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Abstract
Targeting of the protein degradation pathway, in particular, the ubiquitin-proteasome system, has emerged as an attractive 
novel cancer chemotherapeutic modality. Although proteasome inhibitors have been most successfully applied in the treat-
ment of hematological malignancies, they also received continuing interest for the treatment of solid tumors. In this review, 
we summarize the current positioning of proteasome inhibitors in the treatment of common solid malignancies (e.g., lung, 
colon, pancreas, breast, and head and neck cancer), addressing topics of their mechanism(s) of action, predictive factors and 
molecular mechanisms of resistance.
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Introduction

For many types of cancer, chemotherapy is the first choice 
of treatment. However, some cancers are intrinsically resist-
ant (refractoriness), while others develop resistance during 
treatment (acquired resistance) [1]. The recurrent problem 
of drug resistance urges the discovery of new drugs with 
novel mechanisms of action. Over the past decade, several 
classes of drugs have been developed that specifically tar-
get the process of proteasomal protein degradation via the 
ubiquitin-proteasome system (UPS) [2]. Proteasome activity 
is essential for cell homeostasis and is also controlling (by 
ubiquitination of key proteins) various selected process in 
cancer cells, e.g., cell cycle control (cyclins, cdk inhibitors), 
oncogenic transformation (N-myc, c-jun), tumor suppression 
(p53), apoptosis (Bax) and regulation of transcription factors 
(NFκB) [2–4]. From this perspective, it is not unexpected 
that proteasome inhibitors (PIs) have shown promising anti-
cancer efficacy.

Bortezomib (BTZ) represents a first-generation PI being 
approved by the Food and Drug Administration (FDA) and 
European Medicines Agency (EMA) for the treatment of 
multiple myeloma (MM) and mantle cell lymphoma (MCL) 
[5]. Nowadays, BTZ is used as a front-line therapy for MM 
and in combination with autologous stem cell transplanta-
tion, the survival of patients with MM compared to con-
ventional therapy has doubled [6]. In other hematological 
malignancies, e.g., acute leukemia, PIs also showed promis-
ing results [7]. However, BTZ faces several limiting factors 
impacting its short and long-term success, such as toxic-
ity related to off-target effects and acquisition of resistance 
[8–12]. To this end, next generation PIs were developed to 
overcome some of these limiting factors.

Despite the success of PIs in the treatment of hemato-
logical malignancies, in solid tumors, the clinical efficacy 
of BTZ as a single agent is limited [13]. Second-generation 
PIs might have more effect on solid tumors, due to different 
selectivities and inhibitory potencies for proteasome subu-
nits, along with reduced side effects. The aim of this review 
is to summarize the current positioning of PIs in the (combi-
nation chemotherapy) treatment of common solid malignan-
cies, addressing topics of mechanisms of action, predictive 
factors and molecular mechanisms of resistance.
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The proteasome

Structure of the 26S proteasome and enzymatic 
activities

The proteasome is part of the UPS which is crucial for the 
intracellular homeostasis and responsible for degrading 
80–90% of the intracellular proteins [3, 14, 15]. In normal 
cells, regular protein degradation imposes a large burden 
for the UPS and the balance of synthesis and degradation 
is tightly regulated. The UPS controls this balance by tag-
ging damaged or misfolded proteins with multiple ubiquitin 
moieties serving as a signal for degradation by the protea-
some. The process of protein (poly)ubiquitination involves a 
cascade of 3 enzymatic steps; ubiquitin-activating enzymes 
(E1), ubiquitin-conjugating enzymes (E2) and ubiquitin E3 
ligases (Fig. 1). For protein degradation, the target protein 
must be linked with four or more ubiquitin units [16]. Prior 
to actual degradation by the proteasome, deubiquitinases 
(DUBs) remove and recycle ubiquitin moieties from the 
tagged proteins [17, 18].

The constitutive 26S proteasome consists of the 20S cata-
lytic core domain and two 19S regulatory particles. The 19S 
subunits bind to both ends of the 20S core proteasome and 
is responsible for the recognition of the polyubiquitinated 
proteins, facilitating the removal of the polyubiquitin chains, 
unfolding the protein and skewing into the 20S core [19, 
20]. The 20S catalytic core contains 2 identical rings of 7 

α-subunits and, between those rings, 2 identical rings of 7 
β-subunits. The α-rings mediate the interaction with the 19S 
regulatory particles and specific α-subunits can also inter-
act with some hydrolases and ubiquitin ligases [21]. Within 
the β-rings, three β-subunits harbor proteolytic activity: β1 
(caspase-like activity), β2 (trypsin-like activity) and β5 (chy-
motrypsin-like activity), providing a full spectrum of cleav-
age of peptides after acidic, basic and hydrophobic amino 
acid residues, respectively. The shorter peptides generated 
after proteasomal degradation can either be processed for 
antigen presentation on major histocompatibility complex 
(MHC) class 1 molecules, or being fully hydrolyzed into 
amino acids by aminopeptidases and then recycled for pro-
tein synthesis [22–24]. Given the high protein turnover and 
the critical role of the UPS in the development, cell growth 
and survival of cancer cells [19, 25], proteasome inhibition 
constitutes an attractive target for chemotherapeutic inter-
vention [4, 26, 27].

In solid tumors, proteasome inhibition will mainly impact 
the constitutive proteasome. An alternative variant of the 
constitutive proteasome, i.e., the immunoproteasome, is 
dominantly expressed in hematopoietic cells wherein con-
stitutive β1, β2 and β5 catalytic subunits are replaced by 
their β1i, β2i and β5i immunoproteasome counterparts [28]. 
Whereas solid tumor cells may express low levels of immu-
noproteasomes, constitutive proteasome expression is most 
abundant (> 80–90%) and represents the main target for PIs 
in solid tumors [29, 30].

Fig. 1  The UPS-system. Ubiquitin (Ub) is activated by the activat-
ing enzyme E1, Ub is then transferred to the conjugating enzyme E2. 
The ligase E3 enzyme attaches Ub to the target protein (substrate) and 
a substrate with at least four Ub moieties is then recognized by the 

proteasome for degradation. The 19S cap of the proteasome removes 
the Ub moieties after which the substrate is degraded in the 20S into 
smaller peptides
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Mechanisms of action of proteasome 
inhibition

Proteasome inhibition by PIs triggers multiple events 
which contribute to cell death. These events are described 
in more detail below.

Endoplasmic reticulum stress and the unfolded 
protein response

The main mechanism of cell death induction by PIs 
involves the accumulation of toxic (poly)ubiquitinated 
proteins and aggregates of misfolded proteins that induce 
endoplasmic reticulum (ER)-stress. ER-stress initiates the 
activation of the unfolded protein response (UPR) [14, 
31]. There are three ER stress sensors that initiate UPR: 
PKR-like ER kinase (PERK), inositol requiring kinase 1 
(IRE1α), and activating transcription factor (ATF6) [32, 
33]. The UPR is coordinated by the activation of these 
stress sensors, which results in blocking of protein transla-
tion, restriction of more unfolded proteins accumulation, 
activation of genes encoding ER-resident chaperones, and 
restoration of the folding capacity facilitated by ER-asso-
ciated degradation (ERAD) [14]. When, upon strong or 
prolonged ER-stress exposure, the UPR cannot compen-
sate the ER-stress, upregulation of pro-apoptotic proteins 
facilitates apoptosis induction [14, 31].

The accumulation of unfolded proteins also coincides 
with the induction of reactive oxygen species (ROS) [34] 
which activate the caspase cascade and thus contributes to 
PI-induced apoptosis [35, 36].

Inhibition of the pro‑survival NFκB pathway

NFκB is an inflammation-associated transcription fac-
tor that plays a role in the inhibition of apoptosis and in 
particular in activation of pro-survival pathways. For the 
activation of NFκB the proteasome is instrumental [19]. 
PI treatment inhibits the proteasomal degradation of the 
natural inhibitor of NFκB, IκBα, preventing the nuclear 
translocation and activation of NFκB. Although originally 
proposed as a main mechanism of action of PIs [37], it was 
not a dominant contributor of PI-induced cytotoxicity in 
multiple myeloma cells [38]. However, as most chemo-
therapeutics trigger NFκB activation [19, 39], and the 
fact that specific cancer types are highly dependent on the 
NFκB pathway for their survival [40–42], this mechanistic 
feature of PIs can still be very relevant.

Induction of pro‑apoptotic proteins

Since many pro-apoptotic proteins are commonly tagged 
for degradation or inactivation by the UPS, these proteins 
can be stabilized upon PI treatment. In many cancer types, 
P53, a tumor suppressor protein, is inactivated. However, 
PIs proved to stabilize and reactivate P53, increasing PIs 
pro-apoptotic effects [39, 43].

Other pro-apoptotic proteins are from the Bcl-2 family. 
The Bcl-2 family proteins contain anti-apoptotic proteins, 
e.g., BCL-XI, BCL-2, MCL-1, and pro-apoptotic proteins, 
e.g., Bax, Bad, Bak, Bim. In cancer cells, pro-apoptotic pro-
tein Bim is often degraded by the proteasome, which results 
in a restriction of Bim’s pro-apoptotic effects. PI treatment 
stabilizes Bim, and therefore, shifts the balance of the pro- 
and anti-apoptotic proteins of the Bcl-2 family [44–47].

Autophagy

Induction of autophagy as alternative pathway for degrad-
ing and recycling intracellular proteins may function as pro-
survival route upon PI-induced ER-stress [48, 49]. Cyto-
solic aggregates of ubiquitinated proteins (aggresomes) are 
transported by microtubules to lysosomes and degraded by 
autophagy [50, 51]. Type II histone deacetylase (HDAC), 
plays a crucial role in the microtubule-associated transport 
of aggresomes as indicated by the fact that a pan HDAC 
inhibitor like vorinostat, abolished protective autophagy 
after PI exposure [48, 52–54].

26S Proteasome inhibitors

In 2003, BTZ was the first PI approved by the FDA in the 
US, the EMA authorized BTZ in March 2012. BTZ is a 
dipeptide boronic acid derivative and a reversible inhibitor 
of the proteasome that preferentially binds to the β5-subunit. 
Besides binding to the β5-subunit, BTZ also binds, with a 
lower affinity, to the β1-subunit (Table 1) [19, 25]. BTZ 
demonstrated promising results for the treatment of relapsed 
and refractory MM and was approved for first line MM 
treatment in 2008. For BTZ combined with dexamethasone 
(DEX), as first line therapy, response rates of approximately 
80% were observed [55–57]. Nonetheless, limiting factors in 
BTZ therapy included its oral availability, off-target activity 
and acquired resistance. The most prominent clinical adverse 
event included peripheral neuropathy, caused by off-target 
inhibition by BTZ of a neuronal survival protein, HtrA2/
Omi [58, 59]. These neurotoxic side effects could be dimin-
ished by alternative scheduling and route of administration. 
BTZ resistance development was recognized as a relevant 
issue, as both a sub-population of patients had no response 
to BTZ and a large proportion of patients relapsed on BTZ 
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treatment. To overcome these limiting factors, second-gen-
eration PIs were developed to improve the efficacy, reducing 
the toxicity, enhancing the oral availability and overcoming 
BTZ resistance by targeting multiple β catalytic subunits 
and/or do this, other than BTZ, in an irreversible manner 
(Table 1) [60, 61].

Carfilzomib (CFZ) is the second PI approved by the FDA 
in 2012 as a 3rd line treatment in MM and by the EMA in 
2015 [62]. CFZ is structurally, chemically and mechanis-
tically different from BTZ. Like BTZ, CFZ preferentially 
binds to the β5-subunit of the proteasome, but does so in an 
irreversible manner, with greater selectivity and lesser off-
target activity, contributing to an improved clinical safety 
profile as compared to BTZ [63]. Moreover, the covalent 

binding of CFZ ensures prolonged proteasome inhibition 
[64]. Lastly, CFZ showed cytotoxic activity against BTZ-
resistant cells [65, 66].

Marizomib is a naturally occurring PI derived from the 
marine actinobacterium Salinospora tropica which irrevers-
ibly inhibits all three, β1, β2 and β5, subunits [9, 10, 58, 
67, 68]. Marizomib has a β-lactone backbone which distin-
guishes this PI from other clinically active peptide-based PIs 
[67]. Partly because of the irreversible binding to the various 
proteasome subunits, marizomib is well retained within cells 
[69]. However, marizomib has an exceptionally short plasma 
half-life time of less than 5 min, and a wide tissue distribu-
tion. The latter includes penetration of the blood brain bar-
rier which determines it dose limiting toxicity.

Table 1  Characteristics of proteasome inhibitors including mode of binding, preferred subunit targeting, chemical structure and administration 
route

Proteasome 

Inhibitor

Binding Subunit Chemical structure Administration 

route

Bortezomib

(PS-341)

reversible β5 > β1

(β5i)

IV

Carfilzomib

(PR171)

irreversible β5 (β5i) IV

Marizomib

(NPI-0052)

irreversible β5 > β2 > β1 IV

Delanzomib

(CEP18770)

reversible β5 > β1 Oral, IV

Ixazomib

(MLN9708)

reversible β5 > β1 Oral, IV

Oprozomib

(ONX0912)

irreversible β5 (β5i) Oral
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Delanzomib is a reversible boronate-based PI, which, 
other than BTZ, is also orally available [64, 68, 70–72]. The 
drug preferentially binds to the β5-proteasome subunit and 
with a lower affinity to the β1-subunit. Delanzomib is active 
against (BTZ-resistant) MM cells and is less cytotoxic to 
normal human cells (epithelial cells, bone marrow progeni-
tor or derived stromal cells) [73].

Ixazomib is an orally bioavailable boronic ester prodrug, 
which reversibly binds to the β5-and β1-subunits [64, 68, 
70, 71, 74]. The drug was the first oral PI to enter clinical 
investigation and is approved for the treatment of MM since 
September 2016. Ixazomib is clinically active in heavily pre-
treated and refractory/relapsed MM, in vitro Ixazomib had 
the ability to overcome BTZ resistance in MM cells [75].

Finally, oprozomib represents an orally bioavailable PI 
which irreversibly binds to the β5-subunit. In vitro, the 
potency of oprozomib is similar to that of CFZ, on top of 
which oprozomib exhibits activity against BTZ-resistant 
cells [76–78].

Proteasome inhibitors in solid malignancies

Building on the success of PIs hematological malignancies, 
the potential application of PIs in other cancer types has 
been explored. Hereafter, positioning of PIs for the treatment 
of most common solid tumor types is discussed.

Lung cancer

Because of the unfavorable prognosis of lung cancer, the 
search for new therapies is still indicated and ongoing. Also 
PIs are being tested for their efficacy in small cell lung 
cancer (SCLC) and non-small cell lung cancer (NSCLC). 
BTZ showed encouraging in vitro activity against a panel 
of human NSCLC cell lines, even though NSCLC cells with 
aberrant apoptosis (increased Bcl-2) or high basal protea-
some activity were intrinsically less sensitive to BTZ [29, 
79]. NSCLC cells were also in vitro sensitive to second-gen-
eration PIs including CFZ and oprozomib [29]. However, in 
early clinical trials for NSCLC, BTZ as single agent showed 
only modest activity [80]. Since studies with NSCLC xen-
ograft models indicated that BTZ pharmacokinetics and 
tumor penetration were limiting factors determining its 
efficacy [81], strategies to enhance BTZ efficacy focused 
on combination therapies, improving tumor penetration and 
second-generation PIs.

Combination therapies of BTZ with paclitaxel/carbopl-
atin/radiation, irinotecan, radiation and the HDAC inhibitor 
vorinostat showed promising results in NSCLC therapy [42, 
82–85]. However, cisplatin with, or without gemcitabine, 
did not improve the efficacy of BTZ [86, 87]. Moreover, the 
addition of BTZ to the current NSCLC chemotherapeutic 

regimen of gemcitabine and cisplatin did not improve the 
results of gemcitabine and cisplatin alone [86, 88] even 
though in vitro studies with NSCLC cells demonstrated a 
schedule-dependent effect of BTZ increasing the expression 
of deoxycytidine kinase, the activating enzyme for gemcit-
abine, and concomitantly levels of the active metabolite of 
gemcitabine [89]. BTZ was also tested in combination with 
TRAIL (tumor necrosis factor-related apoptosis-inducing 
ligand) revealing potent activity against monolayer cultures 
of NSCLC cells, but had marginal effects in a three-dimen-
sional spheroid NSCLC model [90].

After BTZ treatment, cells accumulate in the radiosensi-
tive G2/M phase of the cell cycle. Moreover, proteasome 
inhibition disrupts radioresistance mechanisms such as 
NFkB activation, loss of p53 and DNA DSBs repair [82, 
91]. These effects provide a rationale for synergism of BTZ 
with radiotherapy in lung cancer [82, 85, 91].

Like in NSCLC, BCL-2 overexpression in SCLC is linked 
to apoptosis-related chemotherapy resistance. In H526 
SCLC cell lines, BTZ treatment reduced BCL-2 levels to 
enhance apoptosis induction and cytotoxicity [92].

The chemotherapeutic effect of the second-generation PIs 
CFZ has been tested in mouse xenograft model of SHP77 
SCLC cells, revealing a significant survival advantage along 
with a marked increase in cleaved caspase-3 after CFZ treat-
ment [88].

To overcome the poor penetration of BTZ into lung 
tumors, alternative PI delivery systems were investigated, 
nanoparticles or micelle formulations [93, 94]. A study by 
Lin et al. [94] showed that a micelle polymer formulation 
enhanced the stability of CFZ, allowing a controlled release 
of CFZ exerting a more potent cytotoxic effect against H460 
lung cancer cells compared to free CFZ [94]. Similarly, 
delivery of BTZ via hollow meoporous silica nanospheres 
(HMSNs) impacted viability of lung cancer cells to a greater 
extent than free BTZ [95]. Since about half of NSCLC 
cells harbor p53 gene mutations, which are associated with 
poor prognosis [96, 97], the effect of BTZ versus HMSN-
BTZ was investigated for wild-type p53 cells compared to 
mutant p53 cells [95]. Whereas BTZ displayed greater activ-
ity against wild-type p53 cells than mutant p53 cells, both 
cell types gained sensitivity upon HMSN-BTZ treatment. 
A further gain of HMSN-BTZ sensitivity was observed for 
mutant p53 cells transfected with wild-type p53 [95]. Given 
the notion that HMSN-BTZ had a faster release in cancer 
cells compared to healthy cells, this would favor efficacy and 
reduce potential side effects.

Together, these results indicate that PIs display activity in 
lung cancer, however, as a single agent in clinical trials their 
efficacy is limited. Combination therapies with paclitaxel, 
carboplatin, irinotecan, vorinostat, gemcitabine, TRAIL and 
with radiation seem more encouraging. Additional research 
is necessary to optimize these combined treatments with 
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respect to dose-schedules and improve the clinical effects of 
PIs by improving its penetration with nano-particles. While 
most studies focus on NSCLC, SCLC is also eligible for 
further (clinical) investigation, as well as prognostic factors 
such as BCL-2 and p53.

Pancreatic cancer

Pancreatic cancer has a dismal prognosis, with a 5-year sur-
vival of less than 5%. Therefore, for this disease, there is an 
urgent need to identify new chemotherapy regimens, and 
PI’s are candidates currently being tested. BTZ can induce 
apoptosis in pancreatic cancer cells via ER-stress [98]. Con-
sistent with data for lung cancer, the combination of PIs 
with radiation therapy showed synergistic cytotoxic effects 
in pancreatic cancer as a result of increased ER-stress indi-
cated by enhanced protein levels of IRE1α and JNK [99].

Ninety percent of patients with pancreatic cancer have 
activating KRAS mutations, which attribute to the poor 
prognosis. In pancreatic cancer cells, KRAS mutations 
induce increased levels of the TNF-receptor family member 
TRAF6, which has a role in maintaining cell survival [99]. 
Notably, upon PI (BTZ or MG132) treatment TRAF6 under-
goes autophagy-dependent rather than proteasome-depend-
ent degradation [99, 100]. The treatment of pancreatic can-
cer cells with a combination of PIs and radiation resulted in 
marked TRAF6 downregulation, enhanced autophagy, and 
increased cytotoxicity [99]. The mechanistic role of TRAF6 
in PI-induced autophagy in pancreatic cancer cell death 
was further supported by the fact that autophagy inhibitors 
significantly reduced the cytotoxicity [99]. In contrast, a 
study by Min et al. showed that BTZ induces cell-protective 
autophagy in primary cultured pancreatic cancer cells and 
cell lines through activation of AMP-activated protein kinase 
(AMPK) [101]. AMPK-inhibitors and autophagy inhibitors 
suppressed autophagy and stimulated BTZ-induced apop-
tosis of pancreatic cancer cells [101]. The apparent discrep-
ancy in effects of PIs on pancreatic cancer cells could have 
resulted from different autophagy levels induced by BTZ, 
in which low and moderate levels of autophagy are protec-
tive, while high levels of autophagy promote cell death [102, 
103].

A study by Nauman et  al. investigated the cytotoxic 
effects of the PI MG-132 as single agents and in combination 
with various conventional chemotherapeutics in pancreatic 
cancer cell lines [104]. Whereas a combination of MG132 
and doxorubicin was antagonistic, MG-132 and camptoth-
ecin proved synergistic in inducing apoptosis. The latter was 
confirmed by reduced levels of Mcl-1 protein, an anti-apop-
totic protein, and enhanced levels of the pro-apoptotic pro-
tein Noxa were found with this combined treatment [104]. 
The balance of Noxa and Mcl-1 appeared a good indicator 
for PI-induced apoptosis and could predict the effectivity of 

PIs in pancreatic cancer cells [104]. Another study showed 
that BTZ-induced apoptosis in pancreatic cancer cells is 
associated with the increased production of ceramide lipids 
[105]. In this regard, Fumonsin B1-induced inhibition of 
ceramide de novo synthesis decreased BTZ-induced apopto-
sis and combined treatment of C6-ceramide and BTZ signifi-
cantly increased cell death of pancreatic cancer cells [105].

While the in vitro results revealed promising activity of 
PIs in pancreatic cancer cells, one initial clinical study with 
the PI marizomib in combination with vorinostat, a HDAC 
inhibitor, showed no clinical responses in patients with pan-
creatic cancer [106]. However, it might be recommended to 
combine a PI with one of the standard treatments in pancre-
atic cancer.

PI-conjugated nanoparticles may be an approach to 
improve delivery in pancreatic cancer cells and enhance the 
efficacy in a clinical setting. To this end, BTZ conjugated to 
pegylated gold nanoparticles showed an enhanced cytotoxic-
ity to pancreatic cancer cell lines as compared to free BTZ 
[107]. Moreover, conjugated BTZ was less toxic to normal 
pancreatic cells [107].

Collectively, PIs can induce apoptosis in pancreatic can-
cer by ER-stress, which facilitates synergistic effects when 
combined with radiation therapy or drugs like camptoth-
ecin. In addition, Mcl-1 and Noxa expression may serve as 
potential markers for PI activity in pancreatic cancer cells, 
however, their predictive value needs further clinical con-
firmation, just as delineating the role of autophagy in pan-
creatic cancer cells and novel therapeutic approaches with 
PI-conjugated nanoparticles.

Breast cancer

Triple-negative breast cancer (TNBC) is a very aggressive 
form and no specific factors are defined attributing to its 
poor prognosis. PI’s have been evaluated for their feasibil-
ity of breast cancer treatment. Two studies by Tseng et al. 
and Chen et al. showed anti-tumor activity of PIs in TNBC 
cells [108, 109]. Marked BTZ- induced apoptosis and anti-
tumor activity was noted in TNBC in vitro and in vivo, but 
not in HER2-overexpressing and estrogen receptor-positive 
breast cancer cell lines [108]. Notably, BTZ inhibited can-
cerous inhibitor of protein phosphatase 2A (CIP2A) in the 
BTZ-sensitive cells [108]. Additionally, several combination 
therapies were tested to sensitize breast cancer cells to PIs 
and enhancing their efficacy as described below [109–116]. 
Lapatinib, a dual EGFR/HER2 tyrosine kinase inhibitor, 
induced NFkB activation, making the cells more vulnerable 
for NFkB inhibition, and also induced pro-apoptotic Bax 
expression in TNBC which resulted in a synergistic anti-
tumor activity in vitro and in vivo with BTZ [109]. While 
BTZ alone did not induce anti-tumor activity in estrogen 
receptor-positive breast cancer cell lines, the combination 
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treatment of BTZ with anti-estrogens had synergistic effects 
[116]. Moreover, anti-estrogen resistant breast cancer cells 
responded to this combined treatment with a decrease in 
tumor growth [116].

Several combination therapies showed that PIs were able 
to induce ER-stress in breast cancer cells [110, 112, 113]. 
Citreoviridin, an ATP synthase inhibitor, triggered PERK-
mediated eIF2α phosphorylation, indicating that citreoviri-
din combined with PIs could increase ER-stress to enhance 
anti-tumor activity [110]. BTZ was also able to induce apop-
tosis and autophagy in metastatic breast cancer cell lines 
[112]. Clarithromycin blocks autophagy flux, and in com-
bination with BTZ significantly enhanced the activation of 
pro-apoptotic transcription factor CHOP and cytotoxicity 
in this metastatic breast cancer cell line [112]. In support 
of this mechanism, a decrease in BTZ-induced cell death 
was found after knockdown of CHOP [112]. Another com-
bination therapy that induces ER-stress and enhances the 
cytotoxicity to breast cancer cells is BTZ with vinorelbine 
(VNR), a suppressor of aggresome formation induced by 
BTZ [113].

Doxorubicin is an effective chemotherapeutic drug in 
breast cancer treatment. However, its efficacy is limited 
by resistance and side effects. Doxorubicin induces activa-
tion of NFkB, which could contribute to its resistance. CFZ 
inhibited NFkB activation and showed cytotoxicity in breast 
cancer cells [114]. Moreover, CFZ increased doxorubicin-
induced apoptosis and cytotoxic effects [114]. Another sec-
ond-generation PI, ixazomib, also showed cytotoxic effects 
and enhanced JNK and p38 phosphorylation induced by 
doxorubicin, sensitizing breast cancer cells to doxorubicin 
[115].

Together, BTZ has single agent activity against TNBC 
in vitro and in vivo, and displays synergistic effects when 
combined with anti-estrogens in estrogen receptor-positive 
breast cancer. PI-induction of ER-stress in breast cancer cells 
provides a rationale for evaluating BTZ or ixazomib in com-
bination with drugs currently used breast cancer treatment.

Head and neck squamous cell carcinoma

Head and neck squamous cell carcinoma (HNSCC) has often 
an aggressive course with emerging resistance to conven-
tional chemotherapy. Therefore, new agents are under inves-
tigation to improve the outcome. Pre-clinical studies showed 
that BTZ as a monotherapy induced apoptosis in HNSCC 
cells in vitro and in vivo [117, 118]. Mechanistically, inhibi-
tion of CIP2A was largely responsible for apoptosis induc-
tion by BTZ in HNSCC [117]. Consistently, HNSCC cells 
were protected against BTZ-induced apoptosis with over-
expression of CIP2A [117]. BTZ also promoted apoptosis 
and cell cycle arrest in human papillomavirus (HPV) posi-
tive HNSCC [118]. Other than non-HPV-positive HNSCC, 

HPV-positive HNSCC contains wild-type p53, that is rap-
idly degraded by the proteasome, and could thus be a target 
for therapy [118]. After BTZ treatment of HPV-positive 
HNSCC, functional p53 was enhanced, resulting in cell 
cycle arrest and apoptosis [118]. Second-generation PIs may 
elicit activity against HNSCC as illustrated by suppression 
of HNSCC xenograft tumor growth by oprozomib [119].

Despite encouraging pre-clinical results, a phase II 
clinical trial with single BTZ in HNSCC showed a poor 
response rate of only 3% [120]. Next, combination thera-
pies were tested to improve the efficacy of PIs in HNSCC 
[119, 121, 122]. One approach could be to trigger apopto-
sis with TRAIL [90]. Indeed, in HNSCC, the combination 
of MG-132 and TRAIL appeared synergistic in inducing 
apoptosis and cell death as a result of truncated Bid and 
Bik accumulation [121]. Additionally, CFZ and oprozomib 
induced apoptosis in HNSCC cells through enhanced Bik 
[119]. However, these PIs also increased Mcl-1 in HNSCC, 
thereby decreasing cytotoxic effects [119]. In HNSCC, acti-
vation of UPR was also observed which induced protective 
autophagy [119, 122]. Therefore, suppression of Mcl-1 or 
autophagy could be strategies to enhance cytotoxic effects. 
To this end, combining a HDAC inhibitor to BTZ resulted in 
a decrease of autophagy and a significant increase of apop-
tosis in HNSCC cells [123].

Summarizing, although BTZ confers single agent activ-
ity against HNSCC cells in vitro and in vivo by inhibition 
of CIP2A, clinical trials with BTZ in head and neck cancer 
showed poor results, conceivably by induction of protective 
autophagy and overexpression of CIP2A. Complementary 
research with respect to factors such as CIP2A, p53, Bik, 
and Mcl-1 may reveal therapeutic options for combination 
therapies with, e.g., TRAIL or HDAC inhibitors in head and 
neck cancer.

Thyroid cancer

Anaplastic thyroid carcinoma (ATC) has a poor overall sur-
vival. This might be due to the absence of thyroid-specific 
gene expression and refractoriness to the current therapeutic 
approaches. Therefore, experimental therapeutics for thy-
roid cancer also included PIs [124–127]. BTZ displayed 
anti-tumor activity in ATC cells in vitro and in vivo by 
impairment of glucose metabolism, induction of apoptosis, 
G2/M cell cycle arrest, and growth inhibition [125]. MG132 
induced apoptosis as well as accumulation of p53 in both wt 
p53 and mut p53 thyroid cancer cells [127]. However, only 
in ATC cell lines with wt p53, PIs induced upregulation of 
the pro-apoptotic targets, not in the mut p53 cells [127]. In 
contrast, pro-apoptotic targets regulated by the tumor sup-
pressor, transcription factor and proteasome substrate fork-
head BOX O3 (FOXO3a) were enhanced upon PI exposure 
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in both wt p53 and mut p53, thus triggering increased apop-
tosis in ATC cells [127].

Studies by Zhang et al. showed that PI treatment of ATC 
cells decreased the expression of Beclin 1, an autophagy 
essential protein [128]. Whereas knockdown Beclin 1 did 
not impact PI cytotoxicity, overexpression of Beclin 1 
increased the anti-tumor effects of PIs in ATC cells [128].

The second-generation PI CFZ has also been tested in 
ATC [124, 126]. CFZ, in direct comparison with BTZ and 
ixazomib, and was most effective against ATC cells in vitro 
and in vivo by inducing G2/M cell cycle arrest, as well as 
apoptosis [124]. Notably, CFZ significantly increased the 
overall survival in metastatic mice, without significant 
ADRs [124].

As for the other tumor types, combination therapies with 
PIs were also tested in ATC [126, 128]. A synergistic activ-
ity was found with the combination of CFZ with CUDC-101, 
a histone deacetylase and multi-kinase inhibitor, due to an 
increased caspase 3/7 activity and G2/M cell cycle arrest 
[126].

Together, BTZ showed in vitro and in vivo anti-tumor 
activity in ATC cells, which was very much p53 status and 
autophagy-dependent. The role of these two factors deserves 
further investigation for PI targeting of ATC, for which CFZ 
seems an attractive candidate.

Miscellaneous

Beyond the common solid malignancies described above, 
anti-tumor activity of PIs has also been explored in other 
solid tumor types, including hepatocellular carcinoma 
(HCC), oral squamous cell carcinoma, prostate cancer, 
colorectal cancer, ovarian cancer, biliary tract cancer and 
melanoma [101, 129–144]. The current status of PIs applica-
tion in hepatocellular carcinoma was recently reviewed by 
Chen et al. and showed no clinical effectivity with BTZ, as a 

single agent, but noteworthy progress is made in identifying 
and developing UPS-targeting molecules feasible for HCC 
treatment, yet to enter clinical trials [129]. In most other 
solid malignancies PIs exerted mechanisms of action simi-
lar as described above, i.e., inducing apoptosis, decreasing 
tumor growth and synergistic activity in some combination 
therapies [133–136]. These findings suggest that PI treat-
ment of various solid malignancies is feasible, but requires 
more research to understand, for each tumor types, its full 
mechanism of action, and identify most promising combina-
tion therapies.

Table 2 summarizes currently completed, but not yet pub-
lished, clinical trials of PIs in solid malignancies.

Resistance and predictive factors in solid 
malignancies

Mechanisms of intrinsic and acquired resistance to PIs in 
hematological malignancies have been extensively reviewed 
[8, 10, 145–147]. Here we primarily focus on mechanisms 
that contribute to PI-resistance in solid malignancies.

Proteasome activity

Several studies showed that BTZ-resistant cells had higher 
(basal) proteasome activity and increase in subunit gene 
expression, compared to BTZ-sensitive cells [29, 79, 148]. 
This enabled cells a faster recovery of proteasome activity 
after BTZ treatment thus attenuating BTZ response [148]. 
Other than with the reversible PI inhibitor BTZ, protea-
some inhibition is more prolonged by the irreversible PI 
CFZ, which contributes to its activity against BTZ-resistant 
cells [148]. A recent study by Weyburne et al. showed that 
after β5-subunit inhibition, activation of Nrf1 was mainly 
responsible for initiating proteasome activity recovery. 

Table 2  Completed trials with PIs in solid tumors (clinicaltrials.gov)

Compound Combination Condition Phase ClinicalTrials.
gov identifier

PS-341 Doxarubicin Advanced solid tumors Phase I NCT00023855
PS-341 Chemotherapy Advanced solid tumors Phase I NCT00028587
PS-341 Topotecan Advanced malignancies Phase I NCT00068484
NPI-0052 – Solid malignancies or refractory lymphoma Phase I NCT00396864
PS-341 – Advanced or metastatic solid tumors Phase I NCT02220049
PS-341 Sorafenib Advanced cancers Phase I NCT00303797
PS-341 – Children with refractory solid tumors Phase I NCT00021216
NPI-0052 – Advanced malignancies Phase I NCT00629473
PS-341 Paclitaxel Locally advanced or metastatic solid tumor Phase I NCT00030368
PS-341 Doxorubicin Advanced adenoid cystic carcinoma of the head and neck Phase II NCT00077428
PS-341 – Advanced malignancies and kidney dysfunction Phase I NCT00054483
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Interestingly, this process could be blocked by co-inhibition 
of the β2-subunit [149].

Besides the constitutive proteasome, most commonly 
expressed in solid tumor cells, cells of the immune system 
harbor a relatively high expression of immunoproteas-
omes. Herein the immunoproteasome subunits LMP2 (β1i), 
MECL1(β2i), and LMP7 (β5i) have replaced the constitutive 
proteasome subunits β1, β2, and β5. Upon oxidative stress or 
inflammatory stimuli such as interferon γ (IFNγ) or TNFα, 
these immunoproteasome subunits can be expressed in other 
cells as well. In leukemia, there are indications that a higher 
ratio of immunoproteasomes over constitutive proteasomes 
is associated with a better response to PIs [150]. A study 
by Busse et al. compared neoplastic B-cells to several solid 
tumor cells for their BTZ sensitivity. They found that the 
solid tumor cells were intrinsically more resistant to BTZ, 
and had a lower expression of the β1i, β2i, β5i, and β2 sub-
units, compared to the neoplastic B cells [30]. Moreover, 
after IFNγ pretreatment, BTZ sensitivity increased in 50% 
of cell lines [30]. This suggests that a lower expression of 
the immunoproteasome contributes to PI-resistance in solid 
malignancies versus hematological malignancies. Remarka-
bly, in two studies acquired resistance to BTZ in solid tumor 
cell lines coincided with an upregulation of both constitutive 
and immunoproteasome subunits [29, 148]. The latter most 
likely represents a compensatory mechanism for malfunc-
tioning β5 subunits due to PSMB5 mutations (see below).

Proteasome β5‑subunit mutations

PSMB5 mutations introducing amino acid substitutions in 
a highly conserved substrate/inhibitor binding domain β5 
subunit result in impaired BTZ binding and has been iden-
tified as a mechanism of PI-resistance in heamatological 
malignancies [8, 145]. Also in BTZ-resistant solid tumor 
cell lines, point mutations in PSMB5 were identified [29, 
148]. A study by De Wilt et al. in lung cancer cells with 
acquired BTZ resistance revealed Ala49Thr, Met45Val, 
and Cys52Phe substitutions in the β5 subunit BTZ-binding 
pocket, while Suzuki et al., in BTZ-resistant colon cancer 
cells observed Cys63Phe and Arg24Cys mutations in the β5 
subunit [29, 148]. BTZ-resistant solid tumor cells displayed 
cross-resistance to all PIs that target the β5-subunit, but 
retained sensitivity for PIs targeting other, e.g., α-subunits 
[29].

Apoptosis‑mediated resistance; Noxa/Mcl‑1

In some BTZ-resistant cells an altered Mcl-1/Noxa balance 
was noted as an attributing factor [29, 39, 104, 151]. In 
BTZ-resistant melanoma cells, expression of anti-apoptotic 
protein Mcl-1 was markedly increased after BTZ treatment, 
whereas expression of pro-apoptotic protein Noxa was 

unaffected [151]. The BTZ-resistant cells could be sensi-
tized for BTZ-induced apoptosis when induction of Mcl-1 
was prevented by Mcl-1 siRNA [151]. Also, in pancreatic 
cancer cells the Noxa/Mcl-1 balance constitutes a (predic-
tive) factor determining BTZ sensitivity [104, 152]. Finally, 
NSCLC cell lines with overexpression of the anti-apoptotic 
Bcl-2 protein, also proved to be more resistant to PI-induced 
apoptosis [79].

Autophagy

It is still unclear whether autophagy limits or promotes 
cell survival. Low or moderate levels of autophagy appear 
cell-protective, while high levels of autophagy facilitate 
promotion of cell death [102, 103]. Notwithstanding these 
facts, multiple studies showed that inhibition of autophagy 
increased PI-induced apoptosis [39, 101, 122, 134, 153]. 
Upon PI treatment, protective autophagy was activated 
in several solid malignancies [101, 122]. A study by Min 
et al. revealed that the mechanism underlying protective 
autophagy in BTZ-treated colon and pancreatic cancer 
cells involved activation of AMP-activated protein kinase 
(AMPK). Inhibition of autophagy with 3-methyladenine 
(3-MA) enhanced BTZ-induced cytotoxicity and apoptosis 
in these cells [101].

Another combination therapy that reduced PI-induced 
protective autophagy was noted for a histone deacetylase 
6 (HDAC6) inhibitor. This combination increased BTZ-
induced apoptosis and reversed PI-resistance [39, 122, 153].

KRAS

Studies by Chattopadhyay et al. examining the sensitivity 
of the novel PI Ixazomib in a panel of colon cancer and 
NSCLC xenografts, revealed that tumors harboring activat-
ing KRAS mutations were less sensitive to Ixazomib than 
tumors with wt KRAS [139]. Moreover, introducing activat-
ing KRAS mutations into wt KRAS cells markedly reduced 
Ixazomib sensitivity in these xenograft models [139]. The 
underlying mechanism of how activating KRAS mutations 
impact PI sensitivity appears associated with reprogramming 
key metabolic pathways and the ability of PIs to inhibit these 
pathways in solid tumors. Given the fact that alterations in 
metabolic pathways in KRAS-wt and KRAS-mt may differ 
in tumor cells with different genetic backgrounds, this may 
also attribute to differential PI sensitivities in solid tumors 
[139].

Pgp

Elevated levels of the multidrug efflux transporter P-glyco-
protein (Pgp) were observed in human colon, lung, and head 
and neck squamous cell carcinoma cell lines with acquired 
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resistance to CFZ [153, 154]. The notion that inhibitors 
of Pgp were able to reverse CFZ resistance indicates that 
enhanced Pgp-mediated drug efflux can confer CFZ resist-
ance [154]. Indeed, a study by Verbrugge et al. demonstrated 
that CFZ and oprozomib were bona fide substrates for Pgp 
and thus Pgp-overexpression facilitated resistance to these 
PIs [155]. BTZ is a poor substrate for Pgp and the efflux 
transporter does not play a dominant role in BTZ resistance 
[155, 156]. Studies by Verbrugge et al. also documented that 
BTZ and another second-generation PIs were non-substrates 
for other family members of ATP-driven drug efflux trans-
porters, and consistently, did not play a role in PI resistance 
[155]. A summarizing graphical presentation of PI-resist-
ance modalities in solid tumors as shown in Fig. 2.

Discussion

The level of success of PI treatment for hematologi-
cal malignancies has thus far not been reached for solid 
tumors. Despite encouraging activity and anti-tumor 
effects of PIs in pre-clinical models of solid tumors, their 
clinical activity is still limited and requires additional 
mechanistic insights to improve on this. Recognizing that 
PIs have overlapping mechanisms of action in hemato-
logical malignancies versus solid tumors, research has also 

pinpointed critical differences, which collectively attribute 
to their differential response to PIs. These include differ-
ences in proteasome subunit composition, drug penetra-
tion, the impact of oncogene activation, autophagy and 
apoptosis induction, and resistance mechanisms.

PI targeting in solid tumors mainly involves constitutive 
proteasomes, while in hematological malignancies immu-
noproteasomes are much more abundant and constitute an 
additional target on top of constitutive proteasomes. Clini-
cally directed PI research in solid tumors would greatly 
benefit from quantitative and qualitative assessments of 
constitutive and immunoproteasome subunit composition 
in clinical samples of various types of solid tumors. Ana-
lytical methods are available which can provide detailed 
information on proteasome subunit composition from 
limited (biopsy) sample sizes and thus help in designing 
rationalized PI treatment strategies [157, 158]. Although 
the abundance of immunoproteasomes in solid tumors is 
estimated to be low, emerging functions of immunopro-
teasomes in handling oxidative and toxic stress could hold 
relevance for PI (combination) therapies in solid tumors 
[159, 160]. Inhibition this function may account for the 
fact-specific immunoproteasome inhibitors conferred 
growth inhibitory effects against lung cancer cell lines [29, 
161]. In cases of inflammation-driven cancers, the release 
of TNFα and IFN-γ may further enhance the expression 

Fig. 2  An overview of PI-
resistance in solid tumors: 1 
upregulation of proteasome 
activity and increased subunit 
gene expression, 2 proteasome 
β5-subunit mutations, 3 protec-
tive autophagy, 4 apoptosis-
mediated resistance due to an 
altered Mcl-1/Noxa balance, 5 
elevated levels of Pgp resulting 
in an enhanced CFZ efflux, and 
6 KRAS mutations associated 
with reprogramming metabolic 
pathways
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of immunoproteasomes to levels that would give grounds 
for PI targeting.

Drug penetration in solid tumors was recognized as a fac-
tor limiting PI efficacy. From this perspective, a rationalized 
choice for irreversible PIs (CFZ, oprozomib) over revers-
ible PIs (BTZ, ixazomib) could be made to achieve a bet-
ter retention and prolong proteasome inhibition. However, 
since CFZ and oprozomib are substrates for the drug efflux 
transporter Pgp, this could potentially interfere with drug 
penetrations [155]. To further improve on drug penetration, 
early results demonstrated the feasibility of alternative PI 
delivery methods, e.g., via nanoparticles, and require follow 
up studies. Beyond penetration, also hypoxic conditions can 
impair drug activity, although under severe hypoxia in vitro, 
carcinoma cells were fully sensitive for BTZ when compared 
to normoxic conditions [162].

The exact role of autophagy in PI response needs further 
studies as to its relevance for selected or most solid tumor 
types. The same holds for the impact of the genetic back-
ground and oncogenic expression/activation in various solid 
tumor types in relation to PI response. The outcome of these 
studies may provide better rationales for combination stud-
ies of PIs with radiotherapy, HDAC inhibitors and TRAIL 
which have shown to be effective in selected tumor types.

Finally, as to the issue of drug resistance to PIs in solid 
tumors, overlapping mechanisms with PI-resistance in 
hematological malignancies were identified [8]. These 
mechanisms, however, were mostly derived from solid 
tumor cell line studies and need confirmation in clini-
cal specimen from patients with solid tumor refractory 
to PI treatment. One recently identified novel mecha-
nism of BTZ resistance in leukemia may also be of inter-
est to explore in solid tumors. This relates to the role 
of the Myristoylated Alanine-Rich C Kinase Substrate 
(MARCKS) protein in vesicular/exosome-mediated exocy-
tosis of ubiquitinated proteins from BTZ-resistant cells to 
quench proteolytic stress [163]. Since MARCKS protein is 
also abundantly expressed in lung tissue and lung cancer, 
it may also provide a potential mechanism of resistance to 
BTZ in lung cancer [164, 165]. A role of MARCKS pro-
tein in BTZ resistance was originally indicated from prot-
eomic and differential gene expression profiling studies in 
BTZ-resistant hematological cells [163, 166]. Given that 
most characterizations of the effects of PIs on solid tumors 
relied on assessments of apoptosis induction and cell cycle 
effects, application of these novel technologies can aid to 
further pinpoint other critical processes that determine PI 
sensitivity/resistance in solid tumors. In this respect, also 
metabolomics may be explored as an entity impacted by 
PIs. Notably, BTZ resistance in MM cell lines and patient 
samples has been associated with a reprogrammed glu-
cose metabolism [167]. In fact, BTZ-resistant cells fea-
tured a higher activity of the serine synthesis pathway, and 

interestingly serine starvation provoked increased BTZ-
cytotoxicity [167]. Metabolic aberrations might also be 
important in solid malignancies since KRAS mutations 
found in resistant colon cancer and NSCLC xenografts 
were associated with reprogrammed metabolic pathways. 
Anticipating rewiring of metabolic pathways (e.g., glucose 
and amino acid metabolism) in PI-resistant cells, interfer-
ing with these pathways might constitute novel strategies 
to enhance PI’s cytotoxicity in combination therapies [22].

Beyond evaluating next generation PI inhibitors, strate-
gies to overcome BTZ resistance mechanisms deserve focus 
on exploring PIs that target non-catalytic subunits of the 
proteasome or other targets in the UPS, e.g., deubiquitinases 
[168, 169].

Collectively, identifications of novel determinants of PI 
sensitivity/resistance in solid tumors, employing advanced 
genetic, proteomic and metabolomics techniques, will be 
helpful to guide future rational strategies single agent PI 
or PI combination therapies to improve therapy clinical 
efficacy.
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