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Abstract In recent years, regulatory T cells have received
increased attention for their role in immune responses to
microbial infections. The list of microbial pathogens
associated with regulatory T cell responses is growing
rapidly and includes bacteria, viruses, parasites, and fungi.
As the biology of regulatory T cells is revealed, we are
discovering that their induction during infection is a normal
aspect of immunity, necessary to limit collateral damage
from inflammatory responses and aggressive immunologi-
cal effectors. Thus, these cells play a critical role in
maintaining the delicate balance between preventing im-
munopathology and allowing the immune response to clear
infections. While generally successful, there are notable
exceptions where regulatory T cell-mediated suppression
appears to be responsible for allowing certain viruses to
establish and maintain a persistent state. In this review, we
will discuss our current understanding of what virus-
induced regulatory T cells are, how they are induced, and
what mechanisms they use to suppress immunity. The
complex role of Tregs in regulating immunity to viral
infections, and the consequences their activity has on
disease is illustrated by a review of specific viral infections
including hepatitis C virus and human immunodeficiency
virus.

Introduction

The concept of immunosuppressive T cells arose more than
three decades ago from studies on autoimmunity [1], and B
cell [2] and T cell [3] responses to foreign antigens.
However, studies on suppressor T cells fell into disfavor
in the mid 1980s when the I-J subregion of the MHC that
reportedly encoded the restriction elements for suppressor
cells was found to contain no genes [4]. Interest was
rekindled in 1995 with the finding by Sakaguchi et al. that a
subset of T cells constitutively expressing CD25 was im-
munosuppressive and could protect against autoimmunity
[5]. Indications that regulatory T cells (Tregs) were also
involved in immune responses to infectious agents began to
appear around the turn of the century with reports of immu-
nosuppressive T cell involvement in immunity to Mycobac-
terium tuberculosis [6] and the filarial nematode Onchocerca
volvulus [7]. The first connection between chronic viral
infection and Tregs appeared in a study of mice infected
with Friend retrovirus (FV) [8], and this was quickly
followed by a study of humans chronically infected with
hepatitis C virus (HCV) [9]. At first, the induction of Tregs
during a viral infection was considered to be a detrimental
response that promoted virus persistence with little or no
benefit to the host. However, as will be discussed, it is
becoming increasingly clear that pathogen-induced Tregs
play a key role in protection from the immunopathology
that can occur from hyperactive immune responses to
infectious agents [10]. Tregs responses appear common to
most if not all infections. Studies have demonstrated that
bacterial [6, 11–13], parasitic [7, 14], and viral infections
(Table 1) all induce immunosuppressive Tregs, probably as
a normal part of the immune response [15–19].

Viral infections are the prototypic inducers of type 1 T
helper cell (Th1) responses that generate interferon

Springer Semin Immun (2006) 28:51–62
DOI 10.1007/s00281-006-0019-2

S. J. Robertson :K. J. Hasenkrug (*)
Laboratory of Persistent Viral Diseases,
Rocky Mountain Laboratories,
National Institute of Allergy and Infectious Diseases,
National Institutes of Health,
903 South 4th St.,
Hamilton, MT 59840, USA
e-mail: KHasenkrug@nih.gov



gamma (IFNγ) and IL-2 to promote responses by
cytolytic T lymphocytes (CTL), the primary effectors of
adaptive immunity that kill infected cells. As demon-
strated in the lymphocytic choriomeningitis virus model
in mice, within the first week of infection, virus-specific
CTL expand to very high numbers and develop cytolytic
activity [20, 21]. Although CTL killing is specific and
relatively directional, the release of cytotoxic granules
and cytokines such as tumor necrosis factor [22, 23]
can nevertheless result in bystander killing of uninfected
cells, leading to extraneous tissue damage. In addition,
because CTL numbers can reach many millions of cells
during peak responses, even low levels of cross reactivity
with uninfected cells can produce pathology. Examples
exist in both experimental animal models and in human
infections where overactive immune responses lead to
lethal damage. It was shown more than two decades ago
that T cell-deficient mice infected with influenza virus
had less immunopathology and longer survival times than
wild-type mice [24]. In humans there is evidence that the
high mortality rates of the 1918 influenza pandemic [25]
and the recent SARS-associated coronavirus epidemic
[26] were due to immunopathological effects. Likewise,
immune hyperactivity appears to be one of the most
damaging aspects of HIV infections [27–30].

The emerging view is that the immune system has
evolved immunoregulatory mechanisms to protect against
such overexuberant immune responses, and a major
component of this control is immunosuppression by Tregs.
Not surprisingly, certain viruses have evolved the means to
directly or indirectly subvert the immunosuppressive
properties of Tregs to help them evade immunological
destruction. The failure to completely eradicate viruses
leaves the host susceptible to reactivations of latent viruses
and complications such as liver cancer and AIDS in
subjects chronically infected with HCV or HIV, respective-
ly. Thus the Tregs response has both positive and negative
aspects, and the factors that determine which aspect
prevails are complex and still being elucidated.

What are virus-induced Tregs?

For the purposes of this review virus-induced Tregs are
simply defined as immunosuppressive T cells that become
activated during viral infection. We will focus primarily on
CD4+ Tregs, but CD8+ Tregs have also been defined and
may contribute to HIV-induced immunosuppression [31].
The relationship between virus-induced Tregs and natural
Tregs is only currently becoming clarified. Natural Tregs
comprise an immunosuppressive subset of CD4+ T cells
that is normally present at a frequency of about 10% of the
CD4+ T cell population in mice and approximately 2–5%

of the CD4+ T cells in human blood. This subset was
initially described as controlling autoimmune reactivity by
active suppression in peripheral tissues (peripheral toler-
ance). More recently it has become evident that these cells
suppress reactivity to foreign antigens as well as self
antigens [32]. The most common cell surface marker used
to identify natural Tregs is CD25, the alpha chain of the IL-2
receptor, which is constitutively expressed at high levels on
natural Tregs [5]. However, activated T cells also express
CD25 so this marker is not definitive, especially during an
infection where many T cells are activated.

Studies on the Leishmania parasite in a mouse model
clearly showed that Tregs specific for foreign antigens can
develop from the natural Tregs subset [14]. There is also a
subset of CD4+ Tregs, known as T regulatory cells type 1
(Tr1), that are developmentally distinct from the CD25+
subset, secrete immunosuppressive IL-10, and appear to be
involved in suppressing immune responses to infectious
agents (reviewed by O’Garra et al. [33]). In addition, both in
vitro [34–36] and in vivo studies [37–39] have shown that
CD25-positive Tregs can develop from CD25 negative cells,
especially when stimulated in the presence of immunosup-
pressive cytokines such as transforming growth factor β
(TGFβ) or IL-10 [40–42]. In addition to the cytokine micro-
environment, the antigen dose and the type of antigen
presenting cell (APC) presenting the antigen can strongly
influence the conversion of CD25-negative cells into
Tregs [38]. Finally, there is a minor subset of CD25-negative
CD4+ T cells that do not upregulate CD25, yet suppress
reactivity against both self [43–45] and foreign antigens [46].
This subset is increased in aged mice [47]. Thus, the types of
Tregs are diverse and the cytokine milieu in which a T cell is
activated can be a determining factor in its differentiation to
either a conventional effector T cell or a Tregs. Because virus
infections have potent effects on cytokine production, it is
not surprising that they can influence T cell differentiation
and induce a broad range of Tregs subsets (see Table 1).

As pathologists and scientists, we need specific handles
with which to identify and/or isolate Tregs. Unfortunately,
there is no specific cell surface marker that uniquely
identifies these cells. Instead, we rely on combinations of
phenotypic markers (Table 1), optimally including at least
one functional marker such as an immunosuppressive
cytokine (e.g., TGFβ or IL-10), or the transcriptional
repressor, Foxp3 (see below) [48, 49]. Levels of activation
and expression of adhesion molecules may also be
significantly altered in virus-induced Tregs [8, 50–53]. In
addition to changes in phenotype, induction of Tregs by
viruses can produce localized expansions or accumulation
of Tregs, as is seen in the lymph nodes of HIV-infected
patients [54]. Thus, Tregs subpopulations can undergo
qualitative and/or quantitative changes, following viral
infections.
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Are virus-induced Tregs antigen specific?

In cases where the antigen specificity of virus-induced Tregs
has been studied, Tregs specific for viral antigens have been
identified. For example, CD4+ Tregs that recognized HCV
core antigens were cloned from a cohort of HCV-infected

women. Interestingly, the same viral core antigens were
recognized by IFNγ-secreting helper T cells from the same
patients [9]. A similar finding was made in a study of T cell
lines and clones specific for Epstein–Barr virus (EBV) [55].
EBV-encoded nuclear antigen 1 stimulated both helper T
cells and Tregs, although there was a suggestion that EBV

Table 1 Summary of phenotype, suppressed immune responses, and mechanisms of virus-induced regulatory T cells

Virus Type of
regulatory T cell

Markers Cytokine
produced

Responses suppressed Mechanism Reference

Friend virus CD4+CD25+ CD25 Antitumor responses Cell-contact-dependent [8, 50, 139]
CD69
CTLA-4

CD8+ T cell effector
function

No APC required

CD103 No suppression of
CD8+ T cell
proliferation

Tr1 IL-10 (Unpublished)
MAIDS virus
complex

CD4+CD25+ CD25
CD69

IL-10 Disease progression [51]

FIV CD4+CD25+ CD25
B7

CD4+ T cell
proliferation

[71]

CTLA-4 IL-2 production
SIV CD4+CD25+ IDO TGFβ CD8+ T cell responses [81, 83]

IL-10 T cell hyperactivation
EBV CD4+CD25+ GITR No IL-10/

TGFβ
CD4+ and CD8+ T cell
proliferation

Cell-contact-dependent [55]

CD4+ T cell production
of IL-2

Tr1 CD4 IL-10 T cell proliferation IL-10-dependent [56]
IFNγ production

HSV CD4+CD25+ CD25 IL-10 Th1 and CD8+ T cell
responses

Partially IL-10-dependent [10, 143, 144]

HBV CD4+CD25+ CD25
CTLA-4

Th1 and CD8+ T cell
proliferation

[145, 146]

IFNγ production
HCV CD4+CD25+ CD25

CTLA-4
IL-10
TGFβ

Th1 and CD8+ T cell
proliferation

Cell-contact-dependent
IL-10/TGFβ-independent

[94–97]

IFNγ production TGFβ-dependent
Tr1 CD4 IL-10 [9]
CD8+ IL-10 PBMC proliferation IL-dependent [99]

HIV CD4+CD25+ CD25
GITR
CTLA-4
CD80 and
IDO mRNA

IL-10
TGFβ

CD4+ and CD8+
T cell proliferation
IFNγ production

Cell-contact-dependent
IL 10/TGFβ-independent

[77, 106–108,
121, 147]

Tr1 IL-10 T cell proliferation Partially IL-10-dependent [77]
CD8+ TGFβ CD8+ T cell IFNγ

production
TGFβ-dependent [31]

HTLV-1 CD4+CD25+ GITR PBMC proliferation [148]
CTL-4

MAIDS murine AIDS, FIV feline immunodeficiency virus, SIV simian immunodeficiency virus, EBV Epstein–Barr virus,
HSV herpes simplex virus, HBV hepatitis B virus, HCV hepatitis C virus, PBMC peripheral blood mononuclear cell, HIV
human immunodeficiency virus, HTLV-1 human T lymphotropic virus type-1, Tr1 type 1 regulatory T cell, CTLA-4 cytotoxic T lymphocyte-
associated antigen 4, GITR glucocorticoid-induced TNFR receptor, IDO indole 2,3-dioxygenase, TGFβ transforming growth factor β,
IL-10 interleukin 10, IFNγ interferon gamma, Th1 type 1 T helper cell, APC antigen presenting cell
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peptide specificity might bias the induction of Tregs vs
helper. For the EBV latent membrane protein 1, there
appears to be a definite bias toward Tregs responses. EBV
latent membrane protein 1 is poor at eliciting CTL
responses but stimulates IL-10-secreting Tregs [56]. In
HIV as well, TGFβ-secreting CD8+ Tregs were generally
stimulated by a different set of HIV peptides than IFNγ-
secreting effector cells [31]. Thus, it appears that virus-
induced Tregs are generally antigen-specific, and there are
some suggestions that certain viral antigens may bias
responses toward Tregs.

The idea that certain antigens may bias the response
toward Tregs implies that the Treg repertoire is different
from the effector T cell repertoire. Studies on natural Tregs
indicate that their repertoire is just as diverse as that of
conventional T cells [57–61]. Tregs also respond to
antigenic challenge in a manner similar to conventional
T cells, undergoing expansion of antigen-specific subsets
followed by contraction [38, 57, 62–64]. One study found
that there was at least a 70% overlap in T cell receptor Vβ
usage between Tregs and conventional CD4+ T cells [65].
Thus, both the Tregs repertoire and responses appear very
similar to conventional T cells, and the preponderance of
evidence argues against antigen specificity being a major
component in biasing responses toward Tregs [66].

How do viruses induce Tregs?

If certain viral antigens do not preferentially stimulate Tregs
in most cases, then how are they induced? Multiple factors
can influence the type of immune response that predom-
inates in a given infection. As noted above, the presence of
immunosuppressive cytokines such as IL-10 or TGFβ can
strongly influence the generation of Tregs [67, 68]. Some
viruses can directly stimulate an immunosuppressive
microenvironment. For example, EBV encodes a homo-
logue to IL-10 [69] that has the potential to directly
influence the induction of Tregs. Another possible direct
mechanism of activation is via infection of Tregs. Feline
immunodeficiency virus (FIV) preferentially infects CD4+
CD25+ T cells apparently because of high expression of
cell-surface coreceptor molecules (CXCR4) and transcrip-
tion factors important for FIV replication [70]. Infection of
these cells activates their immunosuppressive function and
may contribute to a loss of T cell effector functions leading
to the development of AIDS [71]. While direct mechanisms
of Tregs induction are possible, indirect mechanisms are
likely more common. Early events in infection such as the
production of defensins, cytokines, and chemokines by
infected cells or by APCs that have picked up viral particles
or cellular debris from infected cells play important roles in
shaping the immune response. The type of APC, its level of

activation, and its cytokine secretion profile all influence
the type of response induced in the responding T cells [72].

One way in which viruses indirectly induce Tregs is by
provoking anti-inflammatory cytokine production by APCs.
In vitro experiments have shown that human plasmacytoid
dendritic cells (pDCs) stimulated with herpes simplex virus
(HSV) produce type I IFNs and IL-10 that stimulate CD4+
T cells to differentiate into Tregs [73]. The mechanism of
this effect of HSVon pDC is not yet clear but could involve
the stimulation of pattern recognition receptors such as toll-
like receptors [74]. Infection of dendritic cells (DCs) or even
uptake of some noninfectious viruses can affect DC
differentiation and antigen presentation leading to induction
of peripheral tolerance mechanisms. Normally, the uptake of
viral antigens by APCs initiates a cascade of events leading
to a maturation and differentiation process typified by
migration to draining lymph nodes coupled with upregula-
tion of MHC molecules, costimulatory molecules, cytokines,
and chemokines. This process typically leads to the
induction of Th1 antiviral responses characterized by the
development of antiviral CTL that recognize and kill
infected cells. In contrast, presentation of self antigens by
nonactivated immature DCs, which express low levels of
MHC class II and costimulatory molecules, leads to the
induction of Tregs to sustain self-tolerance [75, 76]. Thus,
one way for viruses to evade activation of the antiviral
immune response is to disrupt the normal activation cascade
of DCs and thereby promote the induction of Tregs.

It has been shown that when DCs are infected with HIV-1
in vitro, they maintain an immature phenotype, produce
IL-10, and induce Tr1-type Tregs [77]. A very interesting
study on HIV-infected patients showed that their lymph
nodes had significantly increased levels of “semimature”
DCs of both myeloid and plasmacytoid phenotypes [54].
Very few of the semimature DCs were infected, yet they
failed to express the costimulatory molecule CD40 or
secrete IL-12, factors important in the development of
antiviral Th1 responses. In addition, the lymph nodes
contained significantly increased percentages of Tregs
compared to controls. In vitro assays with the semimature
DCs isolated from the lymph nodes showed that they could
stimulate the induction of Tregs. Thus, it appears that HIV
directly or indirectly interrupts the normal process of DC
maturation to drive the immune system toward tolerance
rather than immunity.

By poorly understood mechanisms, some viruses, notably
HIV and simian immunodeficiency virus (SIV), cause rapid
and general hyperactivation of immune responses. Levels of
immune hyperactivation during HIV infections correlate with
the degree of CD4+ T cell depletion and time of progression
to AIDS [27–30]. Tregs may be induced as part of HIV-
induced hyperactivation, or alternatively, may be responding
as an attempt to control it. Recent evidence from the SIV
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model strongly suggests that a very early Tregs response that
protects from immune hyperactivation may also protect from
AIDS. The predominant correlation between AIDS in SIV-
infected macaques and the lack of AIDS in SIV-infected
African green monkeys or sooty mangabeys is not virus
load, which is roughly equivalent in the different species, but
levels of virus-induced hyperactivation [78–80].

In a comparative study between SIV infection of macaques
and African green monkeys, the lack of hyperactivation in
African green monkeys was associated with significant anti-
inflammatory responses within 24 h of infection [81]. These
very early anti-inflammatory responses were characterized
by the production of TGFβ, a corresponding lack of Th1
cytokines, and evidence that both CD4+ and CD8+ Tregs
percentages were increased. An implication of this study is
that while very early immunosuppression by Tregs may
dampen Th1 responses and facilitate virus persistence, they
protect the host from immune hyperactivation, which may be
the root cause of pathogenesis and eventual onset of AIDS.
Another implication is that the very rapid activation of Tregs
may be due to an innate response such as direct stimulation
via toll-like receptors [82]. Interestingly, although the Tregs
response in macaques is too slow to protect them from SIV-
induced immune hyperactivation, it is premature in compar-
ison to Tregs responses to cytomegalovirus infection. The
Tregs response was detectable already by day 7 and correlated
with dampening CTL responses before the virus was cleared
[83]. Thus, the timing of the Tregs response in SIV infection
appears to be critical in determining disease outcome.

What is the role of virus-induced Tregs in viral
infections and disease?

Regardless of how Tregs are induced by a given virus, the
nature of the response is always immunosuppressive.
However, multifaceted components of the host–virus
interaction determine whether the impact on the disease
state will be positive or negative. The importance and
complexity of Tregs in viral disease is illustrated by several
informative studies on HCV infection. In HCV, virus
clearance during acute infection of humans is associated
with strong Th1 [84–89] and CTL responses [90–93]. One
of the first studies showing a role for Tregs in viral
infection was done in a cohort of approximately one
thousand women infected with the same virus following
transfusion of HCV-contaminated immunoglobulin follow-
ing childbirth. Roughly half of the women cleared the
infection and the other half developed chronic infections.
HCV-specific T cells that produced IL-10 (Tr1 cells) were
found in a significantly higher proportion of chronically
infected patients than in individuals who had cleared the
infection [9]. Other studies have confirmed that patients

with chronic HCV infection have significantly higher
proportions of Tregs in their blood than both normal controls
and patients who have recovered from HCV infection [94,
95]. The virus-induced Tregs associated with chronic HCV
infection suppress virus-specific CD8+ T cells [94, 96, 97],
providing a possible explanation for dysfunctional CD8+
T cell responses in chronic HCV infection [98].

Interestingly, while Treg-mediated suppression of Th1
and CTL responses during acute infection is detrimental in
terms of allowing HCV to establish chronic infections, once
chronic infection is established it appears that the Tregs are
essential in protecting patients from immunopathology.
Virus-specific CD8+ T cell-mediated cytolysis of infected
liver cells can result in severe immunopathological damage.
It has been shown that cirrhosis in chronically infected
patients is kept in check by IL-10-producing CD8+
regulatory T cells that suppress the effector function of
CTL [99]. In addition, 30–50% of patients with chronic
HCV infection develop an autoimmune disorder known as
mixed cryoglobulinemia (MC). Patients with symptomatic
MC had significantly reduced levels of CD4+CD25+
regulatory T cells in their blood [100, 101]. The reduction
of Tregs in these patients was associated with a decreased
ability to regulate immunopathological CD8+ T cell
responses [102], increased Th1 cytokine levels, higher
incidence of cirrhosis, and increased mortality rates [103].
Lest the picture appear too simple, an additional complica-
tion in HCV infections is hepatocellular carcinoma (HCC).
Patients with HCC had increased populations of Tregs in
their blood that suppressed the proliferation and cytokine
secretion of activated CD4+CD25− T cells [104]. Perhaps
even more interestingly, the tumors themselves contained
high levels of Tregs, and the CD8+ tumor infiltrating
lymphocytes in the tumor tissues were dysfunctional
[105]. Thus, HCV-induced Tregs appear to protect chron-
ically infected patients from immunopathological diseases,
but likely contribute to an inability to cytolyse cancer cells
and prevent HCC.

Numerous studies have now demonstrated the involve-
ment of Tregs in HIV infections, but as just discussed for
HCV, their role in various aspects of disease appears
complex. Suppression of both CD4+ T cell [106–108] and
CD8+ T cell [107, 108] responses have been described in
vitro. HIV induces immune hyperactivation similar to SIV
in macaques, and this hyperactivation may play a predom-
inant role in the depletion of CD4+ T cells [29]. The degree
of hyperactivation is a powerful prognosticator of AIDS
progression and death [27–30, 109]. Interestingly, the loss
of peripheral Tregs in HIV patients is also a prognosticator
of a poor clinical outcome because it correlates with
increased HIV-induced immune hyperactivation [108,
110]. Thus, it appears that Tregs may protect from severe
disease by controlling virus-induced immune hyperactiva-
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tion. Although Tregs may help protect HIV-infected
persons from hyperactivation, they likely also contribute
to the previously described dysfunction of both T helper
cells [111] and CD8+ T cells [112–115].

It is not known why Tregs levels eventually drop in HIV
infections, but human Tregs are highly susceptible to
infection by HIV [110], which could lead to their dysfunction
or cell death through various mechanisms [116–120]. There
is also evidence that the drop in Treg levels in the peripheral
blood may be due more to a redistribution of Tregs than to a
decrease in total Tregs numbers. In studies of tonsil tissue from
HIV-infected patients, Andersson et al. showed the presence
of increased levels of Tregs, and there was a positive
correlation between the prevalence of Tregs and viral loads
[121]. These findings are supported by recent data showing
increased levels of Tregs in the lymph nodes of HIV-infected
patients [54]. Given that HIV primarily replicates in
lymphoid tissues [122, 123], the presence of Tregs that have
been shown to suppress both CD4+ and CD8+ T cell
functions could have a dramatic and very detrimental impact
on the ability of the immune system to clear infected cells.
The idea that Treg-mediated suppression of cellular immune
responses in lymphoid tissue could increase disease is
bolstered by a recent study showing that the maintenance
of virus-specific cellular immune responses in gut-associated
lymphoid tissue correlates with an asymptomatic state in
long-term nonprogressors [124].

How do virus-induced Tregs mediate suppression?

The molecular mechanisms by which Tregs mediate
suppression of effector T cell responses are largely
unknown. In general, CD4+ Tregs inhibit T cell responses
either indirectly through the production of anti-inflamma-
tory cytokines, such as IL-10 or TGFβ, or directly through
cell-to-cell contact. IL-10 is a potent immunosuppressive
cytokine that exerts its anti-inflammatory effects primarily
on APCs, which ultimately leads to the down-regulation of
Th1 responses [125]. IL-10-producing Tregs (Tr1) can be
generated in vitro by stimulating naïve T cells with chronic
antigen [126] or in the presence of immunosuppressive
drugs [127]. Among the known virus-induced Tregs, the
expression of IL-10 appears to be a common theme
(Table 1). In HIV, T cells from infected donors produce
IL-10 when cocultured with HIV-infected immature DC
and suppress CD4+ T cell proliferation in an IL-10-
dependent manner [77]. In addition, the frequency of IL-
10-producing CD4+ T cells is significantly increased in
HIV patients with progressive disease compared to patients
with nonprogressive disease [128]. A role for IL-10 has
also been implicated in EBV infections. Peripheral blood
mononuclear cells from EBV-seropositive individuals stim-

ulated with EBV-specific latent membrane protein 1
induced high levels of IL-10 secretion and the ability to
inhibit T cell proliferation and IFNγ responses in vitro [56].
In these studies, neutralizing anti-IL-10 antibodies com-
pletely abrogated the suppressive activity demonstrating the
requirement for IL-10. As discussed above, virus-specific
CD4+ and CD8+ Tregs cells from HCV-infected patients
also produce IL-10 in response to viral antigens and inhibit
HCV-specific T cell responses [9, 95, 99]. However, in vitro
suppression by these cells was found not to be dependent
on IL-10 but rather required cell–cell contact [96, 97].
Although in vitro studies show that IL-10 is not essential
for virus-induced, Tregs-mediated suppression, its multiple
anti-inflammatory effects are likely important for the
development and/or function of virus-induced Tregs in
vivo.

TGFβ is another important immunosuppressive cytokine
that has been implicated in the function of Tregs [129].
Increased expression of TGFβ in CD4+CD25+ T cells has
been reported in HIV-infected individuals [106, 108, 121]
and SIV infection of rhesus macaques [83]. HIV infection is
associated with the circulation of dysfunctional CD8+
T cells that fail to eliminate chronic viruses. One mecha-
nism that may contribute to this dysfunction is the presence
of CD8+ regulatory T cells that secrete TGFβ. HIV-induced
CD8+ Tregs were HIV-specific and suppressed CD8+ Tcell
IFNγ responses in vitro, an effect that was reversible by
anti-TGFβ antibodies [31]. The function of TGFβ in Tregs-
mediated suppression has been studied most extensively in
models of autoimmunity and tumor rejection involving the
suppression of CD8+ T cells. These studies demonstrate that
TGFβ expressed on the surface of Tregs or APCs interacts
with the TGFβ receptor II on CD8+ T cells, resulting in
inhibition of activation [129–132]. In addition, TGFβ can
induce the expression of the forkhead transcription factor
Foxp3 in CD4+CD25− T cells, which confers suppressive
activity [36]. Foxp3 is a transcriptional repressor that
functions as the Tregs cell lineage specification factor [48,
49, 133–135]. Although the transcriptional programming
orchestrated by Foxp3 has not been clearly defined,
immunosuppressive activity of T cells is associated with
Foxp3 expression. Thus, production of TGFβ during virus
infections may both directly suppress effector T cells and
help promote Tregs development.

Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4),
a negative regulator constitutively expressed on CD4+CD25+
Tregs cells, has received significant attention as a potential
mediator of Tregs suppressive function. CTLA-4 has been
shown to induce the expression of the tryptophan-catabo-
lizing enzyme indoleamine 2,3-dioxygenase (IDO) in
tolerogenic DCs [136]. Through the depletion of trypto-
phan, an important growth factor, IDO inhibits clonal
expansion of T cells [137, 138]. At present, evidence
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supporting a role for IDO in virus-induced Tregs is only
circumstantial. In a comparative study with HIV-infected
patients undergoing highly active antiretroviral therapy
treatment, untreated HIV-infected patients expressed high
levels of IDO-specific mRNA in tonsils [121]. Although
DCs are the typical source of IDO, recent studies using the
rhesus macaque model show a rapid induction of IDO
expression in CD4+CD25+FOXp3+ Tregs cells in the
lymph nodes during acute SIV infection [83].

Several studies of HIV-infected individuals have now
demonstrated intriguing correlations between the presence of
Tregs, dysfunctional lymphocytes, virus production, and
different disease states [106, 108, 121]. However, direct
proof and dissection of the roles of Tregs-mediated suppres-
sion in vivo requires an experimental model. To this end, we
have used mice infected with FV, the model in which virus-
induced Tregs were originally described [8]. Chronic FV
infection induces CD4+ Tregs that suppress CD8+ T cell
functions [8, 50, 139]. Suppression of CD8+ T cell function
can be adoptively transferred into naïve or acutely infected
mice with CD4+ Tcells purified from chronically infected mice
[8, 139]. When CD4+ T cells from chronically infected mice
were adoptively transferred into acutely infected mice, they
not only produced IL-10 but also promoted IL-10 production
by the host’s CD4+ T cells [139]. Interestingly, both CD25-
positive and negative subsets exhibited suppressive activity
in vivo. An in vitro assay designed to further investigate the
mechanisms of suppression indicated the presence of two
distinct subsets of FV-induced Tregs. The CD4+CD25−
subset was the IL-10-producing subset (unpublished data),
while the ability to directly suppress IFNγ production by
stimulated CD8+ T cells was found only in the CD4+CD25+
subset [50]. Suppression of CD8+ T cell function by FV-
induced CD4+CD25+ T cells in vitro occurred in a cell
contact-dependent manner with no requirement for APCs.
Interestingly, FV-induced Tregs did not inhibit the prolifer-
ative responses of stimulated CD8+ T cells or their
expression of activation markers. Suppression was limited
to effector functions such as the production of cytokines and
cytolytic molecules. Furthermore, FV-induced Tregs also
suppressed the effector function of virus-specific CD8+
T cells that had been fully activated by exposure to virus in
vivo. This ability could be key to their role in preventing
immunopathology.

Another interesting finding from the in vitro studies on
FV-induced Tregs was that they suppressed CD8+ T cells in
vitro regardless of the specificity of the CD8+ T cell [50].
This is consistent with the finding that, although the
activation of Tregs is antigen-specific and dependent on
T cell receptor signaling, their effector function is
nonspecific and can generate “bystander suppression”
[140]. The implication is that some degree of general
immunosuppression may be associated with virus-induced

Tregs activity. In mice chronically infected with FV, virus-
induced Tregs suppressed virus-specific CD8+ T cell
responses in vivo [8, 139, 141] and in vitro [50]. While
the immunosuppression associated with these virus-in-
duced Tregs was strongest to virus-specific responses, it
was shown that both in vivo and in vitro responses to
nonviral antigens were weakened [8]. This study suggests
that, indeed, some general immunosuppression is associated
with virus-induced Tregs, but further studies will be needed
to determine whether the effect is potent enough to affect
immune responses to infectious agents. In that regard, a
recent transplantation study showed that the generation of
allograft-specific Tregs did not compromise immunity to
infection with influenza [142]. A general conclusion from
these studies and unpublished data from our lab is that the
microenvironmental localization of Tregs plays a more
important role in determining which responses get sup-
pressed than does the specificity of the cell being suppressed.

Conclusion

Numerous factors such as the timing, intensity, mechanism
of induction, and the microenvironmental location of the
Tregs response have considerable impacts on whether the
outcome is primarily beneficial or detrimental to the host.
Clearly, Tregs responses are highly evolved and critical to
the regulation of antiviral immunity. It appears that Tregs
respond during infections with all viruses, not just those
that become chronic, and they provide a critical governor
on immune effector responses that could otherwise cause
life-threatening immunopathological damage. They are
usually highly successful at their jobs, as evidenced by
our ability to recover from most viral infections without
serious sequelae. Although some viruses have evolved
ways to subvert the Tregs responses, thereby allowing them
to establish and maintain persistence, most chronic viral
infections are rather benign. Virtually all humans carry
chronic viral infections, and they are usually not highly
pathogenic unless the person becomes immunocompro-
mised. Of course there are outstanding exceptions such as
HIV and HCV that cause a great deal of suffering and
death. The studies with the natural hosts of SIV suggest that
HIV may be such an extreme example because it has so
recently jumped the species barrier, and humans have not
had time to evolve and adapt protective Tregs responses as
the sooty mangabies and African green monkeys have
done. It is clear that Tregs responses are important in HIV
infections, but the situation appears to be just as complex as
it is in HCV infections, and much remains to be learned.
Thus, a great deal of care must be taken with therapeutic
intervention because there is a large potential to exacerbate
disease rather than cure it. That being said, modulation of
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the Tregs response may indeed be a key component in
therapies to treat chronic viral infections such as HIV and
HCV.
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