Skip to main content

Advertisement

Log in

Advances in hematopoietic stem cells ex vivo expansion associated with bone marrow niche

  • Review Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Hematopoietic stem cells (HSCs) are an ideal source for the treatment of many hematological diseases and malignancies, as well as diseases of other systems, because of their two important features, self-renewal and multipotential differentiation, which have the ability to rebuild the blood system and immune system of the body. However, so far, the insufficient number of available HSCs, whether from bone marrow (BM), mobilized peripheral blood or umbilical cord blood, is still the main restricting factor for the clinical application. Therefore, strategies to expand HSCs numbers and maintain HSCs functions through ex vivo culture are urgently required. In this review, we outline the basic biology characteristics of HSCs, and focus on the regulatory factors in BM niche affecting the functions of HSCs. Then, we introduce several representative strategies used for HSCs from these three sources ex vivo expansion associated with BM niche. These findings have deepened our understanding of the mechanisms by which HSCs balance self-renewal and differentiation and provided a theoretical basis for the efficient clinical HSCs expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Notes

  1. FP6: an artificially generated IL-6/sIL-6R fusion protein.

  2. SRCs: SCID (severe combined immunodeficient) repopulating cells.

  3. FBS: fetal bovine serum.

  4. HPCs: hematopoietic progenitor cells.

  5. LTR-HSCs: long-term repopulating hematopoietic stem cells.

  6. TNCs: total nucleated cells.

References

  1. Kaushansky K (2006) Lineage-specific hematopoietic growth factors. N Engl J Med 354(19):2034–2045. https://doi.org/10.1056/NEJMra052706

    Article  CAS  PubMed  Google Scholar 

  2. Chatterjee C, Schertl P, Frommer M et al (2021) Rebuilding the hematopoietic stem cell niche: recent developments and future prospects. Acta Biomater 132:129–148. https://doi.org/10.1016/j.actbio.2021.03.061

    Article  CAS  PubMed  Google Scholar 

  3. Laurenti E, Gottgens B (2018) From haematopoietic stem cells to complex differentiation landscapes. Nature 553(7689):418–426. https://doi.org/10.1038/nature25022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Notta F, Doulatov S, Laurenti E et al (2011) Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 333(6039):218–221. https://doi.org/10.1126/science.1201219

    Article  CAS  PubMed  Google Scholar 

  5. Osawa M, Hanada K, Hamada H et al (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273(5272):242–245. https://doi.org/10.1126/science.273.5272.242

    Article  CAS  PubMed  Google Scholar 

  6. Muraro PA, Martin R, Mancardi GL et al (2017) Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis. Nat Rev Neurol 13(7):391–405. https://doi.org/10.1038/nrneurol.2017.81

    Article  CAS  PubMed  Google Scholar 

  7. Thomas ED, Lochte HL Jr., Lu WC et al (1957) Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med 257(11):491–496. https://doi.org/10.1056/NEJM195709122571102

    Article  CAS  PubMed  Google Scholar 

  8. Uden T, Bertaina A, Abrahamsson J et al (2020) Outcome of children relapsing after first allogeneic haematopoietic stem cell transplantation for acute myeloid leukaemia: a retrospective I-BFM analysis of 333 children. Br J Haematol 189(4):745–750. https://doi.org/10.1111/bjh.16441

    Article  CAS  PubMed  Google Scholar 

  9. Sun YQ, Zhao C, Wang Y et al (2020) Haploidentical stem cell transplantation in patients with chronic myelomonocytic leukemia. Sci China Life Sci 63(8):1261–1264. https://doi.org/10.1007/s11427-019-1606-3

    Article  CAS  PubMed  Google Scholar 

  10. Alexander T, Greco R, Snowden JA (2021) Hematopoietic stem cell transplantation for Autoimmune Disease. Annu Rev Med 72:215–228. https://doi.org/10.1146/annurev-med-070119-115617

    Article  CAS  PubMed  Google Scholar 

  11. Nguyen-Thanh B, Nguyen-Ngoc-Quynh L, Dang-Thi H et al (2023) The first successful bone marrow transplantation in Vietnam for a young Vietnamese boy with chronic granulomatous disease: a case report. Front Immunol 14:1134852. https://doi.org/10.3389/fimmu.2023.1134852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tucci F, Scaramuzza S, Aiuti A et al (2021) Update on clinical Ex vivo hematopoietic stem cell gene therapy for inherited monogenic diseases. Mol Ther 29(2):489–504. https://doi.org/10.1016/j.ymthe.2020.11.020

    Article  CAS  PubMed  Google Scholar 

  13. Barisic S, Childs RW (2022) Graft-versus-solid-tumor effect: from hematopoietic stem cell transplantation to adoptive cell therapies. Stem Cells 40(6):556–563. https://doi.org/10.1093/stmcls/sxac021

    Article  PubMed  PubMed Central  Google Scholar 

  14. Driessen GJ, Gerritsen EJ, Fischer A et al (2003) Long-term outcome of haematopoietic stem cell transplantation in autosomal recessive osteopetrosis: an EBMT report. Bone Marrow Transpl 32(7):657–663. https://doi.org/10.1038/sj.bmt.1704194

    Article  CAS  Google Scholar 

  15. Gerritsen EJ, Vossen JM, Fasth A et al (1994) Bone marrow transplantation for autosomal recessive osteopetrosis. A report from the Working Party on Inborn errors of the European bone marrow Transplantation Group. J Pediatr 125(6 Pt 1):896–902. https://doi.org/10.1016/s0022-3476(05)82004-9

    Article  CAS  PubMed  Google Scholar 

  16. Remberger M, Torlen J, Ringden O et al (2015) Effect of total nucleated and CD34(+) cell dose on outcome after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transpl 21(5):889–893. https://doi.org/10.1016/j.bbmt.2015.01.025

    Article  Google Scholar 

  17. Shpall EJ, Champlin R, Glaspy JA (1998) Effect of CD34 + peripheral blood progenitor cell dose on hematopoietic recovery. Biol Blood Marrow Transpl 4(2):84–92. https://doi.org/10.1053/bbmt.1998.v4.pm9763111

    Article  CAS  Google Scholar 

  18. Xu ZL, Huang XJ (2021) Optimizing allogeneic grafts in hematopoietic stem cell transplantation. Stem Cells Transl Med 10 Suppl 2(Suppl 2):S41–S47. https://doi.org/10.1002/sctm.20-0481

    Article  Google Scholar 

  19. Amouzegar A, Dey BR, Spitzer TR (2019) Peripheral blood or bone marrow stem cells? Practical considerations in hematopoietic stem cell transplantation. Transfus Med Rev 33(1):43–50. https://doi.org/10.1016/j.tmrv.2018.11.003

    Article  PubMed  Google Scholar 

  20. Taichman RS, Emerson SG (1994) Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med 179(5):1677–1682. https://doi.org/10.1084/jem.179.5.1677

    Article  CAS  PubMed  Google Scholar 

  21. Cetean S, Cainap C, Constantin AM et al (2015) The importance of the granulocyte-colony stimulating factor in oncology. Clujul Med 88(4):468–472. https://doi.org/10.15386/cjmed-531

    Article  PubMed  PubMed Central  Google Scholar 

  22. Duhrsen U, Villeval JL, Boyd J et al (1988) Effects of recombinant human granulocyte colony-stimulating factor on hematopoietic progenitor cells in cancer patients. Blood 72(6):2074–2081

    Article  CAS  PubMed  Google Scholar 

  23. Lane TA, Law P, Maruyama M et al (1995) Harvesting and enrichment of hematopoietic progenitor cells mobilized into the peripheral blood of normal donors by granulocyte-macrophage colony-stimulating factor (GM-CSF) or G-CSF: potential role in allogeneic marrow transplantation. Blood 85(1):275–282

    Article  CAS  PubMed  Google Scholar 

  24. Bensinger WI, Martin PJ, Storer B et al (2001) Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. N Engl J Med 344(3):175–181. https://doi.org/10.1056/NEJM200101183440303

    Article  CAS  PubMed  Google Scholar 

  25. Ringden O, Labopin M, Beelen DW et al (2012) Bone marrow or peripheral blood stem cell transplantation from unrelated donors in adult patients with acute myeloid leukaemia, an Acute Leukaemia Working Party analysis in 2262 patients. J Intern Med 272(5):472–483. https://doi.org/10.1111/j.1365-2796.2012.02547.x

    Article  CAS  PubMed  Google Scholar 

  26. Gragert L, Eapen M, Williams E et al (2014) HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N Engl J Med 371(4):339–348. https://doi.org/10.1056/NEJMsa1311707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gluckman E, Broxmeyer HA, Auerbach AD et al (1989) Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 321(17):1174–1178. https://doi.org/10.1056/NEJM198910263211707

    Article  CAS  PubMed  Google Scholar 

  28. Zhu X, Tang B, Sun Z (2021) Umbilical cord blood transplantation: still growing and improving. Stem Cells Transl Med 10 Suppl 2(Suppl 2):S62–S74. https://doi.org/10.1002/sctm.20-0495

    Article  Google Scholar 

  29. Kindwall-Keller TL, Ballen KK (2020) Umbilical cord blood: the promise and the uncertainty. Stem Cells Transl Med 9(10):1153–1162. https://doi.org/10.1002/sctm.19-0288

    Article  PubMed  PubMed Central  Google Scholar 

  30. Milano F, Gooley T, Wood B et al (2016) Cord-blood transplantation in patients with minimal residual disease. N Engl J Med 375(10):944–953. https://doi.org/10.1056/NEJMoa1602074

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sun Z, Yao B, Xie H et al (2022) Clinical progress and preclinical insights into umbilical cord blood transplantation improvement. Stem Cells Transl Med 11(9):912–926. https://doi.org/10.1093/stcltm/szac056

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chang YJ, Pei XY, Huang XJ (2022) Haematopoietic stem-cell transplantation in China in the era of targeted therapies: current advances, challenges, and future directions. Lancet Haematol 9(12):e919–e929. https://doi.org/10.1016/S2352-3026(22)00293-9

    Article  CAS  PubMed  Google Scholar 

  33. Zhang XH, Chen J, Han MZ et al (2021) The consensus from the Chinese Society of Hematology on indications, conditioning regimens and donor selection for allogeneic hematopoietic stem cell transplantation: 2021 update. J Hematol Oncol 14(1):145. https://doi.org/10.1186/s13045-021-01159-2

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ballen KK, Spitzer TR (2011) The great debate: haploidentical or cord blood transplant. Bone Marrow Transpl 46(3):323–329. https://doi.org/10.1038/bmt.2010.260

    Article  CAS  Google Scholar 

  35. Krummey SM, Gareau AJ (2022) Donor specific HLA antibody in hematopoietic stem cell transplantation: implications for donor selection. Front Immunol 13:916200. https://doi.org/10.3389/fimmu.2022.916200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cytryn S, Abdul-Hay M (2020) Haploidentical hematopoietic stem cell transplantation followed by ‘Post-Cyclophosphamide’: the future of allogeneic stem cell transplant. Clin Hematol Int 2(2):49–58. https://doi.org/10.2991/chi.d.200405.001

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chen Y, Fang S, Ding Q et al (2021) ADGRG1 enriches for functional human hematopoietic stem cells following ex vivo expansion-induced mitochondrial oxidative stress. J Clin Invest 131(20). https://doi.org/10.1172/JCI148329

  38. Jin Y, Wang Q, Ding Q et al (2022) H6PD overexpression promotes ex vivo expansion of human cord blood hematopoietic stem cells. Stem Cell Rev Rep 18(5):1878–1880. https://doi.org/10.1007/s12015-022-10352-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sorrentino BP (2004) Clinical strategies for expansion of haematopoietic stem cells. Nat Rev Immunol 4(11):878–888. https://doi.org/10.1038/nri1487

    Article  CAS  PubMed  Google Scholar 

  40. Sauvageau G, Iscove NN, Humphries RK (2004) In vitro and in vivo expansion of hematopoietic stem cells. Oncogene 23(43):7223–7232. https://doi.org/10.1038/sj.onc.1207942

    Article  CAS  PubMed  Google Scholar 

  41. Zhang CC, Kaba M, Ge G et al (2006) Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat Med 12(2):240–245. https://doi.org/10.1038/nm1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huynh H, Iizuka S, Kaba M et al (2008) Insulin-like growth factor-binding protein 2 secreted by a tumorigenic cell line supports ex vivo expansion of mouse hematopoietic stem cells. Stem Cells 26(6):1628–1635. https://doi.org/10.1634/stemcells.2008-0064

    Article  CAS  PubMed  Google Scholar 

  43. Huynh H, Zheng J, Umikawa M et al (2011) IGF binding protein 2 supports the survival and cycling of hematopoietic stem cells. Blood 118(12):3236–3243. https://doi.org/10.1182/blood-2011-01-331876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Deng M, Lu Z, Zheng J et al (2014) A motif in LILRB2 critical for Angptl2 binding and activation. Blood 124(6):924–935. https://doi.org/10.1182/blood-2014-01-549162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guo B, Huang X, Lee MR et al (2018) Antagonism of PPAR-gamma signaling expands human hematopoietic stem and progenitor cells by enhancing glycolysis. Nat Med 24(3):360–367. https://doi.org/10.1038/nm.4477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wilkinson AC, Ishida R, Kikuchi M et al (2019) Long-term ex vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation. Nature 571(7763):117–121. https://doi.org/10.1038/s41586-019-1244-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Calvanese V, Nguyen AT, Bolan TJ et al (2019) MLLT3 governs human haematopoietic stem-cell self-renewal and engraftment. Nature 576(7786):281–286. https://doi.org/10.1038/s41586-019-1790-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cohen S, Roy J, Lachance S et al (2020) Hematopoietic stem cell transplantation using single UM171-expanded cord blood: a single-arm, phase 1–2 safety and feasibility study. Lancet Haematol 7(2):e134–e145. https://doi.org/10.1016/S2352-3026(19)30202-9

    Article  PubMed  Google Scholar 

  49. Ross C, Boroviak TE (2020) Origin and function of the yolk sac in primate embryogenesis. Nat Commun 11(1):3760. https://doi.org/10.1038/s41467-020-17575-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Takashina T (1989) Hemopoiesis in the human yolk sac. Am J Anat 184(3):237–244. https://doi.org/10.1002/aja.1001840307

    Article  CAS  PubMed  Google Scholar 

  51. McGrath KE, Frame JM, Fegan KH et al (2015) Distinct sources of hematopoietic progenitors emerge before HSCs and provide functional blood cells in the mammalian embryo. Cell Rep 11(12):1892–1904. https://doi.org/10.1016/j.celrep.2015.05.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Boiers C, Carrelha J, Lutteropp M et al (2013) Lymphomyeloid contribution of an immune-restricted progenitor emerging prior to definitive hematopoietic stem cells. Cell Stem Cell 13(5):535–548. https://doi.org/10.1016/j.stem.2013.08.012

    Article  CAS  PubMed  Google Scholar 

  53. Medvinsky A, Dzierzak E (1996) Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86(6):897–906. https://doi.org/10.1016/s0092-8674(00)80165-8

    Article  CAS  PubMed  Google Scholar 

  54. Mikkola HK, Orkin SH (2006) The journey of developing hematopoietic stem cells. Development 133(19):3733–3744. https://doi.org/10.1242/dev.02568

    Article  CAS  PubMed  Google Scholar 

  55. Alvarez-Silva M, Belo-Diabangouaya P, Salaun J et al (2003) Mouse placenta is a major hematopoietic organ. Development 130(22):5437–5444. https://doi.org/10.1242/dev.00755

    Article  CAS  PubMed  Google Scholar 

  56. Gekas C, Dieterlen-Lievre F, Orkin SH et al (2005) The placenta is a niche for hematopoietic stem cells. Dev Cell 8(3):365–375. https://doi.org/10.1016/j.devcel.2004.12.016

    Article  CAS  PubMed  Google Scholar 

  57. Ivanovs A, Rybtsov S, Ng ES et al (2017) Human haematopoietic stem cell development: from the embryo to the dish. Development 144(13):2323–2337. https://doi.org/10.1242/dev.134866

    Article  CAS  PubMed  Google Scholar 

  58. Spiecker L, Witte I, Mehlig J et al (2021) Deficiency of Antioxidative Paraoxonase 2 (Pon2) leads to increased number of phenotypic LT-HSCs and disturbed erythropoiesis. Oxid Med Cell Longev 2021:3917028. https://doi.org/10.1155/2021/3917028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mendez-Ferrer S, Bonnet D, Steensma DP et al (2020) Bone marrow niches in haematological malignancies. Nat Rev Cancer 20(5):285–298. https://doi.org/10.1038/s41568-020-0245-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Batsivari A, Haltalli MLR, Passaro D et al (2020) Dynamic responses of the haematopoietic stem cell niche to diverse stresses. Nat Cell Biol 22(1):7–17. https://doi.org/10.1038/s41556-019-0444-9

    Article  CAS  PubMed  Google Scholar 

  61. Behrmann L, Wellbrock J, Fiedler W (2018) Acute myeloid leukemia and the bone marrow niche-take a closer look. Front Oncol 8:444. https://doi.org/10.3389/fonc.2018.00444

    Article  PubMed  PubMed Central  Google Scholar 

  62. Le PM, Andreeff M, Battula VL (2018) Osteogenic niche in the regulation of normal hematopoiesis and leukemogenesis. Haematologica 103(12):1945–1955. https://doi.org/10.3324/haematol.2018.197004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Morris EV, Edwards CM (2021) Morphogens and growth factor signalling in the myeloma bone-lining niche. Cell Mol Life Sci 78(9):4085–4093. https://doi.org/10.1007/s00018-021-03767-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nilsson SK, Johnston HM, Coverdale JA (2001) Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 97(8):2293–2299. https://doi.org/10.1182/blood.v97.8.2293

    Article  CAS  PubMed  Google Scholar 

  65. Pimenta DB, Varela VA, Datoguia TS et al (2021) The bone Marrow Microenvironment mechanisms in Acute myeloid leukemia. Front Cell Dev Biol 9:764698. https://doi.org/10.3389/fcell.2021.764698

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kunisaki Y, Bruns I, Scheiermann C et al (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502(7473):637–643. https://doi.org/10.1038/nature12612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Acar M, Kocherlakota KS, Murphy MM et al (2015) Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526(7571):126–130. https://doi.org/10.1038/nature15250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Christodoulou C, Spencer JA, Yeh SA et al (2020) Live-animal imaging of native haematopoietic stem and progenitor cells. Nature 578(7794):278–283. https://doi.org/10.1038/s41586-020-1971-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kandarakov O, Belyavsky A, Semenova E (2022) Bone marrow niches of hematopoietic stem and progenitor cells. Int J Mol Sci 23(8). https://doi.org/10.3390/ijms23084462

  70. Dalloul A (2013) Hypoxia and visualization of the stem cell niche. Methods Mol Biol 1035:199–205. https://doi.org/10.1007/978-1-62703-508-8_17

    Article  CAS  PubMed  Google Scholar 

  71. Merchant AA, Singh A, Matsui W et al (2011) The redox-sensitive transcription factor Nrf2 regulates murine hematopoietic stem cell survival independently of ROS levels. Blood 118(25):6572–6579. https://doi.org/10.1182/blood-2011-05-355362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Suda T, Takubo K, Semenza GL (2011) Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 9(4):298–310. https://doi.org/10.1016/j.stem.2011.09.010

    Article  CAS  PubMed  Google Scholar 

  73. Le Belle JE, Orozco NM, Paucar AA et al (2011) Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8(1):59–71. https://doi.org/10.1016/j.stem.2010.11.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Takubo K, Nagamatsu G, Kobayashi CI et al (2013) Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 12(1):49–61. https://doi.org/10.1016/j.stem.2012.10.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pasha A, Calvani M, Favre C (2021) beta3-Adrenoreceptors as ROS Balancer in hematopoietic stem cell transplantation. Int J Mol Sci 22(6). https://doi.org/10.3390/ijms22062835

  76. Jang YY, Sharkis SJ (2007) A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110(8):3056–3063. https://doi.org/10.1182/blood-2007-05-087759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Juntilla MM, Patil VD, Calamito M et al (2010) AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 115(20):4030–4038. https://doi.org/10.1182/blood-2009-09-241000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15(6):411–421. https://doi.org/10.1038/nrm3801

    Article  CAS  PubMed  Google Scholar 

  79. Takubo K, Goda N, Yamada W et al (2010) Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 7(3):391–402. https://doi.org/10.1016/j.stem.2010.06.020

    Article  CAS  PubMed  Google Scholar 

  80. Tan DQ, Suda T (2018) Reactive oxygen species and mitochondrial homeostasis as regulators of stem cell fate and function. Antioxid Redox Signal 29(2):149–168. https://doi.org/10.1089/ars.2017.7273

    Article  CAS  PubMed  Google Scholar 

  81. Simsek T, Kocabas F, Zheng J et al (2010) The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7(3):380–390. https://doi.org/10.1016/j.stem.2010.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. O’Reilly E, Zeinabad HA, Szegezdi E (2021) Hematopoietic versus leukemic stem cell quiescence: challenges and therapeutic opportunities. Blood Rev 50:100850. https://doi.org/10.1016/j.blre.2021.100850

    Article  CAS  PubMed  Google Scholar 

  83. Cheung TH, Rando TA (2013) Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 14(6):329–340. https://doi.org/10.1038/nrm3591

    Article  CAS  PubMed  Google Scholar 

  84. Nakamura-Ishizu A, Takizawa H, Suda T (2014) The analysis, roles and regulation of quiescence in hematopoietic stem cells. Development 141(24):4656–4666. https://doi.org/10.1242/dev.106575

    Article  CAS  PubMed  Google Scholar 

  85. Papa L, Djedaini M, Hoffman R (2020) Ex vivo HSC expansion challenges the paradigm of unidirectional human hematopoiesis. Ann N Y Acad Sci 1466(1):39–50. https://doi.org/10.1111/nyas.14133

    Article  PubMed  Google Scholar 

  86. Morrison SJ, Weissman IL (1994) The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1(8):661–673. https://doi.org/10.1016/1074-7613(94)90037-x

    Article  CAS  PubMed  Google Scholar 

  87. Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100(1):157–168. https://doi.org/10.1016/s0092-8674(00)81692-x

    Article  CAS  PubMed  Google Scholar 

  88. Garcia-Prat L, Kaufmann KB, Schneiter F et al (2021) TFEB-mediated endolysosomal activity controls human hematopoietic stem cell fate. Cell Stem Cell 28(10):1838–1850e10. https://doi.org/10.1016/j.stem.2021.07.003

    Article  CAS  PubMed  Google Scholar 

  89. Zheng X, Zhang D, Xu M et al (2021) Short-read and long-read RNA sequencing of mouse hematopoietic stem cells at bulk and single-cell levels. Sci Data 8(1):309. https://doi.org/10.1038/s41597-021-01078-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fares I, Chagraoui J, Gareau Y et al (2014) Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science 345(6203):1509–1512. https://doi.org/10.1126/science.1256337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Aerts-Kaya F, Kilic E, Kose S et al (2021) G-CSF treatment of healthy pediatric donors affects their hematopoietic microenvironment through changes in bone marrow plasma cytokines and stromal cells. Cytokine 139:155407. https://doi.org/10.1016/j.cyto.2020.155407

    Article  CAS  PubMed  Google Scholar 

  92. Gibbs KD Jr., Gilbert PM, Sachs K et al (2011) Single-cell phospho-specific flow cytometric analysis demonstrates biochemical and functional heterogeneity in human hematopoietic stem and progenitor compartments. Blood 117(16):4226–4233. https://doi.org/10.1182/blood-2010-07-298232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Man Y, Yao X, Yang T et al (2021) Hematopoietic stem cell Niche during Homeostasis, Malignancy, and bone marrow transplantation. Front Cell Dev Biol 9:621214. https://doi.org/10.3389/fcell.2021.621214

    Article  PubMed  PubMed Central  Google Scholar 

  94. Nandakumar N, Mohan M, Thilakan AT et al (2022) Bioengineered 3D microfibrous-matrix modulates osteopontin release from MSCs and facilitates the expansion of hematopoietic stem cells. Biotechnol Bioeng 119(10):2964–2978. https://doi.org/10.1002/bit.28175

    Article  CAS  PubMed  Google Scholar 

  95. Cao H, Cao B, Heazlewood CK et al (2019) Osteopontin is an important regulative component of the fetal bone marrow hematopoietic stem cell niche. Cells 8(9). https://doi.org/10.3390/cells8090985

  96. Kaleta B (2021) Osteopontin and transplantation: where are we now? Arch Immunol Ther Exp (Warsz) 69(1):15. https://doi.org/10.1007/s00005-021-00617-6

    Article  PubMed  Google Scholar 

  97. Zhao F, Zhang Y, Wang H et al (2011) Blockade of osteopontin reduces alloreactive CD8 + T cell-mediated graft-versus-host disease. Blood 117(5):1723–1733. https://doi.org/10.1182/blood-2010-04-281659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nagasawa T, Kikutani H, Kishimoto T (1994) Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci U S A 91(6):2305–2309. https://doi.org/10.1073/pnas.91.6.2305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Agarwal P, Isringhausen S, Li H et al (2019) Mesenchymal niche-specific expression of Cxcl12 controls quiescence of treatment-resistant leukemia stem cells. Cell Stem Cell 24(5):769–784e6. https://doi.org/10.1016/j.stem.2019.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Khare T, Bissonnette M, Khare S (2021) CXCL12-CXCR4/CXCR7 Axis in Colorectal Cancer: therapeutic target in preclinical and clinical studies. Int J Mol Sci 22(14). https://doi.org/10.3390/ijms22147371

  101. Ara T, Tokoyoda K, Sugiyama T et al (2003) Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity 19(2):257–267. https://doi.org/10.1016/s1074-7613(03)00201-2

    Article  CAS  PubMed  Google Scholar 

  102. Sugiyama T, Kohara H, Noda M et al (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25(6):977–988. https://doi.org/10.1016/j.immuni.2006.10.016

    Article  CAS  PubMed  Google Scholar 

  103. Mohty M, Duarte RF, Croockewit S et al (2011) The role of plerixafor in optimizing peripheral blood stem cell mobilization for autologous stem cell transplantation. Leukemia 25(1):1–6. https://doi.org/10.1038/leu.2010.224

    Article  CAS  PubMed  Google Scholar 

  104. Rettig MP, Ansstas G, DiPersio JF (2012) Mobilization of hematopoietic stem and progenitor cells using inhibitors of CXCR4 and VLA-4. Leukemia 26(1):34–53. https://doi.org/10.1038/leu.2011.197

    Article  CAS  PubMed  Google Scholar 

  105. de Graaf CA, Metcalf D (2011) Thrombopoietin and hematopoietic stem cells. Cell Cycle 10(10):1582–1589. https://doi.org/10.4161/cc.10.10.15619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yoshihara H, Arai F, Hosokawa K et al (2007) Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1(6):685–697. https://doi.org/10.1016/j.stem.2007.10.020

    Article  CAS  PubMed  Google Scholar 

  107. Kirito K, Fox N, Kaushansky K (2003) Thrombopoietin stimulates Hoxb4 expression: an explanation for the favorable effects of TPO on hematopoietic stem cells. Blood 102(9):3172–3178. https://doi.org/10.1182/blood-2003-03-0944

    Article  CAS  PubMed  Google Scholar 

  108. Kirito K, Fox N, Komatsu N et al (2005) Thrombopoietin enhances expression of vascular endothelial growth factor (VEGF) in primitive hematopoietic cells through induction of HIF-1alpha. Blood 105(11):4258–4263. https://doi.org/10.1182/blood-2004-07-2712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hitchcock IS, Hafer M, Sangkhae V et al (2021) The thrombopoietin receptor: revisiting the master regulator of platelet production. Platelets 32(6):770–778. https://doi.org/10.1080/09537104.2021.1925102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhou BO, Yu H, Yue R et al (2017) Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat Cell Biol 19(8):891–903. https://doi.org/10.1038/ncb3570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Comazzetto S, Murphy MM, Berto S et al (2019) Restricted hematopoietic progenitors and erythropoiesis require SCF from Leptin receptor + niche cells in the bone marrow. Cell Stem Cell 24(3):477–486e6. https://doi.org/10.1016/j.stem.2018.11.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kara N, Xue Y, Zhao Z et al (2023) Endothelial and leptin receptor(+) cells promote the maintenance of stem cells and hematopoiesis in early postnatal murine bone marrow. Dev Cell 58(5):348–360e6. https://doi.org/10.1016/j.devcel.2023.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ding L, Saunders TL, Enikolopov G et al (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481(7382):457–462. https://doi.org/10.1038/nature10783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Khodadi E, Shahrabi S, Shahjahani M et al (2016) Role of stem cell factor in the placental niche. Cell Tissue Res 366(3):523–531. https://doi.org/10.1007/s00441-016-2429-3

    Article  CAS  PubMed  Google Scholar 

  115. Seita J, Weissman IL (2010) Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med 2(6):640–653. https://doi.org/10.1002/wsbm.86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Himburg HA, Termini CM, Schlussel L et al (2018) Distinct bone marrow sources of Pleiotrophin Control hematopoietic stem cell maintenance and regeneration. Cell Stem Cell 23(3):370–381e5. https://doi.org/10.1016/j.stem.2018.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Himburg HA, Harris JR, Ito T et al (2012) Pleiotrophin regulates the retention and self-renewal of hematopoietic stem cells in the bone marrow vascular niche. Cell Rep 2(4):964–975. https://doi.org/10.1016/j.celrep.2012.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Staal FJ, Chhatta A, Mikkers H (2016) Caught in a wnt storm: complexities of wnt signaling in hematopoiesis. Exp Hematol 44(6):451–457. https://doi.org/10.1016/j.exphem.2016.03.004

    Article  CAS  PubMed  Google Scholar 

  119. Brembeck FH, Rosario M, Birchmeier W (2006) Balancing cell adhesion and wnt signaling, the key role of beta-catenin. Curr Opin Genet Dev 16(1):51–59. https://doi.org/10.1016/j.gde.2005.12.007

    Article  CAS  PubMed  Google Scholar 

  120. Staal FJ, Luis TC, Tiemessen MM (2008) WNT signalling in the immune system: WNT is spreading its wings. Nat Rev Immunol 8(8):581–593. https://doi.org/10.1038/nri2360

    Article  CAS  PubMed  Google Scholar 

  121. Reya T, Duncan AW, Ailles L et al (2003) A role for wnt signalling in self-renewal of haematopoietic stem cells. Nature 423(6938):409–414. https://doi.org/10.1038/nature01593

    Article  CAS  PubMed  Google Scholar 

  122. Krishnamurthy N, Kurzrock R (2018) Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors. Cancer Treat Rev 62:50–60. https://doi.org/10.1016/j.ctrv.2017.11.002

    Article  CAS  PubMed  Google Scholar 

  123. Malhotra S, Kincade PW (2009) Wnt-related molecules and signaling pathway equilibrium in hematopoiesis. Cell Stem Cell 4(1):27–36. https://doi.org/10.1016/j.stem.2008.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Van Den Berg DJ, Sharma AK, Bruno E et al (1998) Role of members of the wnt gene family in human hematopoiesis. Blood 92(9):3189–3202

    Article  PubMed  Google Scholar 

  125. Willert K, Brown JD, Danenberg E et al (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423(6938):448–452. https://doi.org/10.1038/nature01611

    Article  CAS  PubMed  Google Scholar 

  126. Luis TC, Weerkamp F, Naber BA et al (2009) Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation. Blood 113(3):546–554. https://doi.org/10.1182/blood-2008-06-163774

    Article  CAS  PubMed  Google Scholar 

  127. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434(7035):843–850. https://doi.org/10.1038/nature03319

    Article  CAS  PubMed  Google Scholar 

  128. Goessling W, North TE, Loewer S et al (2009) Genetic interaction of PGE2 and wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136(6):1136–1147. https://doi.org/10.1016/j.cell.2009.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Goessling W, Allen RS, Guan X et al (2011) Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models. Cell Stem Cell 8(4):445–458. https://doi.org/10.1016/j.stem.2011.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Huang J, Nguyen-McCarty M, Hexner EO et al (2012) Maintenance of hematopoietic stem cells through regulation of wnt and mTOR pathways. Nat Med 18(12):1778–1785. https://doi.org/10.1038/nm.2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fleming HE, Janzen V, Lo Celso C et al (2008) Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2(3):274–283. https://doi.org/10.1016/j.stem.2008.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Luis TC, Naber BA, Roozen PP et al (2011) Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion. Cell Stem Cell 9(4):345–356. https://doi.org/10.1016/j.stem.2011.07.017

    Article  CAS  PubMed  Google Scholar 

  133. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284(5415):770–776. https://doi.org/10.1126/science.284.5415.770

    Article  CAS  PubMed  Google Scholar 

  134. Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7(9):678–689. https://doi.org/10.1038/nrm2009

    Article  CAS  PubMed  Google Scholar 

  135. Duncan AW, Rattis FM, DiMascio LN et al (2005) Integration of Notch and wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 6(3):314–322. https://doi.org/10.1038/ni1164

    Article  CAS  PubMed  Google Scholar 

  136. Pajcini KV, Speck NA, Pear WS (2011) Notch signaling in mammalian hematopoietic stem cells. Leukemia 25(10):1525–1532. https://doi.org/10.1038/leu.2011.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Varnum-Finney B, Brashem-Stein C, Bernstein ID (2003) Combined effects of notch signaling and cytokines induce a multiple log increase in precursors with lymphoid and myeloid reconstituting ability. Blood 101(5):1784–1789. https://doi.org/10.1182/blood-2002-06-1862

    Article  CAS  PubMed  Google Scholar 

  138. Varnum-Finney B, Xu L, Brashem-Stein C et al (2000) Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med 6(11):1278–1281. https://doi.org/10.1038/81390

    Article  CAS  PubMed  Google Scholar 

  139. Calvi LM, Adams GB, Weibrecht KW et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425(6960):841–846. https://doi.org/10.1038/nature02040

    Article  CAS  PubMed  Google Scholar 

  140. Butler JM, Nolan DJ, Vertes EL et al (2010) Endothelial cells are essential for the self-renewal and repopulation of notch-dependent hematopoietic stem cells. Cell Stem Cell 6(3):251–264. https://doi.org/10.1016/j.stem.2010.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Karanu FN, Murdoch B, Gallacher L et al (2000) The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. J Exp Med 192(9):1365–1372. https://doi.org/10.1084/jem.192.9.1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mancini SJ, Mantei N, Dumortier A et al (2005) Jagged1-dependent notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation. Blood 105(6):2340–2342. https://doi.org/10.1182/blood-2004-08-3207

    Article  CAS  PubMed  Google Scholar 

  143. Gerhardt DM, Pajcini KV, D’Altri T et al (2014) The Notch1 transcriptional activation domain is required for development and reveals a novel role for Notch1 signaling in fetal hematopoietic stem cells. Genes Dev 28(6):576–593. https://doi.org/10.1101/gad.227496.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Delaney C, Heimfeld S, Brashem-Stein C et al (2010) Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med 16(2):232–236. https://doi.org/10.1038/nm.2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tian DM, Liang YM, Zhang YQ (2016) Endothelium-targeted human Delta-like 1 enhances the regeneration and homing of human cord blood stem and progenitor cells. J Transl Med 14:5. https://doi.org/10.1186/s12967-015-0761-0

    Article  PubMed  PubMed Central  Google Scholar 

  146. Wang W, Zhang Y, Dettinger P et al (2021) Cytokine combinations for human blood stem cell expansion induce cell-type- and cytokine-specific signaling dynamics. Blood 138(10):847–857. https://doi.org/10.1182/blood.2020008386

    Article  CAS  PubMed  Google Scholar 

  147. Wang L, Guan X, Wang H et al (2017) A small-molecule/cytokine combination enhances hematopoietic stem cell proliferation via inhibition of cell differentiation. Stem Cell Res Ther 8(1):169. https://doi.org/10.1186/s13287-017-0625-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Knapp DJ, Hammond CA, Miller PH et al (2017) Dissociation of Survival, Proliferation, and State Control in Human hematopoietic stem cells. Stem Cell Rep 8(1):152–162. https://doi.org/10.1016/j.stemcr.2016.12.003

    Article  Google Scholar 

  149. Heike T, Nakahata T (2002) Ex vivo expansion of hematopoietic stem cells by cytokines. Biochim Biophys Acta 1592(3):313–321. https://doi.org/10.1016/s0167-4889(02)00324-5

    Article  CAS  PubMed  Google Scholar 

  150. Suzuki T, Yokoyama Y, Kumano K et al (2006) Highly efficient ex vivo expansion of human hematopoietic stem cells using Delta1-Fc chimeric protein. Stem Cells 24(11):2456–2465. https://doi.org/10.1634/stemcells.2006-0258

    Article  CAS  PubMed  Google Scholar 

  151. Ueda T, Tsuji K, Yoshino H et al (2000) Expansion of human NOD/SCID-repopulating cells by stem cell factor, Flk2/Flt3 ligand, thrombopoietin, IL-6, and soluble IL-6 receptor. J Clin Invest 105(7):1013–1021. https://doi.org/10.1172/JCI8583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yonemura Y, Ku H, Hirayama F et al (1996) Interleukin 3 or interleukin 1 abrogates the reconstituting ability of hematopoietic stem cells. Proc Natl Acad Sci U S A 93(9):4040–4044. https://doi.org/10.1073/pnas.93.9.4040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Tajer P, Cante-Barrett K, Naber BAE et al (2022) IL3 has a detrimental effect on hematopoietic stem cell Self-Renewal in Transplantation settings. Int J Mol Sci 23(21). https://doi.org/10.3390/ijms232112736

  154. Boitano AE, Wang J, Romeo R et al (2010) Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 329(5997):1345–1348. https://doi.org/10.1126/science.1191536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Chen Y, Dong Y, Lu X et al (2022) Inhibition of aryl hydrocarbon receptor signaling promotes the terminal differentiation of human erythroblasts. J Mol Cell Biol 14(2). https://doi.org/10.1093/jmcb/mjac001

  156. Zhu X, Sun Q, Tan WS et al (2021) Reducing TGF-beta1 cooperated with StemRegenin 1 promoted the expansion ex vivo of cord blood CD34(+) cells by inhibiting AhR signalling. Cell Prolif 54(3):e12999. https://doi.org/10.1111/cpr.12999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Strassel C, Brouard N, Mallo L et al (2016) Aryl hydrocarbon receptor-dependent enrichment of a megakaryocytic precursor with a high potential to produce proplatelets. Blood 127(18):2231–2240. https://doi.org/10.1182/blood-2015-09-670208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Vaughan KL, Franchini AM, Kern HG et al (2021) The Aryl hydrocarbon receptor modulates murine hematopoietic stem cell homeostasis and influences lineage-biased stem and progenitor cells. Stem Cells Dev 30(19):970–980. https://doi.org/10.1089/scd.2021.0096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wagner JE Jr., Brunstein CG, Boitano AE et al (2016) Phase I/II trial of StemRegenin-1 expanded umbilical cord blood hematopoietic stem cells supports testing as a stand-alone graft. Cell Stem Cell 18(1):144–155. https://doi.org/10.1016/j.stem.2015.10.004

    Article  CAS  PubMed  Google Scholar 

  160. Subramaniam A, Zemaitis K, Talkhoncheh MS et al (2020) Lysine-specific demethylase 1A restricts ex vivo propagation of human HSCs and is a target of UM171. Blood 136(19):2151–2161. https://doi.org/10.1182/blood.2020005827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Chagraoui J, Lehnertz B, Girard S et al (2019) UM171 induces a homeostatic inflammatory-detoxification response supporting human HSC self-renewal. PLoS ONE 14(11):e0224900. https://doi.org/10.1371/journal.pone.0224900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ngom M, Imren S, Maetzig T et al (2018) UM171 enhances lentiviral gene transfer and recovery of primitive human hematopoietic cells. Mol Ther Methods Clin Dev 10:156–164. https://doi.org/10.1016/j.omtm.2018.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Hu A, Gao J, Varier KM et al (2022) UM171 cooperates with PIM1 inhibitors to restrict HSC expansion markers and suppress leukemia progression. Cell Death Discov 8(1):448. https://doi.org/10.1038/s41420-022-01244-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Peled T, Shoham H, Aschengrau D et al (2012) Nicotinamide, a SIRT1 inhibitor, inhibits differentiation and facilitates expansion of hematopoietic progenitor cells with enhanced bone marrow homing and engraftment. Exp Hematol 40(4):342–355. https://doi.org/10.1016/j.exphem.2011.12.005. e1

    Article  CAS  PubMed  Google Scholar 

  165. Islam P, Horwitz ME (2019) Small-molecule nicotinamide for ex vivo expansion of umbilical cord blood. Exp Hematol 80:11–15. https://doi.org/10.1016/j.exphem.2019.11.006

    Article  CAS  PubMed  Google Scholar 

  166. Parikh S, Brochstein JA, Galamidi E et al (2021) Allogeneic stem cell transplantation with omidubicel in sickle cell disease. Blood Adv 5(3):843–852. https://doi.org/10.1182/bloodadvances.2020003248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Szabolcs P, Mazor RD, Yackoubov D et al (2023) Immune Reconstitution Profiling Suggests Antiviral Protection after Transplantation with Omidubicel: A Phase 3 Substudy. Transplant Cell Ther 29(8):517 e1-517 e12. https://doi.org/10.1016/j.jtct.2023.04.018

  168. Horwitz ME, Chao NJ, Rizzieri DA et al (2014) Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment. J Clin Invest 124(7):3121–3128. https://doi.org/10.1172/JCI74556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Horwitz ME, Wease S, Blackwell B et al (2019) Phase I/II study of stem-cell transplantation using a single cord blood unit expanded Ex vivo with nicotinamide. J Clin Oncol 37(5):367–374. https://doi.org/10.1200/JCO.18.00053

    Article  CAS  PubMed  Google Scholar 

  170. Heo YA (2023) Omidubicel: first approval. Mol Diagn Ther 27(5):637–642. https://doi.org/10.1007/s40291-023-00662-1

    Article  CAS  PubMed  Google Scholar 

  171. Percival SS, Layden-Patrice M (1992) HL-60 cells can be made copper deficient by incubating with tetraethylenepentamine. J Nutr 122(12):2424–2429. https://doi.org/10.1093/jn/122.12.2424

    Article  CAS  PubMed  Google Scholar 

  172. Peled T, Landau E, Prus E et al (2002) Cellular copper content modulates differentiation and self-renewal in cultures of cord blood-derived CD34 + cells. Br J Haematol 116(3):655–661. https://doi.org/10.1046/j.0007-1048.2001.03316.x

    Article  CAS  PubMed  Google Scholar 

  173. Peled T, Mandel J, Goudsmid RN et al (2004) Pre-clinical development of cord blood-derived progenitor cell graft expanded ex vivo with cytokines and the polyamine copper chelator tetraethylenepentamine. Cytotherapy 6(4):344–355. https://doi.org/10.1080/14653240410004916

    Article  CAS  PubMed  Google Scholar 

  174. de Lima M, McMannis J, Gee A et al (2008) Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: a phase I/II clinical trial. Bone Marrow Transpl 41(9):771–778. https://doi.org/10.1038/sj.bmt.1705979

    Article  CAS  Google Scholar 

  175. Stiff PJ, Montesinos P, Peled T et al (2018) Cohort-controlled comparison of umbilical cord blood transplantation using Carlecortemcel-L, a single progenitor-enriched cord blood, to double cord blood unit transplantation. Biol Blood Marrow Transpl 24(7):1463–1470. https://doi.org/10.1016/j.bbmt.2018.02.012

    Article  CAS  Google Scholar 

  176. Friedenstein AJ, Petrakova KV, Kurolesova AI et al (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6(2):230–247

    Article  CAS  PubMed  Google Scholar 

  177. Mendes SC, Robin C, Dzierzak E (2005) Mesenchymal progenitor cells localize within hematopoietic sites throughout ontogeny. Development 132(5):1127–1136. https://doi.org/10.1242/dev.01615

    Article  CAS  PubMed  Google Scholar 

  178. Mendez-Ferrer S, Michurina TV, Ferraro F et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834. https://doi.org/10.1038/nature09262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Le Blanc K, Mougiakakos D (2012) Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol 12(5):383–396. https://doi.org/10.1038/nri3209

    Article  CAS  PubMed  Google Scholar 

  180. van de Peppel J, Schaaf GJ, Matos AA et al (2021) Cell surface glycoprotein CD24 Marks Bone Marrow-Derived Human mesenchymal Stem/Stromal cells with reduced proliferative and differentiation capacity in Vitro. Stem Cells Dev 30(6):325–336. https://doi.org/10.1089/scd.2021.0027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110(10):3499–3506. https://doi.org/10.1182/blood-2007-02-069716

    Article  CAS  PubMed  Google Scholar 

  182. Koc ON, Gerson SL, Cooper BW et al (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18(2):307–316. https://doi.org/10.1200/JCO.2000.18.2.307

    Article  CAS  PubMed  Google Scholar 

  183. Lazarus HM, Koc ON, Devine SM et al (2005) Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transpl 11(5):389–398. https://doi.org/10.1016/j.bbmt.2005.02.001

    Article  Google Scholar 

  184. Macmillan ML, Blazar BR, DeFor TE et al (2009) Transplantation of ex-vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I-II clinical trial. Bone Marrow Transpl 43(6):447–454. https://doi.org/10.1038/bmt.2008.348

    Article  CAS  Google Scholar 

  185. Bernardo ME, Fibbe WE (2015) Mesenchymal stromal cells and hematopoietic stem cell transplantation. Immunol Lett 168(2):215–221. https://doi.org/10.1016/j.imlet.2015.06.013

    Article  CAS  PubMed  Google Scholar 

  186. Cabanillas Stanchi KM, Bohringer J, Strolin M et al (2022) Hematopoietic stem cell transplantation with mesenchymal stromal cells in children with Metachromatic Leukodystrophy. Stem Cells Dev 31(7–8):163–175. https://doi.org/10.1089/scd.2021.0352

    Article  CAS  PubMed  Google Scholar 

  187. Robinson SN, Ng J, Niu T et al (2006) Superior ex vivo cord blood expansion following co-culture with bone marrow-derived mesenchymal stem cells. Bone Marrow Transpl 37(4):359–366. https://doi.org/10.1038/sj.bmt.1705258

    Article  CAS  Google Scholar 

  188. de Lima M, McNiece I, Robinson SN et al (2012) Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N Engl J Med 367(24):2305–2315. https://doi.org/10.1056/NEJMoa1207285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Gattazzo F, Urciuolo A, Bonaldo P (2014) Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta 1840(8):2506–2519. https://doi.org/10.1016/j.bbagen.2014.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Nilsson SK, Debatis ME, Dooner MS et al (1998) Immunofluorescence characterization of key extracellular matrix proteins in murine bone marrow in situ. J Histochem Cytochem 46(3):371–377. https://doi.org/10.1177/002215549804600311

    Article  CAS  PubMed  Google Scholar 

  191. Ferreira MS, Jahnen-Dechent W, Labude N et al (2012) Cord blood-hematopoietic stem cell expansion in 3D fibrin scaffolds with stromal support. Biomaterials 33(29):6987–6997. https://doi.org/10.1016/j.biomaterials.2012.06.029

    Article  CAS  PubMed  Google Scholar 

  192. Feng Q, Chai C, Jiang XS et al (2006) Expansion of engrafting human hematopoietic stem/progenitor cells in three-dimensional scaffolds with surface-immobilized fibronectin. J Biomed Mater Res A 78(4):781–791. https://doi.org/10.1002/jbm.a.30829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Leisten I, Kramann R, Ventura Ferreira MS et al (2012) 3D co-culture of hematopoietic stem and progenitor cells and mesenchymal stem cells in collagen scaffolds as a model of the hematopoietic niche. Biomaterials 33(6):1736–1747. https://doi.org/10.1016/j.biomaterials.2011.11.034

    Article  CAS  PubMed  Google Scholar 

  194. Sieber S, Wirth L, Cavak N et al (2018) Bone marrow-on-a-chip: long-term culture of human haematopoietic stem cells in a three-dimensional microfluidic environment. J Tissue Eng Regen Med 12(2):479–489. https://doi.org/10.1002/term.2507

    Article  CAS  PubMed  Google Scholar 

  195. Lee-Thedieck C, Schertl P, Klein G (2022) The extracellular matrix of hematopoietic stem cell niches. Adv Drug Deliv Rev 181:114069. https://doi.org/10.1016/j.addr.2021.114069

    Article  CAS  PubMed  Google Scholar 

  196. Bruschi M, Vanzolini T, Sahu N et al (2022) Functionalized 3D scaffolds for engineering the hematopoietic niche. Front Bioeng Biotechnol 10:968086. https://doi.org/10.3389/fbioe.2022.968086

    Article  PubMed  PubMed Central  Google Scholar 

  197. Sjostedt S, Rooth G, Caligara F (1960) The Oxygen Tension of the blood in the umbilical cord and the Intervillous Space. Arch Dis Child 35(184):529–533. https://doi.org/10.1136/adc.35.184.529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Mantel CR, O’Leary HA, Chitteti BR et al (2015) Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell 161(7):1553–1565. https://doi.org/10.1016/j.cell.2015.04.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Miyamoto K, Araki KY, Naka K et al (2007) Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1(1):101–112. https://doi.org/10.1016/j.stem.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  200. Ito K, Hirao A, Arai F et al (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12(4):446–451. https://doi.org/10.1038/nm1388

    Article  CAS  PubMed  Google Scholar 

  201. Eliasson P, Rehn M, Hammar P et al (2010) Hypoxia mediates low cell-cycle activity and increases the proportion of long-term-reconstituting hematopoietic stem cells during in vitro culture. Exp Hematol 38(4):301–310e2. https://doi.org/10.1016/j.exphem.2010.01.005

    Article  CAS  PubMed  Google Scholar 

  202. Bradley TR, Hodgson GS, Rosendaal M (1978) The effect of oxygen tension on haemopoietic and fibroblast cell proliferation in vitro. J Cell Physiol 97(3 Pt 2 Suppl 1):517 – 22. https://doi.org/10.1002/jcp.1040970327

  203. Wilkinson AC, Igarashi KJ, Nakauchi H (2020) Haematopoietic stem cell self-renewal in vivo and ex vivo. Nat Rev Genet 21(9):541–554. https://doi.org/10.1038/s41576-020-0241-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Yamamoto R, Wilkinson AC, Nakauchi H (2020) In vivo and ex vivo haematopoietic stem cell expansion. Curr Opin Hematol 27(4):273–278. https://doi.org/10.1097/MOH.0000000000000593

    Article  PubMed  PubMed Central  Google Scholar 

  205. Yu Z, Yang W, He X et al (2022) Endothelial cell-derived angiopoietin-like protein 2 supports hematopoietic stem cell activities in bone marrow niches. Blood 139(10):1529–1540. https://doi.org/10.1182/blood.2021011644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Walasek MA, van Os R, de Haan G (2012) Hematopoietic stem cell expansion: challenges and opportunities. Ann N Y Acad Sci. https://doi.org/10.1111/j.1749-6632.2012.06549.x. 1266(138 – 50

    Article  PubMed  Google Scholar 

  207. Zarrabi M, Afzal E, Ebrahimi M (2018) Manipulation of hematopoietic stem cell fate by small molecule compounds. Stem Cells Dev 27(17):1175–1190. https://doi.org/10.1089/scd.2018.0091

    Article  PubMed  Google Scholar 

  208. Zimran E, Papa L, Hoffman R (2021) Ex vivo expansion of hematopoietic stem cells: finally transitioning from the lab to the clinic. Blood Rev 50:100853. https://doi.org/10.1016/j.blre.2021.100853

    Article  CAS  PubMed  Google Scholar 

  209. Horwitz ME, Stiff PJ, Cutler C et al (2021) Omidubicel vs standard myeloablative umbilical cord blood transplantation: results of a phase 3 randomized study. Blood 138(16):1429–1440. https://doi.org/10.1182/blood.2021011719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Giri AK, Ianevski A (2022) High-throughput screening for drug discovery targeting the cancer cell-microenvironment interactions in hematological cancers. Expert Opin Drug Discov 17(2):181–190. https://doi.org/10.1080/17460441.2022.1991306

    Article  CAS  PubMed  Google Scholar 

  211. Muhsen IN, ElHassan T, Hashmi SK (2018) Artificial Intelligence approaches in hematopoietic cell transplantation: a review of the current status and future directions. Turk J Haematol 35(3):152–157. https://doi.org/10.4274/tjh.2018.0123

    Article  PubMed  PubMed Central  Google Scholar 

  212. Wilkinson AC, Ishida R, Nakauchi H et al (2020) Long-term ex vivo expansion of mouse hematopoietic stem cells. Nat Protoc 15(2):628–648. https://doi.org/10.1038/s41596-019-0263-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Congrains A, Bianco J, Rosa RG et al (2021) 3D scaffolds to Model the hematopoietic stem cell niche: applications and perspectives. Mater (Basel) 14(3). https://doi.org/10.3390/ma14030569

Download references

Funding

This study was supported by the Central Guidance for Local Science and Technology Development Projects in Shanxi Province (No. YDZJSX2021B009), the Key Project of Science and Technology of Shanxi Province (No. 2021XM07), and the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (No. 20210029).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by J.D. and Y.T. Z.X. and H.W. edited the manuscript. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hongwei Wang.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors do not have any competing financial interest in relation with the work described.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, J., Tan, Y., Xu, Z. et al. Advances in hematopoietic stem cells ex vivo expansion associated with bone marrow niche. Ann Hematol (2024). https://doi.org/10.1007/s00277-024-05773-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00277-024-05773-1

Keywords

Navigation