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Abstract
Purpose Vincristine is widely used as anticancer therapy for a variety of hematological malignancies. The treatment is 
limited by progressive vincristine-induced neuropathy, possibly including both peripheral sensory and motor nerves, auto-
nomic nervous functions, and the central nervous system. This dose-limiting side-effect can diminish quality of life and, 
furthermore, cause discontinuation of vincristine treatment. The present review elucidates the current knowledge regarding 
vincristine-induced neuropathy in hematologic malignancies, focusing on neuropathy assessment, clinical and molecular 
predictive markers, drug–drug interference, prevention, and treatment.
Methods This review is conducted by a systematic search strategy for the identification of relevant literature in the PubMed 
and Embase databases.
Results No clinical parameters displayed convincing potential as predictors of vincristine-induced neuropathy; however, 
preexisting neuropathy was consistently reported to be associated with an increased risk of neurotoxicity. In contrast, molecu-
lar markers, including polymorphisms in genes involved in the pharmacodynamics and pharmacokinetics of vincristine, 
displayed great potential as predictive markers of neuropathy incidence and severity. Furthermore, antifungal drugs, such 
as itraconazole and voriconazole, decrease the metabolism of vincristine and consequently lead to severe neuropathy when 
co-administered with vincristine, underscoring why fluconazole should be the antifungal drug of choice.
Conclusion Reports from the 71 included studies clearly emphasize the lack of consistency in neuropathy assessment, grad-
ing systems, and reporting, making it difficult to interpret results between studies. Thus, truer clinical and molecular markers 
could emerge if the consistency of neuropathy detection and reporting increases by the use of conventional standardized 
neuropathy assessment tools and grading scales.
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Introduction

Vincristine is a chemotherapy drug belonging to the group 
of vinka alkaloids, which also includes vinblastine and vin-
desine, which has been widely used since its approval in 
1963 [1]. The antimitotic drug is used in the treatment of 
several solid tumors and hematologic malignancies, includ-
ing breast cancer, non-Hodgkin’s lymphomas (NHL), and 
leukemia [2]. Vincristine exerts its anti-neoplastic effect by 
inhibiting polymerization of tubulin and incorporation into 
microtubules, which prevents mitotic spindle assembly, lead-
ing to extension of mitosis and thereby apoptosis [3, 4].

The dose-limiting side effect of vincristine is neurotoxic-
ity, which may lead to severe peripheral sensory and motor 
neuropathies affecting quality of life (QOL), treatment delay, 
and vincristine substitution or discontinuation. The impact 
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of adapted use of vincristine on outcome is debatable [5–7]. 
Vincristine interferes with microtubules, which are critical 
components of nerve axons functioning as tracks for vesicle-
mediated transport, and leads to axonopathy that manifests 
slowly and progressively [8]. Vincristine-induced neuropa-
thy (VIN) spans a broad spectrum of dysfunctions that fall 
into three categories: sensory, motor, and autonomic neu-
ropathy (Table 1). The most common is peripheral sensory 
and motor nerve neuropathy characterized by numbness, 
paresthesia, impaired balance, weakened tendon reflexes, 
and altered gait [9]. Autonomic dysfunctions includes con-
stipation, paralytic ileus, urinary retention and orthostatic 
hypotension [10, 11]. Furthermore, several cranial nerve 
palsies and some central nerve system (CNS) toxicities have 
been reported (Table 1) [12–27], even though vincristine 
poorly penetrates the blood–brain barrier [28]. Although 
neurotoxicity is widely recognized as a common side-effect 
of vincristine treatment in hematologic neoplasms, little is 
known about the true incidence, short- and long-term mani-
festations and severity due to lack of consistency in detec-
tion, definition, and reporting.

Overall survival for adult hematologic cancer patients 
has improved during the past decades due to new treatment 
options, and more than 80% of children with acute lympho-
blastic leukemia (ALL) are now long-term survivors [29]. 
This therapeutic success, however, comes with the cost of 
more people experiencing early- and late-onset adverse 
effects, consequently affecting the recovering patient’s 
QOL, which is especially important in children with a long 
expected lifespan after treatment. Although the intensity of 
the symptoms may not be extensive, the inconvenience is not 
correlated, and QOL can be greatly impaired [30]. Given the 

increasing numbers of cancer survivors, the clinical signifi-
cance of chemotherapy-induced neuropathy is increasing; 
consequently, clinical and molecular risk predictors, pre-
vention and treatment options, and measuring methods are 
urgently warranted. In this paper, we systematically review 
parameters related to vincristine-induced neurotoxicity in 
hematologic patients, and we discuss their importance.

Methods

This review was completed according to the Preferred 
Reporting for Systematic Reviews and Meta-analyses 
(PRISMA) Guidelines [31].

Search strategy and study selection

PubMed and Embase databases were systematically searched 
for current literature on VIN in patients with hematologic 
malignancies. Supplementary Table 1 outlines the search 
strategy. The search was performed on 16 July 2018 and 
identified 1949 articles after removal of duplicates, which 
subsequently were manually screened based on title and 
abstract by two independent individuals. Articles not focus-
ing on hematologic malignancies or vincristine-induced neu-
ropathy were excluded as were reviews, conference abstracts, 
nonhuman studies, and data not published in English. The 
remaining articles were assessed for eligibility by full-text 
screening, and 71 articles were included in this systematic 
review after applying the same exclusion parameters (Sup-
plementary Fig. 1).

Table 1  Types of vincristine-induced neuropathy

PRES posterior reversible encephalopathy syndrome, SIADH syndrome of inappropriate antidiuretic hormone secretion

Type Definition Symptoms References

Sensory neuropathy Sensory nerve damage Paresthesia in form of numbness, tingling and pricking. Pain, impaired 
vibration/touch sensitivity/temperature recognition

[9, 92]

Motor neuropathy Motor nerve damage Motor weakness, walking difficulties, muscle cramps, weakened tendon 
reflexes and fine motor skills

[92]

Autonomic neuropathy Autonomic nerve damage Constipation, ileus, urinary retention, incontinence, hypotension [11, 92]
Optic neuropathy Cranial nerve II damage Blurred vision, color vision deficiency, transient/permanent blindness [12, 13]
Oculomotor nerve palsy Cranial nerve III damage Ptosis, ophthalmoplegia [14–16]
Abducens nerve palsy Cranial nerve VI damage Ptosis, strabismus, ocular muscle paresis, diplopia [17, 18]
Facial nerve palsy Cranial nerve VII damage Limited movement of facial muscles and jaw [19]
Acoustic nerve palsy Cranial nerve VIII damage Hearing loss [20]
Ototoxicity Cochlear damage Decrease in frequencies, decrease of contralateral suppression amplitudes [21]
Hypoglossal nerve palsy Cranial nerve XII damage Loss of tongue movement [19]
Vocal cord palsy Laryngeal nerve damage Stridor, respiratory distress, persistent cough [22, 23]
Encephalopathy/PRES Cerebral dysfunction Disorientation, hemiplegia, global aphasia, seizures [24, 25]
SIADH Cerebral axonal swelling Hyponatremia, seizures, mental changes [26, 27]
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Results

A total of 71 articles were included in this systematic 
review (Supplementary Fig.  1). Of these articles, 13 
investigated VIN measuring methods [9, 32–43], while 
11 records investigated clinical risk predictors for VIN 
development [44–54]. Fifteen records studied molecu-
lar risk parameters [5, 55–68]. In addition 12 records 
described interactions between vincristine and other 
drugs, mainly antifungal triazoles [1, 69–79], while 8 
records addressed prevention and treatment options [10, 
19, 80–85]. The remaining 12 records were of mixed char-
acter and included long-term effects, assessment of QOL, 
and dose-dependent VIN studies [30, 86–96].

The 71 articles include studies of VIN in both pediatric 
and adult hematologic malignancies, including ALL, dif-
fuse large B cell lymphoma, follicular lymphoma, multiple 
myeloma, Burkitt lymphoma, anaplastic large-cell lym-
phoma, and Hodgkin’s lymphoma. The reported frequency 
of vincristine-induced neurotoxicity in these studies var-
ies tremendously from approximately 100% [34] to 10% 
[48] depending on patient exclusion criteria, vincristine 
doses and number of treatment cycles, and the methods of 
obtaining neuropathy information.

Methods for VIN measuring

Numerous methods for assessment of neuropathy are used 
in different studies. There is no gold standard, making it 
difficult to compare studies. This lack of a standard is most 
likely the reason why the reported incidence of neuropathy 
in patients treated with vincristine varies so significantly. 
In 1981, the World Health Organization (WHO) initiated 
a set of recommendations on standardized approaches to 
recording baseline data, reporting of treatment, reporting 
of response, and grading of acute and subacute toxicity to 
assess the problem that it is difficult for investigators to 
compare their results with those of others [97]. WHO’s 
peripheral neuropathy score comprises 5 grades (0–4); 
noteworthy, only two of the included studies applied 
WHO’s neurotoxicity score [5, 65].

In 2003, the National Cancer Institute of the National 
Institutes of Health released the Common Terminology 
Criteria for Adverse Events (CTCAE), which was revised 
from a widely used neuropathy grading scale, named the 
Common Toxicity Criteria, that was developed in 1984 
[98]. CTCAE is still occasionally used today [67]. How-
ever, as it was shown to underestimate both incidence and 
severity of neuropathy, several scores have been made to 
overcome this problem, including the Total Neuropathy 
Score (TNS) [34, 99]. TNS consists of ten items that are 

both subjective and objective; however, the TNS was found 
to be too burdensome and time-consuming for application 
in everyday clinical practice and consequently reduced 
into a clinical version (TNSc), a reduced version (TNSr), 
and a neuropathy score that quite often used in pediatric 
patients, called the Pediatric modified Total Neuropathy 
Score (Ped-mTNS) [32]. The Ped-mTNS consists of the 
first seven items of TNS and was shown to be a reliable 
and valid measure of VIN in school-aged children [33]. 
Compared with Ped-mTNS, CTCAE version 3.0 failed to 
identify sensory neuropathy in 40% of subjects and signifi-
cant motor neuropathy in 15% when applied on children 
treated for ALL, lymphoma or non-CNS solid tumors [34]. 
Thus, the detection method itself greatly influences the 
result, illustrating the need to introduce and unify detec-
tion and quantification of VIN.

A study examined the validity, reliability and clinical fea-
sibility of several VIN measures in ALL children [35]. The 
study mostly concentrated on a variation of TNS, referred 
to as Total Neuropathy Score-Pediatric Vincristine (TNS-
PV), which was found useful for measuring VIN in children 
over the age of 5 years; additionally, some of the items were 
responsive to change over time. Furthermore, they tested 
CTCAE version 4.0 and the Balis grading scale, which both 
presented a risk of underestimating VIN. The FACES pain 
scale was feasible for pain severity quantification in children 
of all ages. In addition to the previously established meas-
urements, they developed a simple test V-Rex consisting of 
the two most responsive items, vibration and reflex, which 
is better than standard grading scale methods according the 
study [35].

Symptoms of VIN are mostly subjective; thus, self-
reported data could be preferable in VIN assessment. The 
European Organization for Research and Treatment of 
Cancer (EORTC) developed a questionnaire intended to 
supplement the core quality of life questionnaire to assess 
chemotherapy-induced neuropathy (QLQ-CIPN20) [42]. 
The 20-item questionnaire includes information on symp-
toms and functional limitations, and comparison to CTCAE 
in two large datasets revealed a strong correlation between 
patients with high CTCAE grade and QLQ-CIPN20 score, 
documenting the validity of self-reported data in terms of 
chemotherapy-induced neuropathy [43].

Interestingly, studies have shown a difference between 
children and adults in the type of nerves that are the most 
affected with a predominance of sensory neuropathy in 
adults [90, 100, 101]. Electrodiagnostic examinations, 
including nerve conduction of different nerves, T-reflex 
measurement and needle electromyography, showed a elec-
trophysiological and clinical motor predominance in chil-
dren aged 1–17 years [39], which is consistent with other 
studies using nerve conduction and somatosensory evoked 
potentials [9, 38, 41, 86]. Furthermore, a study demonstrated 
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that measurements of compound muscle action potential 
amplitude on the median and/or peroneal nerve could objec-
tively grade VIN in children [9]. In addition to sensory and 
motor, the third neuropathy modality is autonomic. Heart 
rate variability, reflecting a vagal nerve lesion, is useful to 
detect and quantify autonomic cardioneuropathy in children 
diagnosed with ALL [36]. Furthermore, a study used The 
Michigan Autonomic Symptoms Survey, but interestingly 
no abnormalities in autonomic functions were found [40].

Many new neurotoxicity scores have continuously been 
developed. Of these scores, some focus on objective find-
ings, while others are of more subjective character. Although 
CTCAE still develops new versions, it seems to have been 
outdated by newer approaches. Despite findings suggesting 
motor predominance in children and sensory predominance 
in adults, no consensus exists on the best methods of obtain-
ing VIN information in hematological patients of different 
age.

Clinical predictors

Although occurrence of neurotoxicity is high, little is 
known about risk factors for developing neuropathy during 
vincristine treatment. A consensus about possible risk fac-
tors is lacking, and numerous parameters are only studied 
and reported in a limited number of studies with relatively 
small study populations. The dose-limitation of vincristine 
is 1.4 mg/m2 in each cycle with a maximum of 2 mg per 
cycle, and higher doses exert greater toxicity and question-
ably result in better treatment outcome [91, 92, 102]. The 
most consistent observation is that the severity of neuropa-
thy increases with accumulated vincristine dose [49, 92, 
103]. Furthermore, several studies report advanced age in 
pediatric patients as a clinical risk factor [61, 69, 73]. How-
ever, some studies do not find this correlation in pediatric or 
adult patients [44, 49] and others even suggest the opposite 
for both groups [54, 88, 95].

It has been suggested that neuropathy incidence could 
be disease dependent given that a significantly higher inci-
dence in patients suffering from lymphoma is observed 
compared with nonlymphoid cancer patients (e.g., leukemia, 
breast cancer, malignant melanoma) [88]. Fourteen out of 
23 patients with lymphoma and 5/37 patients without lym-
phoma developed neuropathy despite comparable dosage 
[88], and concordant observations were made by others [46]. 
A higher percentage of lymphoma patients have elevated 
levels of serum alkaline phosphatase, which significantly 
prolongs elimination of vincristine and results in longer 
vincristine exposure and associated toxicities [46]. Further-
more, the results from this study indicate that area under the 
vincristine plasma concentration time curve and elevated 
serum alkaline phosphatase are predictors of VIN [46]; 
however, the latter observation is contradicted in a study of 

26 patients reporting that serum alkaline phosphatase is not 
important [92].

Several factors have been suggested as possible predictors 
for VIN. A study from 2010 aimed to identify predictors 
for chemotherapy-induced peripheral neuropathy, including 
vincristine, in 52 patients [49]. It was discovered that the 
number of chemotherapy cycles was a predictor of VIN, 
whereas age and coadministration with nonsteroidal anti-
inflammatory drugs did not correlate with neuropathy inci-
dence and severity. Consistently, Anghelescu et al. observed 
no difference in age between ALL patients with or without 
neuropathy development [44]. No differences in sex, BMI 
group, initial leukocyte count, ALL immunophenotype, 
DNA index, or different genetic translocations were noted. 
The only significant clinical predictive variable observed 
was white non-Hispanic race [44].

Another study focused on the potential effect of micronu-
trient deficiency on VIN by measurement of serum vitamin 
E, vitamin  B12 and folate together with nerve conduction 
studies at a mean 20 months after the last vincristine injec-
tion; however, no significant association was observed [45]. 
Furthermore, the impact of liver dysfunction was exam-
ined in two independent studies, where one recommended 
reduced vincristine dosage [46] whereas the other did not 
[88].

Despite the fact that some records mention diabetes mel-
litus as a risk factor for developing VIN [103–105], thorough 
studies are lacking. Patients with diabetes are at risk of dia-
betic neuropathy; therefore, it could be logical to assume that 
diabetic patients are at higher risk for VIN. Noteworthy, dia-
betic neuropathy is a long-term risk of diabetes; therefore, it 
is important to be aware of the difference between diabetes 
as a risk factor and diabetic neuropathy as a secondary risk 
factor.

Hyperglycemia is a common side-effect of corticosteroid 
therapy that is often noted with vincristine treatment and 
potentially leads to diabetes [106]. The effect of hyperglyce-
mia was studied in 278 patients with ALL during induction 
chemotherapy regimens including vincristine [48]. Hyper-
glycemia was defined as glucose level ≥ 200 mg/dL on ≥ 2 
determinations, and the study included 20 patients (7%) 
previously diagnosed with diabetes. Statistically significant 
differences in peripheral neuropathy were not noted between 
103 patients with hyperglycemia and the 175 patients with-
out; furthermore, a subanalysis of patients with previously 
diagnosed diabetes or elevated baseline blood glucose did 
not reveal any differences. Consistently, no difference in 
neuropathy incidence was found when comparing diabetic 
patients requiring diabetic medications with nondiabetic 
patients [54].

Furthermore, the consequences of hyperglycemia 
in elderly patients were examined and included 162 
patients with NHL treated with vincristine among other 
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chemotherapeutic drugs [47]. The authors found that base-
line hyperglycemia, stage, creatinine clearance and hyper-
glycemia during chemotherapy was associated with grade 
3–4 toxicity of 18 symptoms, including neuropathy, diar-
rhea, fatigue and pneumonia, without separate and focused 
analysis of the individual symptoms.

The risk of severe neurotoxicity due to other forms of 
pre-existing diseases than diabetes is more substantiated. 
Care should be taken when administrating vincristine to 
Charcot-Marie-Tooth disease (CMT) patients, the most com-
mon hereditary neuropathic disease. A clinical challenge is 
undiagnosed cases of CMT, and seeking information about 
family history of CMT before initiating chemotherapy with 
vincristine could possibly prevent patients from severe neu-
ropathy given that pediatric ALL often is diagnosed before 
the age of 10 and CMT after the age of 10 [51]. Pediatric 
and adult cancer patients are at risk of undiagnosed CMT 
[50]. Even small doses of vincristine that are normally not 
associated with neuropathy can cause exaggerated and irre-
versible neuropathy in these patients [50]. Another form of 
neuropathy presenting clinical problems is the autoimmune 
Guillain–Barré syndrome (GBS). Acute onset GBS can be 
difficult to differentiate from VIN, and this differential diag-
noses is important to have in mind as GBS can be treated 
with immunoglobulins. Uncertainty still remains whether 
GBS and VIN can exaggerate one another [52, 53].

This section clearly emphasizes the inconsistency 
between studies; however, clinical parameters, including 
white non-Hispanic race and preexisting neuropathy, such 
as CMT, are consistently reported in more than one study to 
predict increased risk of VIN. When assessing the currently 
available literature, preexisting diabetes does not increase 
the risk of VIN. Hyperglycemia presenting during induction 
chemotherapy or later in the course of chemotherapy also 
does not increase the risk of VIN.

Molecular predictors

The hepatic cytochrome P450 3A (CYP3A) enzyme sub-
family is the most important system for drug metabolism. 
Vincristine is primarily metabolized by CYP3A4 and 
CYP3A5, of which the latter is considerably more effective 
[107]. Given that 60% of African–Americans express the 
CYP3A5 enzyme compare with 33% of Caucasians [108], 
several studies have investigated race-specific genotypes and 
tested whether African–Americans metabolize vincristine 
more effectively, resulting in lower vincristine exposure 
and associated toxicities (Table 2). A retrospective study 
analyzed 92 Caucasian and 21 African–American pediat-
ric ALL patients and identified VIN symptoms in 35% of 
Caucasians compared with 5% of African–Americans [57]. 
Additionally, Caucasians experienced more severe vincris-
tine-associated neuropathy and had more reductions in total 

doses. However, it is important to highlight that race is used 
as a surrogate for the CYP3A5 genotype, and no genotyping 
was conducted.

The most common genetic germline polymorphisms are 
CYP3A4*1B, CYP3A5*3, and CYP3A5*6, of which the latter 
two variants induce splice variants and protein truncation 
leading to substantially decreased expression of CYP3A5 
in the liver [108]. Increased incidence of VIN has been 
observed in patients who expressed CYP3A5*3; although 
the percentage of African–Americans expressing CYP3A5*3 
was greater than Caucasians, the difference did not reach 
statistical significance potentially due to the small sample 
size [64]. Furthermore, a higher incidence of neuropathy 
was detected in Caucasians (81%) than African–Americans 
(77%); however, substantially higher frequencies were noted 
for both ethnicities compared with the study by Renbarger 
et al. [57] (Table 2).

CYP3A variants were determined by others without 
focusing on ethnicity [55, 56, 59, 66, 67] (Table 2). The 
CYP3A5 genotype was studied in 78 Kenyan children with 
different cancer diagnoses [67]. Seventy-one of the 78 sub-
jects (91%) were homo- or heterozygous for the CYP3A5*1 
allele, which are phenotypic identical and lead to high 
expression of CYP3A5. Children with genotypes causing 
low CYP3A5 expression had significantly higher detectable 
vincristine levels in plasma compared with high expressers. 
Regardless of several neuropathy assessment tools, minimal 
neuropathy was detected, and no difference in neuropathy 
incidence or severity was observed despite differences in 
vincristine plasma concentrations. Noteworthy, Kenyan chil-
dren experienced negligible VIN compared with US children 
despite receiving at least 33% more vincristine at baseline 
due to protocol-specific dosing [67], indirectly supporting 
the observations of race and CYP3A genotype.

Genotyping of 105 Caucasian children with ALL 
revealed that 82% of the patient are low CYP3A5 expressers 
(CYP3A5*3 genotype) with a higher incidence and severity 
of vincristine-induced side effects and more reductions of 
vincristine compared with CYP3A5 expressers [59]. Thus, 
the CYP3A5*3 genotype causes increased vincristine expo-
sure, leading to higher neuropathy incidence and severity 
grade; however, information on clinical impact was not 
reported.

Studies to date have focused on genetic variants of genes 
involved in the pharmacokinetics of vincristine. Other bio-
logical processes can also affect VIN; hence, polymorphisms 
in microRNAs regulating vincristine-related genes have been 
examined [5]. A mutation in the seed region of miR-3117 
was detected that could affect binding to the drug transporter 
genes ABCC1 and RALB1, which are predicted to be targets 
of miR-3117 in at least six prediction databases and conse-
quently affect the regulation and expression of the targets. 
In addition, they identified a mutation causing alteration of 
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the secondary structure of miR-4481a mutation, which is 
potentially involved in peripheral nerve generation. Consist-
ently, polymorphisms in ABCC1 and ABCB1 drug trans-
porters correlate with neurotoxicity, which also applies to 
ACTG1 and CAPG1 polymorphisms that are targeted upon 
vincristine treatment [60, 68]. By dividing VIN into early- 
and late-onset, it was observed that early-onset neurotoxic-
ity was associated with upregulation of genes and SNPs in 
genes involved in cell cycle and proliferation, whereas late-
onset neurotoxicity was characterized by polymorphisms in 
genes involved in absorption, distribution, metabolism and 
excretion [58].

A study was conducted for the identification of genetic 
germline variants associated with the occurrence and sever-
ity of VIN in 321 pediatric ALL patients using Affymetrix 
GeneChip 500 K or SNP 6.0 array [61]. They identified a 
SNP in the promoter region of CEP72 that encodes a centro-
somal protein essential for microtubule formation, which is 
directly involved in the mechanism of action of vincristine. 
This mutation introduces a binding site for transcriptional 
repression leading to lower expression of CEP72, which 
causes microtubule instability and increased vincristine 
sensitivity [61]. The CEP72 variant was observed in 50 of 
321 pediatric ALL patients, which had a significantly higher 
incidence and severity grade of neurotoxicity that was con-
sistent with findings of others [68]. Furthermore, they exam-
ined the variant in adult ALL patients using a case–control 
setup with 48 patients who developed VIN and 48 who did 
not, which confirmed the high incidence of neurotoxicity in 
CEP72 variant patients [62]. Consistent with these findings, 
the potential of the CEP72 variant as a marker of VIN was 
investigated in Spanish ALL-diagnosed children; however, 
no association was found [63]. The inconsistency between 
studies could be due to population differences and the fact 
that the studies by Diouf et al. [61] focused on neuropathy in 
the later phase of treatment compared with the early phase in 
the study by Gutierrez-Camino et al. [63]. As no association 
was found, they conducted another study analyzing SNPs in 
8 genes and 13 miRNAs involved in vincristine pharmacoki-
netics, which revealed strong association between neurotox-
icity and polymorphisms in ABCC2 [65].

Several genes involved in the pharmacokinetics and phar-
macodynamics of vincristine display potential as predictive 
markers of VIN risk. Thus, genotyping can be useful to 
guide individualized treatment to maximize the therapeutic 
benefit and avoid unnecessary toxicity even if the role of 
race and early/late VIN remains incompletely characterized.

Drug–drug interference

Concomitant administration of drugs always carries the risk 
of drug–drug interaction. This effect can delay, decrease 
or enhance the absorption or metabolism of either drug, 

consequently affect the drug action and cause adverse 
effects. A major cause of morbidity and mortality in patients 
with hematological malignancies treated with immuno-
suppressive protocols are invasive fungal infections [70]. 
Antifungal triazole drugs, such as fluconazole, itraconazole 
and voriconazole, are the main agents for prophylaxis and 
treatment [1], and itraconazole is preferred given its broader 
spectrum of activity, especially against Aspergillus infec-
tions [75]. Unfortunately, the combination of vincristine and 
itraconazole has proven unfortunate (Table 3).

Several case reports and retrospective studies describe 
the outcome of VIN when antifungal triazoles are co-admin-
istered [1, 69–76]. This interaction is mostly described in 
pediatric ALL patients but is also seen in adults (Table 3). 
Especially during chemotherapy induction, children are at 
increased risk of fungal infections due to neutropenia and 
corticosteroid administration; therefore, antifungal prophy-
laxis could be worth considering [69]. This interaction was 
first described in 1995 where 4 out of 14 adults experienced 
severe neurotoxicity during vincristine induction therapy 
and antifungal prophylaxis with itraconazole [72]. The pre-
scribed itraconazole dose in this report was 400 mg/day; 
however, the same outcome has been observed and reported 
in several other cases treated with lower doses (Table 3). The 
study compared neurotoxic complications with a previous 
series of 460 ALL patients treated with an identical cyto-
static regimen and found that the incidence of VIN enlarged 
and the symptoms were more severe. This severely aggra-
vated neurotoxicity is also described by others [70, 75]; 
in addition, CNS toxicity has been recorded in 30% of the 
patients receiving itraconazole [76].

As mentioned, vincristine is metabolized by CYP3A. 
Fluconazole and itraconazole inhibit the action of CYP3A, 
and the former is far less potent than itraconazole [109]. 
Furthermore, itraconazole inhibits the P-glycoprotein efflux 
pump, a vincristine transporter, resulting in higher intracel-
lular vincristine concentrations [110]. Thus, coadministra-
tion of vincristine and itraconazole decreases the metabo-
lism of vincristine to a greater extent than coadministration 
with fluconazole, causing notably enhanced neurotoxicity. 
Consistently, three studies did not observe significant dif-
ferences in neuropathy upon fluconazole treatment [69, 71, 
73], whereas six independent studies report higher incidence 
and severe neuropathy upon itraconazole treatment [1, 70, 
72, 74–76] (Table 3).

A study by Yang et al. found that coadministration of vin-
cristine with itraconazole or voriconazole resulted in a sig-
nificantly higher incidence of vincristine-associated adverse 
effects than in patients treated with fluconazole and control 
patients only treated with vincristine [1]. Additionally, they 
found that the incidence of VIN was significantly higher in 
itraconazole-treated patients compared with patients treated 
with voriconazole.
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Numerous drugs are capable of CYP3A inhibition/induc-
tion and consequently have the potential to interfere with 
vincristine. Protease inhibitor-based antiretroviral therapy, 
such as ritonavir, causes excessive neurotoxicity when co-
administered with vinblastine, another vinka alkaloid, due 
to CYP3A4 inhibition [77, 78]. Furthermore, a study from 
a 1996 report on drug–drug interactions between colony-
stimulating factors and vincristine indicated that the underly-
ing mechanisms for the observed induced neuropathy is not 
thoroughly studied; to our knowledge, the mechanism not 
been reported to date [79].

Drug interactions should always be kept in mind when 
administering more than one drug but especially when 
administering toxic drugs, such as chemotherapy. When 
using vincristine, which is almost completely metabolized 
by the liver, it is important to be aware of concomitant use 
of a drug that is also metabolized by CYP3A. Flucona-
zole should be preferred over both voriconazole and itra-
conazole for antifungal prophylaxis or treatment given that 
itraconazole especially has the potential to cause severe 
neurotoxicity.

Prevention and treatment

Vincristine-induced neuropathy can be momentary and 
reversible; however, it is occasionally irreversible [87, 89]. 
Regardless, neuropathy may consequently necessitate dose-
reduction or cessation, thus reducing the treatment efficacy 
and potentially shortening the overall survival time. Another 
perspective is that neuropathy can significantly impact the 
QOL [94], and neuropathy severity does not necessarily cor-
relate with how much it affects the patient [30]. These prob-
lems can potentially be overcome by identifying substances 
with the ability to prevent and/or treat neuropathy.

Several agents have been suggested and tested for pre-
vention and treatment of VIN; however, the results have not 
been promising. Currently, convincing evidence of useful 
pharmacologic interventions is lacking.

A study provides information on the beneficial effects from 
bracing and physical therapy to prevent fixed contractures/sur-
gery when suffering from peroneal nerve palsy [80]. An older 
study from 1992 proposed Org 2766, a corticotropin (4–9) 
analogue, as a means to ameliorating vincristine neuropathy 

Table 3  Drug–drug interactions with antifungal drugs

ALCL anaplastic large cell lymphoma, ALL acute lymphoblastic leukemia, DLBCL diffuse large B-cell lymphoma, FL follicular lymphoma, HL 
Hodgkin’s lymphoma, iv intravenous, NHL non-Hodgkin’s lymphoma, NS no significance, os oral solution, SIADH syndrome of inappropriate 
antidiuretic hormone secretion, y/o years old

Drug Dose Diagnosis No. of patients Neurotoxic outcome References

Fluconazole 4 mg/kg/day
max 200 mg/day
5 patients:
300–400 mg/day

ALL 197 children NS [69]

Fluconazole 4 mg/kg/day ALL 31 children NS [73]
Fluconazole Voriconazole 

Fluconazole and vori-
conazole

Not stated ALL (n = 114)
HL (n = 16)

130 patients < 22 y/o NS [71]

Fluconazole 8 mg/kg/day iv (n = 42) ALL 136 cases NS [1]
Itraconazole 5 mg/kg/day os (n = 44) VIN, CNS, autonomic
Voriconazole 8 mg/kg/day capsules 

(n = 6)
VIN severity: Itracona-

zole > voriconazole
Fluconazole 5 mg/kg/day (n = 1) ALL 20 children NS [76]
Itraconazole 5 mg/kg/day (n = 16) VIN, CNS, SIADH, ileus
Voriconazole 14 mg/kg/day iv (n = 3) VIN
Itraconazole 400 mg/day capsules ALL 14 patients

16–29 y/o
Severe VIN, ileus [72]

Itraconazole 5 mg/kg/day capsules ALL (n = 7)
B-cell NHL (n = 1)
T cell NHL (n = 1)

9 children VIN, autonomic, seizures, 
SIADH

[75]

Itraconazole 200 mg/day capsules ALL 2 patients
19 and 55 y/o

Autonomic, SIADH [74]

Itraconazole 200 mg/day os ALCL (n = 1)
DLBCL (n = 3)
FL (n = 1) unspeci-

fied lymphoma 
(n = 2)

7 adults Severe VIN, ileus [70]
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and additionally observed higher neurotoxicity in the placebo 
group [81]. Another study did not find Org 2766 to be neuro-
protective [85].

Gabapentin has been tested both as prophylaxis and treat-
ment in pediatric ALL; however, no conclusions could be 
made other than gabapentin did not prevent the recurrence of 
neuropathic pain [44]. Moreover, analgesic adjuvants given to 
reduce neuropathy symptoms did not show adequate prophy-
lactic efficacy [49].

Pyridoxine (vitamin B6) and pyridostigmine (acetylcho-
linesterase inhibitor) have been used in the treatment of dif-
ferent types of VIN. Treatment of 4 ALL patients with pyri-
doxine and pyridostigmine for sensorimotor polyneuropathy 
resulted in full recovery 1–2 weeks after treatment initiation 
[82]. In agreement, a case study presented an ALL patient 
who on day 61 was diagnosed with bilateral cranial nerve 
VII and XII palsy and subsequently treated with intravenous 
pyridoxine, and complete recovery of symptoms was achieved 
after 2 weeks of treatment [19]. In both reports, uncertainty 
remained regarding whether pyridoxine/pyridostigmine was 
responsible for the resolution as it could have been a conse-
quence of vincristine discontinuation.

To evaluate potential preventive effects of glutamic acid, 
a randomized study was conducted on 94 children diagnosed 
with hematological malignancies and 12 with Wilms tumor 
who received either glutamic acid (1.5 g/day divided into 3 
doses) or placebo [10]. They found a statistically significant 
difference between the two groups when assessing paresthesia, 
patellar/Achilles reflexes, and frequency of constipation but 
not until the third and fourth visit, suggesting that glutamic 
acid may improve tolerance of vincristine. In contrast, a larger 
randomized study in which 200 children with ALL or NHL 
and 50 children with Wilms tumor or rhabdomyosarcoma 
received either preventive glutamic acid (250 mg capsules 3 
times a day, body surface area < 1 m2 = 1 capsule, > 1 m2 = 2 
capsules) or placebo did not find a statistically significant dif-
ference in any parameters [83]. Another similar amino acid, 
glutamine, has shown possible beneficial effects on sensory 
neuropathy and self-reported QOL [84]. The study included 
31 children with hematological malignancies and 18 children 
with nonhematological malignancies, which were only ana-
lyzed as one group.

Due to the high prevalence of VIN, it would be of great 
significance to find possible prevention or treatment measures. 
Unfortunately, it has not been possible to find a substance with 
this property in current studies. Many of the substances are 
only tested a few times and in small studies, but glutamine 
could display potential if further studied.

Discussion

This systematic review identified a total of 71 studies 
addressing the circumstances concerning VIN in hemato-
logical patients. Although this subject obviously contains 
many aspects, almost none of the findings are clear-cut. 
In general, more research is needed given that VIN can 
necessitate treatment alterations and possibly last for a 
long period of time, significantly impacting QOL.

In addition to a cumulative dose, this systematic review 
did not find consistency for any clinical predictors poten-
tially due to differences in cohort sizes, vincristine doses 
and cycles, and neuropathy assessment tools. In addition, 
several studies include patients with different cancer diag-
noses, which potentially could introduce a bias given that 
vincristine interacts differently with cancers [46, 88]. Con-
sequently, further studies in larger settings are urgently 
warranted to fully elaborate the impact of these clinical 
parameters.

Caution is important with patients already suffering from 
CMT; however, the rareness and common time of diagnosis 
of this condition make it troublesome. A simple self-report-
ing checklist, which is not expensive or time-consuming for 
hospital staff, could be helpful to identify undiagnosed CMT 
patients before administrating vincristine [50].

With the greater attention towards molecular importance, 
the existence of molecular predictors present promise. Stud-
ies of molecular predictors differed in genotype detection 
technique and neuropathy detection method and grading, 
which complicated the general cross-comparison of the 
studies. Despite these differences, variants in the vincristine 
metabolizer CYP3A5 leading to reduced CYP3A5 expres-
sion were consistently reported as a risk factor for VIN 
(Table 2). Noteworthy, the frequency of CYP3A5 variants 
varies between ethnicities; consequently, the reported inci-
dence of VIN is higher in Caucasians than African–Ameri-
cans. Thus, ethnicity could be used as a risk factor for VIN; 
however, it is important to emphasize that it is only a sur-
rogate for CYP3A5 and that individual genotype assessment 
is preferable. In addition to vincristine metabolizers, genetic 
alterations in genes involved in vincristine pharmacodynam-
ics were associated with VIN. A SNP in CEP72 showed 
great promise as predictor of VIN in two independent ALL 
cohorts [62, 68] but failed stratification in a Spanish ALL 
cohort [63]. Molecular risk factors clearly contribute to a 
better understanding of vincristine neurotoxicity and are 
potentially useful in the identification of individuals at 
higher risk, which could optimize and personalize vincris-
tine dosing, leading to maximum response while minimizing 
the risk of long-term neuropathy.

The results of drug–drug interference as a cause 
of increased risk of VIN were very consistent and 
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independent of cohort size, diagnosis and methodology. 
Coadministration with itraconazole and to lesser extent 
voriconazole is an important aspect of VIN cause and 
worsening (Table 3). Based on the findings included in 
this review, fluconazole appears safer when concomitantly 
used with vincristine and should be preferred as antifungal 
prophylaxis and treatment. Given that the mechanism of 
this interaction involves inhibition of CYP3A in the liver, 
it could be advisable to be aware of other strong CYP3A 
inhibitors or inducers.

Unfortunately, neither substances for preventing VIN nor 
treatment options have been discovered to date, resulting in 
substitution, reduction or discontinuation as the only method 
of handling neurotoxicity. Glutamic acid potentially prevents 
or at least improves tolerance of vincristine in one study.

In general, various neuropathy detection methods and 
grading systems are used for all aspects of neuropathy 
examined in this review, making it very difficult to compare 
studies and interpret the results between studies. Although 
the WHO had great intentions to create a standardized tool 
of assessing information about neuropathy, it obviously did 
not succeed or persist as a useful rating scale since only two 
of the 71 included studies used this tool. Nerve conduction 
studies are thought to be the most accurate method of quan-
tifying VIN but are time consuming, costly and discomfort-
ing to be a standard VIN measurement in clinical practice. 
In contrast, subjective measures introduce the risk of inter-
observational variability. With the many new neurotoxicity 
scores used today, it is yet again of importance to agree on 
but not necessarily standardize which score fits which situ-
ation best and thereby makes it possible to compare studies.

Conclusion

In conclusion, clinical parameters did not show convinc-
ing potential as predictors of VIN. In contrast, molecular 
markers, including polymorphisms in the hepatic vincristine 
metabolizer CYP3A5, displayed great promise in predicting 
increased incidence and severity of neuropathy; however, 
further studies are warranted to assess its use in treatment 
prediction. Consistently, antifungal drugs, such as itracona-
zole and voriconazole, inhibit the action of CYP3A5; con-
sequently, coadministration of vincristine and these drugs 
decreases vincristine metabolism, leading to enhanced neu-
ropathy side effects. More true markers of both clinical and 
molecular origin may emerge if consistency in VIN detec-
tion and reporting increases through the use of standardized 
neuropathy assessment tools and grading scales.
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