [23, 141–143].
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As described for FcγRIIB, a strong heterogeneity exists
between different ethnicities and populations. For example,
studies in African–American, Brazilian, German, and Thai
populations have found significant associations between the
FcγRIIA131R allele and SLE disease susceptibility or
severity of nephritis [71, 126, 128, 129, 131, 133, 136,
137, 144]. Moreover, several studies in Caucasian, Dutch,
and Korean populations have found associations between
the FcγRIIIA158F allele and disease susceptibility and
severity [127, 130, 134, 145]. In addition, some studies
have found a connection between the FcγRIIIB-NA2 allele
and SLE in Thai, Spanish, and Japanese populations [71,
138, 139]. In contrast, the FcγRIIA131R allele was not
increased in SLE or nephritis in African–Caribean, British,
Dutch, Greek, Hispanic, Korean, and Spanish populations
[127, 130, 134, 139, 145–149]. Similarly, studies in
Chinese, German, and African–American populations have
found no associations between the FcγRIIIA158F and the
FcγRIIIB-NA2 allele [71, 127, 131, 138, 144, 150, 151].

Exogenous factors modulating the balance—cytokines
and sugar

Several studies have addressed the impact of cytokines on
Fc-receptor expression. Frequently, cytokines regulate
expression of the associated signaling adaptors (β- and γ-
chains), which leads to a concomitant change in α-chain
expression, as shown for transforming growth factor β
(TGF-β), IL-4, and IL-10 [152, 153]. Moreover, inflam-
matory cytokines/mediators such as TNF-α, C5a, or LPS
tend to upregulate activating receptors such as Fcα-, Fcɛ-,
and Fcγ-receptors, whereas TH-2 cytokines such as TGF-
β, IL-4, and IL-10 seem to decrease expression [33, 153,
154]. These effects can be cell-type specific as IL-4
upregulates the inhibitory FcγRIIB on myeloid cells but
has the opposite effect on activated B cells [155].

The outcome of cytokine-mediated changes in activating
and inhibitory expression might vary depending on the
differential regulation of IgG isotypes by the inhibitory
FcR. Thus, IgG2a and, to a lesser degree, IgG2b antibodies
might be insensitive to elevated FcγRIIB expression
relative to the severe impairment of IgG1 activity. During
antibody-mediated inflammation, however, the steady state
ratios change in favor of the activating FcRs, as the release
of inflammatory mediators, such as IFN-γ and C5a, can
upregulate activating Fcγ-receptors and at the same time
reduces FcγRIIB expression levels [156, 157]. Under these
circumstances, autoreactive IgG1 antibodies are capable of
triggering severe damage. In fact, the regulation of FcR
expression by cytokines is coupled to the regulation of
isotypes by these same cytokines: TH-1 cytokines such as
IFN-γ induce class switching to IgG2a, TH-2-type cyto-

kines (IL-4) induce class switching to IgG1, and TGF-β
induces switching to IgG2b [158, 159]. As these cytokines
also influence Fc-receptor expression, the pathogenicity of
an autoimmune response will be determined by both
cytokine-mediated regulation of class switching and the
changes in expression levels of the responsible activating
versus inhibitory FcRs. This dual regulation might allow
the development of new therapeutic strategies to treat
autoimmune disease.

Another factor that can influence the interaction of
antibodies with cellular FcRs is the sugar moiety attached
to the asparagine residue at position 297 in the antibody Fc-
fragment. Deletion of this sugar side-chain results in loss of
FcR binding [160]. In addition, this core sugar structure
contains variable amounts of branching and terminal sugar
residues such as N-acetylglucosamine, fucose, galactose,
and sialic acid. Presence or absence of these terminal or
branching sugar residues can significantly influence anti-
body–FcR interactions. Thus, antibodies without fucose
bind approximately tenfold stronger to mouse-activating
FcγRIV and human FcγRIIIA [161–163]. In contrast, high
levels of terminal sialic acid residues impair antibody
binding to FcRs [36], and there is evidence that antibody
sialylation levels differ during an immune response. Anti-
bodies from human arthritis patients and autoimmune
mouse strains such as MRL/lpr have reduced amounts of
terminal sialic acid and galactose and were found to be
more pathogenic [164–167]. Similarly, murine serum IgG
antibodies have reduced amounts of sialic acid after induction
of nephrotoxic nephritis [36]. Taken together, these studies
indicate that antibody sialylation represents another mecha-
nism-regulating antibody activity, and manipulating antibody
sialylation levels in vivo might be a promising strategy to
decrease autoantibody-associated pathogenicity.

Regaining the balance—therapeutic interventions
that modulate FcR expression

The most important question is how this information might
be used to develop strategies that restore a balanced
immune response and stop autoimmune processes. Regard-
ing the lower expression level or functional impairment of
the inhibitory receptor on B cells in SLE, one approach
would be to restore FcγRIIB expression by gene transfer.
This approach was recently tested in autoimmune prone
mouse strains like NZM, BXSB, and FcγRIIB-knockout
mice [168]. These animals had strongly reduced levels of
autoantibodies and did not develop glomerulonephritis.
Highlighting the threshold nature of autoimmunity, restora-
tion of FcγRIIB expression on approximately 40% of
peripheral B cells was sufficient to prevent the development
of autoantibodies and autoimmune disease [22, 168].
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Instead of gene transfer, one could manipulate the
expression level of activating and inhibitory receptors with
anti-inflammatory drugs. The successful use of high-dose
intravenous gamma globulin (IVIG) for the treatment of
several autoimmune diseases provides an excellent example
of the validity of this approach.

Currently, IVIG is used to alleviate autoimmune symp-
toms in SLE, Kawaski disease, and MS [169]. IVIG
consists of the pooled serum IgG fraction of thousands of
human donors and has to be given at high doses to obtain
its beneficial anti-inflammatory activity. Immunotherapeu-
tic studies in mice and humans have shown that the Fc
portion of IVIG antibodies is responsible for its activity
[101, 106, 170, 171]. Although several mechanisms of
IVIG action have been proposed [169], mounting evidence
suggests that the inhibitory FcγRIIB is essential for the
anti-inflammatory activity of IVIG. In mouse models of
ITP, rheumatoid arthritis, and nephrotoxic nephritis, IVIG

administration blocked autoantibody-mediated inflamma-
tion; this protective effect was abolished in mice deficient
in the inhibitory FcγRIIB [101, 106, 171]. More impor-
tantly, IVIG upregulated FcγRIIB expression on effector
macrophages, resulting in a heightened threshold for cell
activation. In addition, IVIG induced a significant reduction
of the triggering activating FcγRIV in the NTN model, thus
strongly modulating the balance of activating and inhibitory
receptors [101]. As FcγRIIB upregulation was absent in
mice lacking CSF-1-dependent macrophages, a two-cell
model was suggested in which IVIG binds to CSF-1-
dependent macrophages, resulting in upregulation of
FcγRIIB on effector macrophages (Fig. 2) [106].

A longstanding question was why such high doses of
IVIG were required to achieve its therapeutic effects. One
possibility was that the actual active component is only a
minor fraction of the total IVIG preparation. Indeed, each
of the four IgG isotypes in the IVIG preparation contains

Fig. 2 Factors that influence FcR-dependent effector cell activation.
Factors that shift the balance towards cell activation or inhibition are
shown in green or red, respectively. Inflammatory cytokines/mediators
such as IFN-γ, LPS or C5a upregulate activating FcRs (shown in
green) resulting in a lower threshold for cell activation. In addition,
allelic variants of activating and inhibitory receptors that influence
antibody binding or FcR function might have similar effects. A higher

threshold for cell activation is induced by anti-inflammatory cytokines
or therapeutics such as IVIG that upregulate the inhibitory FcγRIIB
(shown in red). In addition, activating FcR alleles with low affinity for
antibody isotypes will trigger activating signaling pathways less
efficiently. Moreover, the composition of ICs with respect to antibody
isotype and antibody glycosylation pattern determines if activating or
inhibitory signals will dominate
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differentially glycosylated sugar moieties attached to the Fc
region resulting in considerable heterogeneity. Recently, it
was shown that the sialic-acid-rich IgG fraction in the IVIG
preparation might be the active component. By using the
sialic-acid-rich IVIG Fc portion, the therapeutic dose of
IVIG could be reduced by a factor of 10 [36]. Other
proteins like fetuin or transferrin that contain similar sialic-
acid-rich sugar side chains did not recapitulate the anti-
inflammatory activity, indicating that the amino acid
backbone of the antibody Fc portion was required, too.
Together with the previous observations, this suggests a
model in which sialic-acid-rich IVIG binds to a receptor on
CSF-1-dependent macrophages that indirectly induces the
modulation of activating and inhibitory FcRs on effector
macrophages (Fig. 2). As sialic-acid-rich antibodies bind
FcRs with reduced affinity, the cell surface receptor
responsible for this anti-inflammatory effect is most likely
not a conventional FcR [36]. Thus, the identification and
selective triggering of this putative IVIG receptor might
enhance the anti-inflammatory activity of IVIG.

In addition, TH-2 cytokines such as IL-4 that induce
FcγRIIB upregulation and downregulate activating FcRs
might have therapeutic value. Along these lines, adoptive
transfer of DCs engineered to produce high levels of IL-4
blocked active arthritis in mice [172, 173]. Besides modify-
ing FcR expression levels, this would also skew the antibody
response to IgG1 rather than IgG2a and IgG2b, resulting in a
more strict regulation by the inhibitory receptor. Moreover,
IL-4 inhibits the TH-1 cytokines, IL-2 and IFN-γ, suppress-
ing inflammatory macrophage activation.

Whereas these previous approaches predominantly inter-
fere with the effector phase of an autoimmune response, an
alternative strategy would target DCs and thus block the
initiation phase. Elegant work by the groups of Steinman
and Nussenzweig [78] suggests that targeting antigens to
immature DCs in vivo results in the induction of tolerance.
Antigen targeting is achieved by genetic fusion to a DEC-
205 specific antibody that selectively recognizes DCs. To
prevent activation of DCs by crosslinking activating FcRs,
this antibody contains a mutation that abrogates FcR
binding. With the current development of antibodies with
preferential binding to activating or inhibitory FcRs, one
could generate a DEC-205 antibody that specifically
engages FcγRIIB to deliver a strong tolerogenic signal
and block the priming of autoreactive cells.

Conclusions

Research over the recent years has provided important
insights into the regulation of cell activation by cellular
FcRs. Disturbing the threshold set by coexpression of
activating and inhibitory FcRs results in an uncontrolled

immune response ultimately leading to the loss of tolerance
and the initiation of autoimmune pathology. The inhibitory
FcγRIIB represents a distal checkpoint during B cell
development and regulates the expansion of autoreactive
memory or plasma cells in mice and humans. In addition, it
controls the activation of innate immune effector cells
including neutrophils, mast cells, and macrophages. Re-
storing FcγRIIB expression might be a promising strategy
to interfere with self-destructive processes both in the
initiation and effector phase of an autoimmune response.
Despite disparate results between different human popula-
tions, the analysis of autoimmune patients has demonstrated
that low-affinity allelic variants of activating FcRs are
frequently associated with the severity or incidence of
autoimmune diseases, suggesting that impaired removal of
ICs by FcRs contributes to disease development. Finally,
the antibody–FcR interaction is significantly influenced by
the antibody glycosylation pattern. Autoimmune patients
and mice with active autoimmune disease have antibodies
with a lower level of terminal galactose and sialic acid,
which enhances the interaction with cellular FcRs. Thus,
influencing antibody glycosylation might be another strat-
egy to interfere with autoimmune pathology.
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