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Abstract
Purpose Adavosertib may alter exposure to substrates of the cytochrome P450 (CYP) family of enzymes. This study assessed 
its effect on the pharmacokinetics of a cocktail of probe substrates for CYP3A (midazolam), CYP2C19 (omeprazole), and 
CYP1A2 (caffeine).
Methods Period 1: patients with locally advanced or metastatic solid tumors received ‘cocktail’: caffeine 200 mg, omeprazole 
20 mg, and midazolam 2 mg (single dose); period 2: after 7- to 14-day washout, patients received adavosertib 225 mg twice 
daily on days 1–3 (five doses), with cocktail on day 3. After cocktail alone or in combination with adavosertib administration, 
24-h pharmacokinetic sampling occurred for probe substrates and their respective metabolites paraxanthine, 5-hydroxyome-
prazole (5-HO), and 1′-hydroxymidazolam (1′-HM). Safety was assessed throughout.
Results Of 33 patients (median age 60.0 years, range 41–83) receiving cocktail, 30 received adavosertib. Adavosertib co-
administration increased caffeine, omeprazole, and midazolam exposure by 49%, 80%, and 55% (AUC 0–12), respectively; 
AUC 0–t increased by 61%, 98%, and 55%. Maximum plasma drug concentration  (Cmax) increased by 4%, 46%, and 39%. 
Adavosertib co-administration increased 5-HO and 1′-HM exposure by 43% and 54% (AUC 0–12) and 49% and 58% (AUC0–t), 
respectively; paraxanthine exposure was unchanged. Adavosertib co-administration decreased  Cmax for paraxanthine and 5–
HO by 19% and 7%;  Cmax increased by 33% for 1′-HM. After receiving adavosertib, 19 (63%) patients had treatment-related 
adverse events (six [20%] grade ≥ 3).
Conclusion Adavosertib (225 mg bid) is a weak inhibitor of CYP1A2, CYP2C19, and CYP3A.
ClinicalTrials.gov NCT03333824
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Introduction

Cyclin-dependent kinase 1 (CDK1; also known as cell 
division cycle 2 protein [CDC2]) drives a cell from the 
G2 phase of the cell cycle into mitosis. In response to 
DNA damage, the nuclear tyrosine kinase Wee1 inhibits 
CDK1 to prevent the cell from dividing until the dam-
aged DNA is repaired (G2 checkpoint arrest) [1]. CDK2 
drives a cell into, and through, the S phase of the cell 
cycle, during which the genome is duplicated in prepara-
tion for cell division; inhibition of Wee1 is expected to 
cause aberrantly high CDK2 activity in S-phase cells that, 
in turn, leads to unstable DNA replication structures and, 
ultimately, DNA damage [2].

Fully functional CDK1- and CDK2-mediated check-
points are necessary for the DNA damage response (DDR) 
to minimize replication stress for proliferating cells [3–6]. 
Adavosertib (AZD1775) is a highly selective ATP-com-
petitive small-molecule inhibitor of Wee1, with a half-
maximal inhibitory concentration  (IC50) of 5.2 nmol/L in 
in vitro kinase assays [7, 8]. Inhibition of Wee1 releases 
tumor cells from DNA-damage-induced arrest at the G2/M 
boundary, so that unrepaired DNA damage may be taken 
into mitosis (M phase); as cancer cells show higher levels 
of endogenous damage than normal cells, as well as exhib-
iting loss of one or more DDR capabilities, this is pre-
dicted to preferentially enhance cancer cell death through 
mitotic catastrophe compared with normal cells [2, 9].

Adavosertib has been evaluated as mono- and com-
bination therapy with chemotherapy, olaparib, and dur-
valumab in numerous phase I and II studies in patients 
with a wide variety of solid tumors [10–15]. Preclinical 
(in vitro) studies indicate that adavosertib is metabolized 
by, and is both a substrate for and an inhibitor of, cer-
tain enzymes of the cytochrome P450 (CYP) family [16]. 
Metabolism of adavosertib is predominantly by CYP3A, 
with a flavin-containing monooxygenase (FMO) 3 and/or 
FMO5 component (AstraZeneca, data on file, 2022). Ada-
vosertib is also a weak reversible inhibitor  (IC50 14 μM) 
and a time-dependent (irreversible) inhibitor of CYP3A 
(maximal inactivation  [kinact] 0.061/min, concentration at 
50% of  kinact 6.04 μM); modeling data predicted an eight- 
to tenfold increase in the exposure of sensitive CYP3A 
substrates when administered with adavosertib (250 mg 
twice daily [bid] for five doses; AstraZeneca, data on file, 
2020) [16]. Adavosertib is a weak inducer of CYP1A2 
(39% increase in activity of positive control; AstraZeneca, 
data on file, 2022) [16].

The primary objective of this prospective, two-
period, open-label, drug–drug interaction (DDI) study 
(NCT03333824) was to determine whether there was a 
clinically significant increase of exposure to substrates for 

CYP1A2 (caffeine), CYP2C19 (omeprazole), and CYP3A 
(midazolam) in the presence of adavosertib, and if co-
administration of the probe CYP substrates had a clinically 
meaningful effect on adavosertib pharmacokinetics (PKs) 
[17]. The doses of the probe drugs (midazolam: 1 mL of 
2 mg/mL syrup; omeprazole: 20 mg capsules; caffeine: 
200 mg tablet) included in the cocktail were previously 
validated in this cocktail [18].

Methods

Objectives

The primary study objective was to assess the effect of ada-
vosertib on the PKs of probe substrates for CYP3A (mida-
zolam), CYP2C19 (omeprazole), and CYP1A2 (caffeine). 
The secondary study objectives were to: describe the PKs 
of midazolam, omeprazole, and caffeine and their respective 
metabolites (1ʹ-hydroxymidazolam [1ʹ-HM], 5-hydroxyome-
prazole [5-HO], and paraxanthine) in the absence and pres-
ence of adavosertib; describe the PKs of adavosertib; and 
observe the clinical and laboratory safety and tolerability 
of adavosertib.

Study design

This manuscript focuses on PK data (part A, periods 1 and 
2) from NCT03333824, which was conducted at seven clini-
cal sites in the USA. Part B of NCT03333824 was an inves-
tigation of the effect of adavosertib on the electrocardiogram 
QT interval, the results of which are reported separately. 
The study was of a prospective, open-label, non-randomized, 
sequential, two-period design (Fig. 1).

Treatment started with single-dose administration of 
the probe cocktail of caffeine (200 mg tablet), omeprazole 
(20 mg capsule), and midazolam (1 mL of 2 mg/mL syrup 
formulation) on day − 8, followed by PK sampling for 24 h 
(period 1) and a washout period of 7–14 days. In period 2, 
adavosertib (225 mg; 3 × 75 mg capsules) was administered 
bid until steady state for 2.5 days (total of five doses; maxi-
mum tolerated/recommended phase II dose for combination 
therapy [19]), and the final dose was administered in com-
bination with single doses of the probe cocktail drugs on 
the morning of day 3, followed by PK sampling for 24 h. 
Venous blood samples were taken immediately pre-dose, as 
well as post-dose at 15, 30, and 45 min and 1, 2, 3, 4, 6, 8, 
10, 12, and 24 h following a single dose of the cocktail alone 
on day − 8 or the cocktail with adavosertib 225 mg on day 3. 
Patients were screened 28 days before the first adavosertib 
dose and within 14–21 days before the first cocktail admin-
istration. Patients were required to fast from 2 h before until 
2 h after the probe cocktail drug administration, as well as 
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each administration of adavosertib alone or in combination 
with the cocktail.

Patients received granisetron 1 mg orally as anti-emetic 
prophylaxis 30 min prior to administration of the cocktail 
drugs or adavosertib capsules. Water intake was prohibited 
from 1 h before until 1 h after administration of the probe 
cocktail alone or with adavosertib (days − 8 and 3, respec-
tively), excluding the 240 mL of water used for adminis-
tration of adavosertib and the cocktail. Dexamethasone 
was prohibited until after the last PK sample was drawn; 
prochlorperazine, promethazine, and/or lorazepam could be 
used as required to treat nausea/vomiting.

The study was performed in accordance with the ethical 
principles of the Declaration of Helsinki and is consistent 
with the International Council for Harmonisation’s Good 
Clinical Practice, applicable regulatory requirements, and 
the AstraZeneca policy on bioethics [20].

Patients

Patients were eligible for the study if they met the following 
inclusion criteria: presence of a histologically or cytologi-
cally confirmed locally advanced or metastatic solid tumor, 
excluding lymphoma, for which standard therapy did not 
exist or had proven ineffective or intolerable; any prior pal-
liative radiation must have been completed at least 7 days 
prior to the start of study treatment, and patients must have 
recovered from any acute adverse effects prior to the start of 

study treatment; Eastern Cooperative Oncology Group per-
formance status of 0 or 1; no abnormalities in laboratory val-
ues within 7 days of initiation of study treatment; ≥ 18 years 
of age. Key exclusion criteria included: patients who were 
suffering from conditions that were likely to adversely affect 
gastrointestinal motility and/or transit or drug absorption; 
patients taking prescription medicines or foods known to 
interfere with the PKs of adavosertib or the probe cocktail 
drugs (see Supplementary Methods for restricted medica-
tions and additional exclusion criteria).

Pharmacokinetic assessment

After cocktail alone (day − 8) and with adavosertib co-
administration (period 2 day 3), 24-h venous blood sampling 
took place for PK measurements of caffeine, omeprazole, 
midazolam, and their respective metabolites paraxanthine, 
5-HO, and 1ʹ-HM. This sampling period was selected based 
on the half-lives of the probe substrates. The PK parameters 
measured included maximum plasma drug concentration 
 (Cmax), area under the plasma concentration–time curve 
(AUC) from time zero to infinity (AUC 0–∞), AUC from time 
zero to time of the last quantifiable concentration (AUC 0–t), 
time to reach maximum plasma concentration  (tmax), plasma 
terminal half-life  (t½), elimination rate constant (λz), appar-
ent clearance (CL/F), and apparent volume of distribution 
 (Vz/F) for the cocktail parent compounds (midazolam, ome-
prazole, and caffeine).

ba DDI study (part A)

To part B 
(QTc interval study)

Day −8 (period 1) Days 1−3 (period 2)

Probe cocktail:
Midazolam 2 mg +
Omeprazole 20 mg +
Caffeine 200 mg

Adavosertib 
225 mg dosing

Probe alone

AUC0−t, Cmax

7−14 days washout

Day −8 Day 1 Day 2 Day 3

7−14 days washout

AUC0−t, Cmax

Probe + adavosertib

Adavosertib 225 mg bid days 1−2,
Adavosertib 225 mg one dose day 3,
Probe cocktail day 3

Number of enrollments*†

n=57

Screening 
failure
n=22

Withdrawal 
by patient
n=2

Not assigned 
to treatment
n=24

Discontinued
n=3 (9.1%)§

Assigned to treatment‡

N=33

Received probe cocktail 
on day −8, part A, period 1
n=33 (100%)

Received adavosertib in 
part A, period 2
n=30 (90.9%)

Probe cocktail 
dosing

Adavosertib + 
probe cocktail dosing

Fig. 1  a Study design and b patient disposition flow chart. This 
manuscript focuses on pharmacokinetic data from part A of 
NCT03333824; part B of NCT03333824 is an investigation of the 
effect of adavosertib on the QT interval, results of which are reported 
separately. *Informed consent received; †A number of patients 

enrolled more than once; there were 49 unique enrollments; ‡Study 
treatment refers to treatment with either cocktail or adavosertib; §One 
each as a result of death (pancreatic cancer), study termination by the 
sponsor, and withdrawal by the patient. bid twice daily
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AUC from time zero to 12 h (AUC 0–12), AUC 0–t,  tmax, 
 Cmax,  t½, and λz were determined for the cocktail metab-
olites (1ʹ-HM, 5–HO, and paraxanthine), and AUC and 
 Cmax ratios were determined in relation to the parent com-
pounds. Following adavosertib administration on period 
2 day 3, PK parameters for adavosertib measured included 
AUC 0–12,  tmax,  Cmax, minimum plasma drug concentra-
tion  (Cmin), apparent average plasma concentration over a 
dosing interval  (Cavg), apparent clearance at steady state 
 (CLss/F), and fluctuation index over a dosing interval (FI).

Plasma concentrations for caffeine, paraxanthine, ome-
prazole, 5-HO, midazolam, and 1ʹ HM were all determined 
by high-performance liquid chromatography–tandem mass 
spectrometry (HPLC–MS/MS) at Labcorp Bioanalytical 
Laboratories (Madison, WI, USA).

Plasma concentrations of caffeine and paraxanthine col-
lected with  K2EDTA as anticoagulant were determined 
by HPLC–MS/MS detection simultaneously. The stand-
ard curves of caffeine and paraxanthine both ranged from 
25.0 to 20,000 ng/mL. Precision (percentage coefficient of 
variance [%CV]) and accuracy (percentage bias) for the 
quality control (QC) samples were ≤ 7.0% and ≤ 7.5% CV 
and within − 3.1% to − 1.8% and − 4.9% to − 1.8% bias for 
caffeine and paraxanthine, respectively. The lower limit of 
quantification (LLOQ) was 25.0 ng/mL for caffeine and 
paraxanthine.

Plasma concentrations of omeprazole and 5-HO were 
collected with lithium heparin as anticoagulant and were 
determined by HPLC–MS/MS detection simultaneously. 
The standard curves of omeprazole and 5-HO both ranged 
from 20.0 to 20,000 nmol/L. Precision (%CV) and accu-
racy (percentage bias) for the QC samples were ≤ 3.9% 
and ≤ 4.4% CV and within 0.0 − 9.0% and − 1.9% to 2.2% 
bias for omeprazole and 5-HO, respectively. The LLOQ 
was 20.0 nM for omeprazole and 5-HO.

Plasma concentrations of midazolam and 1ʹ-HM were 
collected with  K2EDTA as anticoagulant and were deter-
mined by HPLC–MS/MS detection simultaneously. The 
standard curves of midazolam and 1ʹ-HM both ranged 
from 0.100 to 100 ng/mL. Precision (%CV) and accu-
racy (percentage bias) for the QC samples were ≤ 6.4% 
and ≤ 5.1% CV and within − 0.8% to 1.0% and − 1.0% to 
0.0% bias for midazolam and 1ʹ-HM, respectively. The 
LLOQ was 0.1 ng/mL for midazolam and 1ʹ-HM.

The concentration of adavosertib in human plasma was 
determined by Labcorp Bioanalytical Laboratories using 
the same validated method described previously [21]. The 
assay had a linear dynamic range of 2–1000 ng/mL, with 
an LLOQ of 2 ng/mL [22].

All plasma samples were stored at − 70 °C (or below) 
prior to analysis and analyzed within the validated time 
frame.

Safety and tolerability assessments

Safety was appraised throughout the study by the assess-
ment of clinical and laboratory adverse events (AEs; graded 
by Common Terminology Criteria for Adverse Events 
[CTCAE], version 4.03), physical examination, and evalu-
ation of vital signs and laboratory data (clinical chemistry 
and hematology).

Statistical analyses

No formal sample size estimation was conducted. Based on 
an estimate of within-patient standard deviation of 0.294 
and assuming a true interaction effect of 100%, it was esti-
mated that 20 evaluable patients would provide 80% power 
to show that the 90% confidence interval (CI) for the ada-
vosertib effect lies entirely below 2.67, i.e. it would rule out 
a 167% increase of exposure in the presence of adavosertib. 
The number of patients was based on careful clinical con-
sideration to gain adequate information on the primary end-
points while exposing as few patients as possible to study 
procedures. Enrollment of approximately 30 patients, with a 
target of 20 evaluable patients, was considered adequate and 
sufficient to meet the objectives of this study.

The safety analysis set included all patients who received 
at least one dose of study treatment (adavosertib or probe 
cocktail drugs). Patients were evaluated according to the 
treatment received. A treatment-emergent AE was defined as 
an AE with its start date and time on or after the first dose of 
probe cocktail on day − 8 up to and including 30 days after 
the last dose date of adavosertib, or, for pre-existing pre-
treatment AEs, the date on which they worsened in severity 
after the first dose of study treatment. The PK analysis set 
included all dosed patients who had at least one quantifi-
able plasma concentration for any of the cocktail drugs (or 
metabolites) or adavosertib collected post-dose without pro-
tocol deviations or events that could affect the PK analysis.

PK parameters were derived using non-compartmental 
methods with  Phoenix®  WinNonlin® version 6.4 (Certara, 
LP, Princeton, NJ, USA). All descriptive and inferential 
statistical computations were performed using  SAS® version 
9.1 (SAS Institute, Cary, NC, USA). Estimates of the mean 
difference between treatments (adavosertib + probe cocktail 
substrate compared with probe cocktail substrate alone) and 
corresponding 90% CIs were calculated using a linear mixed-
effects model, with a fixed effect for treatment and a random 
effect for patient. The natural-log-transformed PK parameters 
 (Cmax, AUC 0-∞, and AUC 0–t) of the cocktail parent compounds 
and metabolites were used in the mixed-effects models as 
dependent variables. The mean differences and CIs were back 
transformed to the original scale to give estimates of the ratios 
and the associated 90% CIs; additionally, back-transformed 
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geometric means, together with 95% CIs, were estimated and 
are presented by treatment.

Results for AUC 0–12 and  Cmax obtained following ada-
vosertib administration on period 2 day 3 were compared 
with those obtained on period 2 day 3 following the same 
adavosertib dosage schedule but without cocktail (Astra-
Zeneca, data on file, 2022) to probe the potential effects of 
the cocktail drugs and to obtain an estimate of intra-patient 
adavosertib variability.

Results

Patients

Of 57 patients enrolled (from 49 unique patients, as several 
patients enrolled more than once because of rescreening), 33 
were assigned to treatment (see Fig. 1 for patient disposi-
tion flow chart). Patient baseline characteristics are shown 
in Table 1; the median age of patients assigned to treatment 
was 60 years (range 41–83), and the gender distribution was 
balanced. Six patients used disallowed concomitant medi-
cations, including three patients who were taking a weak 
CYP3A inhibitor that could have affected the PK results 
for midazolam and its metabolite 1ʹ-HM (two patients took 
amlodipine, one patient took alprazolam); these patients had 
their midazolam and 1ʹ-HM PK results excluded. Details of 
the number of patients with evaluable data for each drug/
period are provided in Supplementary Table S1.

Pharmacokinetic assessments

Pharmacokinetic parameter estimates for substrates of 
CYP1A2 (caffeine), CYP2C19 (omeprazole), and CYP3A 
(midazolam) and their metabolites (paraxanthine, 5-HO, and 
1ʹ-HM, respectively) in the presence and absence of ada-
vosertib are shown in Table 2.

Co-administration of adavosertib increased caffeine total 
exposure by 49% (AUC 0–12) to 61% (AUC 0–t; Table 2). 
Caffeine AUC was only reliably characterized in eight 
patients in period 2. With the exception of one patient, 
caffeine AUC 0–12 increased following co-administration 
of adavosertib in all patients with paired data for both 
periods; hence, the results obtained for AUC 0–12 from this 
inferential analysis were considered to be representative 
of the data.

Paraxanthine AUC 0–12 was only reliably characterized in 
10 patients in period 1 and one patient in period 2. Thus, 
the treatment comparison for AUC 0–12 was not considered 
meaningful.

Co-administration of adavosertib increased omeprazole 
total exposure by 80% (AUC 0–12) to 98% (AUC 0–t) and 
increased  Cmax by 46% (Table 2).

Co-administration of adavosertib increased midazolam 
total exposure by 55% (AUC 0–12 and AUC 0–t; Table 2).

The individual and geometric mean AUC 0–12 and  Cmax of 
adavosertib plus cocktail (part A) versus adavosertib alone 
(part B), and the individual and geometric mean AUC 0–t and 
 Cmax of caffeine, omeprazole, and midazolam alone versus 
each cocktail drug plus adavosertib, are shown in Fig. 2.

The geometric mean plasma concentrations of caffeine, 
omeprazole, and midazolam versus time, with and without 
adavosertib, are shown in Fig. 3. In the presence of ada-
vosertib, the rate of paraxanthine formation appeared to 

Table 1  Patient demographics and disease characteristics (safety 
analysis set)

ECOG performance status and overall disease classification are based 
on assessments at baseline. Primary tumor location and histology 
type are based on assessments at primary diagnosis. aAll patients 
enrolled in this study had disease progression to unresectable recur-
rent/metastatic cancers since diagnosis. bOther includes appendix, 
cervix uteri, gastric cardia, head and neck, head and neck – oral cav-
ity, larynx, pancreatic head, prostate gland, rectum, small intestine, 
submandibular gland, and uterus (all n = 1). ECOG Eastern Coopera-
tive Oncology Group, SD standard deviation

Characteristic Safety analysis set (N = 33)

Age, years
 Mean (SD) 60.3 (8.8)
 Median (range) 60 (41–83)

Age group, n (%)
 40– < 50 years 5 (15.2)
 50– < 65 years 20 (60.6)
  ≥ 65 years 8 (24.2)

Sex, n (%)
 Male 15 (45.5)
 Female 18 (54.5)

Race, n (%)
 Asian 1 (3.0)
 Black or African American 4 (12.1)
 White 28 (84.8)

Body mass index, kg/m2

 n 29
 Mean (SD) 25.8 (4.9)
 Median (range) 25.0 (17.5–36.9)

ECOG performance status, n (%)
 (0) Normal activity 15 (45.5)
 (1) Restricted activity 18 (54.5)

Primary tumor location, n (%)a

 Pancreas 5 (15.2)
 Colon 4 (12.1)
 Breast 3 (9.1)
 Lung 3 (9.1)
 Ovary 3 (9.1)
 Peritoneum 3 (9.1)
  Otherb 12 (36.4)
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be decreased, resulting in lower mean concentrations and 
a lower rate of elimination over the sampling period (Sup-
plementary Figure S1).

The PK parameters of adavosertib following co-admin-
istration of cocktail are shown in Table 3. Point estimates of 
the AUC 0–12 and  Cmax geometric least-squares (LS) mean 
ratios were 108% and 97%, respectively. Accumulation 
over 2.5 days of bid dosing with adavosertib was approxi-
mately 2.3 and 2.1 for AUC 0–12 and  Cmax, respectively. The 
adavosertib concentration in human plasma ranged from 
4 to 2000 nM. Precision (%CV) was ≤ 4.2% and accuracy 
(percentage bias) was within 0.7–1.5% for the QC samples. 
Reproducibility was confirmed by re-analysis of 87 study 
samples (with adavosertib concentrations above the LLOQ) 
selected at random; 98.9% of the results obtained follow-
ing the initial and repeat analyses were within 20.0% of the 
mean of the two values, thus meeting the acceptance criteria 
[23].

Safety

Causally related AEs (stratified by any grade and grade ≥ 3) 
are shown in Supplementary Table  2 for patients who 
received only adavosertib and patients who received both 
adavosertib and the probe cocktail. Four of 33 (12.1%) 
patients experienced AEs with cocktail alone, compared 
with 16/26 (61.5%) patients who received probe cocktail 
plus adavosertib and 16/30 (53.3%) patients after receiv-
ing adavosertib alone on days 1 and 2. Treatment-related 
AEs were reported by 12/26 (46.2%) patients receiving 
probe cocktail plus adavosertib and 11/30 (36.7%) patients 
after receiving adavosertib alone on days 1 and 2. The most 
common treatment-related AEs in patients receiving probe 
cocktail plus adavosertib (n = 26 patients) were diarrhea and 
nausea (both in four [15.4%] patients) and dizziness (in two 
[7.7%] patients). The most common treatment-related AEs 
in patients receiving adavosertib alone (n = 30 patients) were 
diarrhea (in 10 [33.3%] patients), vomiting (in six [20.0%] 
patients), and nausea (in three [10.0%] patients).

Adverse events of CTCAE grade ≥ 3 were observed in: 
4/26 (15.4%) patients receiving probe cocktail plus ada-
vosertib (anemia, neutropenia, pulmonary embolism, and 
portal vein thrombosis in one [3.8%] patient each); 5/30 
(16.7%) patients receiving adavosertib alone on days 1 and 
2 (diarrhea in three [10.0%] patients, necrotizing soft-tissue 
infection, neutropenia, thrombocytopenia, dehydration, 
hypokalemia, hypoxia, nausea, pancreatitis, small-intestinal 
obstruction, vomiting, and acute kidney injury in one [3.3%] 
patient each [multiple events were experienced by the same 
five (16.7%) patients]); and 0/33 patients receiving cocktail 
alone.

One patient receiving adavosertib alone on days 1 and 
2 reported two serious AEs (SAEs) considered related to 

adavosertib (acute kidney injury, which resolved after 2 days, 
and pancreatitis, which did not resolve during the study but 
improved to grade 2 after 2 days) that led to discontinuation; 
four patients reported five SAEs that were not considered 
related to treatment (grade 2 bacterial pneumonia and deep 
vein thrombosis, which did not resolve; grade 3 necrotizing 
soft-tissue infection, which resolved; grade 3 small-bowel 
obstruction, which did not resolve; and grade 4 pulmonary 
embolism, which resolved).

Two patients discontinued treatment because of AEs: 
one as a result of grade 3 diarrhea considered related to 
adavosertib, which resolved, and the other for grade 3 small-
bowel obstruction, which was not considered related to ada-
vosertib and did not resolve.

No AEs with an outcome of death were observed; one 
patient died as a result of disease progression (pancreatic 
cancer) following receipt of the probe cocktail but prior to 
receiving adavosertib.

Discussion

In this study, adavosertib exposure, when given alone or 
co-administered with the cocktail drugs, was similar to that 
observed in previous studies when given alone [5]. Therefore, 
concomitant administration of drugs metabolized by CYP3A, 
CYP2C19, and CYP1A2 is unlikely to have a significant 
clinical effect on adavosertib PKs. Adavosertib, when given 
bid at a dose of 225 mg for 2.5 days, exhibited low intra-
patient variability (eg < 10% for AUC 0–12 and  Cmax), and 
adavosertib accumulation over 2.5 days of bid dosing was 
approximately twofold. The detailed PK data from this study 
reveal that the point estimates of the AUC 0–12 and AUC 0–t 
geometric LS mean ratios of all three probe cocktail drugs 
in the presence of adavosertib (225 mg bid) compared with 
probe cocktail drugs administered alone showed a 1.25- 
to < twofold increase [17]. Adavosertib therefore meets the US 
Food and Drug Administration (FDA) guidance for definition 
of a weak inhibitor of CYP1A2, CYP2C19, and CYP3A [17].

A physiologically based PK (PBPK) model (based on 
in vitro studies of absorption, distribution, metabolism, 
and excretion, clinical adavosertib PK data for doses of 
175–300 mg once daily [qd] or bid, and multiple dosing 
schedules [3 days on/4 days off and 5 days on/9 days off]) 
to assess multifaceted CYP modulation predicted that 
adavosertib is mainly metabolized by CYP3A with an 
FMO3 and/or FMO5 component and is a time-dependent 
(irreversible) inhibitor of CYP3A and a weak reversible 
(direct) inhibitor of CYP2C8, CYP2C9, and CYP2C19 
[16, 24]. Model predictions of adavosertib being a weak 
reversible inhibitor of CYP2C19 were confirmed by this 
study. Concentration–time curves for midazolam, the 
substrate of CYP3A, and its metabolite 1ʹ-HM show both 
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midazolam and 1ʹ-HM plasma concentrations increasing 
then returning towards baseline/elimination over the sam-
pling period. The PBPK model predictions of adavosertib 
being a weak reversible inhibitor of CYP2C8 and CYP2C9 
[16, 24] remain clinically unvalidated but are in line with 

observed effects of adavosertib being a weak inhibitor of 
CYP1A2, CYP2C19, and CYP3A.

The observed safety profile of adavosertib in this study 
was concordant with that found in previous clinical stud-
ies [7, 15]. The most prevalent AEs were gastrointestinal 
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toxicities (diarrhea, vomiting, and nausea). No new or 
unexpected adavosertib-related safety concerns were 
identified.

Although the study was terminated early because of 
the difficulty in enrolling patients (i.e. screening/rescreen-
ing failures) and evaluable data not being available for 
all enrolled patients (as a result of protocol deviations/
events), this had minimal impact on the interpretation of 
the PK results. Overall, the data from evaluable patients 
were adequate and representative of the primary objective 
of assessing the DDI potential of adavosertib. Instances 
of pre-dose concentrations > 5% of  Cmax were especially 
prevalent for caffeine and paraxanthine, despite the study 
design including washout periods and restriction of caf-
feine consumption. A potential explanation for this finding 
is that caffeine/paraxanthine elimination may be slower 
in this patient population than in participants in previous 
DDI studies; also, and perhaps the most likely explana-
tion, patients may not have been strictly compliant with 
the caffeine restrictions in the protocol. The true exposure 
increase when caffeine/paraxanthine were co-administered 
with adavosertib may therefore be lower than reported 
here. Compared with the recommended phase II dose for 
monotherapy (300 mg qd, 5 days on/2 days off for 2 of 
3 weeks) and the maximum tolerated dose of monotherapy 
(125 mg bid, 5 days on/9 days off for 2 of 3 weeks), both 
of which were determined after the present study com-
menced, the adavosertib dose in this study (225 mg bid) 
was higher and the dosing duration (2.5 days) sufficient to 
reach steady state; therefore, DDIs at the recommended 
phase II dose for monotherapy are not expected to be 
worse than observed during this study [25]. The relatively 
small study sample size facilitates the balance of needing 
to gain adequate PK data against exposing as few patients 
as possible to study procedures.

Overall, the results from this study suggest that ada-
vosertib is a weak inhibitor of CYP1A2, CYP2C19, and 
CYP3A according to the US FDA guidance for definition 
of a weak inhibitor [17]. Although the limited impact on 
probe drug exposures suggests that it is unlikely that dose 
adjustments of drugs metabolized by CYP1A2, CYP2C19, 
and CYP3A will be needed when co-administered with 
adavosertib, adequate safety monitoring and dose modifica-
tion may be necessary, particularly when co-administration 
occurs with substrates with a narrow therapeutic index.

Conclusions

Adavosertib, when administered at a dose of 225 mg bid, 
is a weak inhibitor of CYP1A2, CYP2C19, and CYP3A 
and therefore has a low risk of causing clinically significant 
DDIs with drugs metabolized by these enzymes.
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