Skip to main content

Advertisement

Log in

Mendelian randomization of circulating proteome identifies IFN-γ as a druggable target in aplastic anemia

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Background

Aplastic anemia (AA) is a kind of bone marrow failure (BMF) characterized by pancytopenia with hypoplasia/aplasia of bone marrow. Immunosuppressive therapy and bone marrow transplantation are effective methods to treat severe aplastic anemia. However, the efficacy is limited by complications and the availability of suitable donors. This study aimed to determine whether any circulating druggable protein levels may have causal effects on AA and provide potential novel drug targets for AA.

Methods

Genetic variants strongly associated with circulating druggable protein levels to perform Mendelian randomization (MR) analyses were used. The effect of these druggable protein levels on AA risk was measured using the summary statistics from a large-scale proteomic genome-wide association study (GWAS) and FinnGen database (https://www.finngen.fi/en/access_results). Multivariable MR analyses were performed to statistically adjust for potential confounders, including platelet counts, reticulocyte counts, neutrophil counts, and proportions of hematopoietic stem cells.

Results

The data showed that higher level of circulating IFN-γ levels was causally associated with AA susceptibility. The causal effects of circulating IFN-γ levels on the AA were broadly consistent, when adjusted for platelet counts, reticulocyte counts, neutrophil counts and proportions of hematopoietic stem cells.

Conclusions

High levels of circulating IFN-γ levels might increase the risk of AA and might provide a potential novel target for AA.

Highlights

Genetic variants associated with circulating proteome to perform Mendelian randomization analyses in aplastic anemia.

A higher level of circulating IFN-γ levels was causally associated with AA susceptibility.

Mendelian randomization of circulating proteome provided large-scale epidemiological evidence and a potential drug target for AA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. Young NS (2018) Aplastic Anemia. N Engl J Med 379(17):1643–1656. https://doi.org/10.1056/NEJMra1413485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Akram Z, Ahmed P, Kajigaya S, Satti TM, Satti HS, Chaudhary QUN, Gutierrez-Rodrigues F, Ibanez PF, Feng X, Mahmood SK, Ghafoor T, Shahbaz N, Khan MA, Sultan A (2019) Epidemiological, clinical and genetic characterization of aplastic anemia patients in Pakistan. Ann Hematol 98(2):301–312. https://doi.org/10.1007/s00277-018-3542-z

    Article  CAS  PubMed  Google Scholar 

  3. Giudice V, Cardamone C, Triggiani M, Selleri C (2021) Bone marrow failure syndromes, overlapping diseases with a common cytokine signature. Int J Mol Sci 22(2):705. https://doi.org/10.3390/ijms22020705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Frickhofen N, Kaltwasser JP, Schrezenmeier H, Raghavachar A, Vogt HG, Herrmann F, Freund M, Meusers P, Salama A, Heimpel H (1991) Treatment of aplastic anemia with antilymphocyte globulin and methylprednisolone with or without cyclosporine. The German aplastic Anemia Study Group. N Engl J Med 324(19):1297–1304. https://doi.org/10.1056/nejm199105093241901

    Article  CAS  PubMed  Google Scholar 

  5. Rosenfeld SJ, Kimball J, Vining D, Young NS (1995) Intensive immunosuppression with antithymocyte globulin and cyclosporine as treatment for severe acquired aplastic anemia. Blood 85(11):3058–3065

    Article  CAS  PubMed  Google Scholar 

  6. Dao AT, Yamazaki H, Takamatsu H, Sugimori C, Katagiri T, Maruyama H, Zaimoku Y, Maruyama K, Ly TQ, Espinoza L, Nakao S (2016) Cyclosporine restores hematopoietic function by compensating for decreased Tregs in patients with pure red cell aplasia and acquired aplastic anemia. Ann Hematol 95(5):771–781. https://doi.org/10.1007/s00277-016-2629-7

    Article  CAS  PubMed  Google Scholar 

  7. Rosenfeld S, Follmann D, Nunez O, Young NS (2003) Antithymocyte globulin and cyclosporine for severe aplastic anemia: association between hematologic response and long-term outcome. JAMA 289(9):1130–1135. https://doi.org/10.1001/jama.289.9.1130

    Article  CAS  PubMed  Google Scholar 

  8. Socié G, Rosenfeld S, Frickhofen N, Gluckman E, Tichelli A (2000) Late clonal diseases of treated aplastic anemia. Semin Hematol 37(1):91–101

    Article  PubMed  Google Scholar 

  9. Scheinberg P, Nunez O, Weinstein B, Scheinberg P, Biancotto A, Wu CO, Young NS (2011) Horse versus rabbit antithymocyte globulin in acquired aplastic anemia. N Engl J Med 365(5):430–438. https://doi.org/10.1056/NEJMoa1103975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kojima S, Hibi S, Kosaka Y, Yamamoto M, Tsuchida M, Mugishima H, Sugita K, Yabe H, Ohara A, Tsukimoto I (2000) Immunosuppressive therapy using antithymocyte globulin, cyclosporine, and danazol with or without human granulocyte colony-stimulating factor in children with acquired aplastic anemia. Blood 96(6):2049–2054

    Article  CAS  PubMed  Google Scholar 

  11. Scheinberg P, Nunez O, Weinstein B, Scheinberg P, Wu CO, Young NS (2012) Activity of alemtuzumab monotherapy in treatment-naive, relapsed, and refractory severe acquired aplastic anemia. Blood 119(2):345–354. https://doi.org/10.1182/blood-2011-05-352328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Scheinberg P, Nunez O, Wu C, Young NS (2006) Treatment of severe aplastic anaemia with combined immunosuppression: anti-thymocyte globulin, ciclosporin and mycophenolate mofetil. Br J Haematol 133(6):606–611. https://doi.org/10.1111/j.1365-2141.2006.06085.x

    Article  CAS  PubMed  Google Scholar 

  13. Scheinberg P, Wu CO, Nunez O, Scheinberg P, Boss C, Sloand EM, Young NS (2009) Treatment of severe aplastic anemia with a combination of horse antithymocyte globulin and cyclosporine, with or without sirolimus: a prospective randomized study. Haematologica 94(3):348–354. https://doi.org/10.3324/haematol.13829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kurita N, Nishikii H, Maruyama Y, Suehara Y, Hattori K, Sakamoto T, Kato T, Yokoyama Y, Obara N, Maruo K, Ohigashi T, Yamaguchi H, Iwamoto T, Minohara H, Matsuoka R, Hashimoto K, Sakata-Yanagimoto M, Chiba S (2023) Safety of romiplostim administered immediately after cord-blood transplantation: a phase 1 trial. Ann Hematol. https://doi.org/10.1007/s00277-023-05410-3

    Article  PubMed  Google Scholar 

  15. Lawlor DA, Harbord RM, Sterne JAC, Timpson N, Davey Smith G (2008) Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 27(8):1133–1163. https://doi.org/10.1002/sim.3034

    Article  PubMed  Google Scholar 

  16. Didelez V, Sheehan N (2007) Mendelian randomization as an instrumental variable approach to causal inference. Stat Methods Med Res 16(4):309–330. https://doi.org/10.1177/0962280206077743

    Article  PubMed  Google Scholar 

  17. Katan MB (1986) Apolipoprotein E isoforms, serum cholesterol, and cancer. Lancet 1(8479):507–508. https://doi.org/10.1016/s0140-6736(86)92972-7

    Article  CAS  PubMed  Google Scholar 

  18. Sekula P, Del Greco MF, Pattaro C, Köttgen A (2016) Mendelian randomization as an Approach to assess causality using Observational Data. J Am Soc Nephrol 27(11):3253–3265. https://doi.org/10.1681/asn.2016010098

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schmidt AF, Finan C, Gordillo-Marañón M, Asselbergs FW, Freitag DF, Patel RS, Tyl B, Chopade S, Faraway R, Zwierzyna M, Hingorani AD (2020) Genetic drug target validation using mendelian randomisation. Nat Commun 11(1):3255. https://doi.org/10.1038/s41467-020-16969-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, Burgess S, Jiang T, Paige E, Surendran P, Oliver-Williams C, Kamat MA, Prins BP, Wilcox SK, Zimmerman ES, Chi A, Bansal N, Spain SL, Wood AM, Morrell NW, Bradley JR, Janjic N, Roberts DJ, Ouwehand WH, Todd JA, Soranzo N, Suhre K, Paul DS, Fox CS, Plenge RM, Danesh J, Runz H, Butterworth AS (2018) Genomic atlas of the human plasma proteome. Nature 558(7708):73–79. https://doi.org/10.1038/s41586-018-0175-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Finan C, Gaulton A, Kruger FA, Lumbers RT, Shah T, Engmann J, Galver L, Kelley R, Karlsson A, Santos R, Overington JP, Hingorani AD, Casas JP (2017) The druggable genome and support for target identification and validation in drug development. Sci Transl Med 9(383). https://doi.org/10.1126/scitranslmed.aag1166

  22. Astle WJ, Elding H, Jiang T, Allen D, Ruklisa D, Mann AL, Mead D, Bouman H, Riveros-Mckay F, Kostadima MA, Lambourne JJ, Sivapalaratnam S, Downes K, Kundu K, Bomba L, Berentsen K, Bradley JR, Daugherty LC, Delaneau O, Freson K, Garner SF, Grassi L, Guerrero J, Haimel M, Janssen-Megens EM, Kaan A, Kamat M, Kim B, Mandoli A, Marchini J, Martens JHA, Meacham S, Megy K, O’Connell J, Petersen R, Sharifi N, Sheard SM, Staley JR, Tuna S, van der Ent M, Walter K, Wang SY, Wheeler E, Wilder SP, Iotchkova V, Moore C, Sambrook J, Stunnenberg HG, Di Angelantonio E, Kaptoge S, Kuijpers TW, Carrillo-de-Santa-Pau E, Juan D, Rico D, Valencia A, Chen L, Ge B, Vasquez L, Kwan T, Garrido-Martín D, Watt S, Yang Y, Guigo R, Beck S, Paul DS, Pastinen T, Bujold D, Bourque G, Frontini M, Danesh J, Roberts DJ, Ouwehand WH, Butterworth AS, Soranzo N (2016) The allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease. Cell 167(5):1415–1429e1419. https://doi.org/10.1016/j.cell.2016.10.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Orrù V, Steri M, Sidore C, Marongiu M, Serra V, Olla S, Sole G, Lai S, Dei M, Mulas A, Virdis F, Piras MG, Lobina M, Marongiu M, Pitzalis M, Deidda F, Loizedda A, Onano S, Zoledziewska M, Sawcer S, Devoto M, Gorospe M, Abecasis GR, Floris M, Pala M, Schlessinger D, Fiorillo E, Cucca F (2020) Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. Nat Genet 52(10):1036–1045. https://doi.org/10.1038/s41588-020-0684-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Võsa U, Mujagic Z, Masclee AAM, Jonkers D, Oosting M, Joosten LAB, Netea MG, Franke L, Zhernakova A, Fu J, Wijmenga C, McCarthy MI (2019) Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet 51(4):600–605. https://doi.org/10.1038/s41588-019-0350-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Choi KW, Chen CY, Stein MB, Klimentidis YC, Wang MJ, Koenen KC, Smoller JW (2019) Assessment of Bidirectional relationships between physical activity and depression among adults: a 2-Sample mendelian randomization study. JAMA Psychiatry 76(4):399–408. https://doi.org/10.1001/jamapsychiatry.2018.4175

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yang J, He X, Qian L, Zhao B, Fan Y, Gao F, Yan B, Zhu F, Ma X (2022) Association between plasma proteome and childhood neurodevelopmental disorders: a two-sample mendelian randomization analysis. EBioMedicine 78:103948. https://doi.org/10.1016/j.ebiom.2022.103948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brion MJ, Shakhbazov K, Visscher PM (2013) Calculating statistical power in mendelian randomization studies. Int J Epidemiol 42(5):1497–1501. https://doi.org/10.1093/ije/dyt179

    Article  PubMed  Google Scholar 

  28. Burgess S, Butterworth A, Thompson SG (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 37(7):658–665. https://doi.org/10.1002/gepi.21758

    Article  PubMed  PubMed Central  Google Scholar 

  29. Burgess S, Thompson SG (2011) Avoiding bias from weak instruments in mendelian randomization studies. Int J Epidemiol 40(3):755–764. https://doi.org/10.1093/ije/dyr036

    Article  PubMed  Google Scholar 

  30. Papadimitriou N, Dimou N, Tsilidis KK, Banbury B, Martin RM, Lewis SJ, Kazmi N, Robinson TM, Albanes D, Aleksandrova K, Berndt SI, Timothy Bishop D, Brenner H, Buchanan DD, Bueno-de-Mesquita B, Campbell PT, Castellví-Bel S, Chan AT, Chang-Claude J, Ellingjord-Dale M, Figueiredo JC, Gallinger SJ, Giles GG, Giovannucci E, Gruber SB, Gsur A, Hampe J, Hampel H, Harlid S, Harrison TA, Hoffmeister M, Hopper JL, Hsu L, María Huerta J, Huyghe JR, Jenkins MA, Keku TO, Kühn T, La Vecchia C, Le Marchand L, Li CI, Li L, Lindblom A, Lindor NM, Lynch B, Markowitz SD, Masala G, May AM, Milne R, Monninkhof E, Moreno L, Moreno V, Newcomb PA, Offit K, Perduca V, Pharoah PDP, Platz EA, Potter JD, Rennert G, Riboli E, Sánchez M-J, Schmit SL, Schoen RE, Severi G, Sieri S, Slattery ML, Song M, Tangen CM, Thibodeau SN, Travis RC, Trichopoulou A, Ulrich CM, van Duijnhoven FJB, Van Guelpen B, Vodicka P, White E, Wolk A, Woods MO, Wu AH, Peters U, Gunter MJ, Murphy N (2020) Physical activity and risks of breast and colorectal cancer: a mendelian randomisation analysis. Nat Commun 11(1):597–597. https://doi.org/10.1038/s41467-020-14389-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ahola-Olli AV, Würtz P, Havulinna AS, Aalto K, Pitkänen N, Lehtimäki T, Kähönen M, Lyytikäinen LP, Raitoharju E, Seppälä I, Sarin AP, Ripatti S, Palotie A, Perola M, Viikari JS, Jalkanen S, Maksimow M, Salomaa V, Salmi M, Kettunen J, Raitakari OT (2017) Genome-wide Association Study identifies 27 loci influencing concentrations of circulating cytokines and growth factors. Am J Hum Genet 100(1):40–50. https://doi.org/10.1016/j.ajhg.2016.11.007

    Article  CAS  PubMed  Google Scholar 

  32. Bowden J, Davey Smith G, Haycock PC, Burgess S (2016) Consistent estimation in mendelian randomization with some Invalid instruments using a weighted median estimator. Genet Epidemiol 40(4):304–314. https://doi.org/10.1002/gepi.21965

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44(2):512–525. https://doi.org/10.1093/ije/dyv080

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan N, Thompson J (2017) A framework for the investigation of pleiotropy in two-sample summary data mendelian randomization. Stat Med 36(11):1783–1802. https://doi.org/10.1002/sim.7221

    Article  PubMed  PubMed Central  Google Scholar 

  35. Verbanck M, Chen CY, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and diseases. Nat Genet 50(5):693–698. https://doi.org/10.1038/s41588-018-0099-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, Laurin C, Burgess S, Bowden J, Langdon R, Tan VY, Yarmolinsky J, Shihab HA, Timpson NJ, Evans DM, Relton C, Martin RM, Davey Smith G, Gaunt TR, Haycock PC (2018) The MR-Base platform supports systematic causal inference across the human phenome. Elife 7. https://doi.org/10.7554/eLife.34408

  37. Zoumbos NC, Gascon P, Djeu JY, Young NS (1985) Interferon is a mediator of hematopoietic suppression in aplastic anemia in vitro and possibly in vivo. Proc Natl Acad Sci U S A 82(1):188–192. https://doi.org/10.1073/pnas.82.1.188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zoumbos NC, Gascón P, Djeu JY, Trost SR, Young NS (1985) Circulating activated suppressor T lymphocytes in aplastic anemia. N Engl J Med 312(5):257–265. https://doi.org/10.1056/nejm198501313120501

    Article  CAS  PubMed  Google Scholar 

  39. Selleri C, Sato T, Anderson S, Young NS, Maciejewski JP (1995) Interferon-gamma and tumor necrosis factor-alpha suppress both early and late stages of hematopoiesis and induce programmed cell death. J Cell Physiol 165(3):538–546. https://doi.org/10.1002/jcp.1041650312

    Article  CAS  PubMed  Google Scholar 

  40. Sloand E, Kim S, Maciejewski JP, Tisdale J, Follmann D, Young NS (2002) Intracellular interferon-gamma in circulating and marrow T cells detected by flow cytometry and the response to immunosuppressive therapy in patients with aplastic anemia. Blood 100(4):1185–1191. https://doi.org/10.1182/blood-2002-01-0035

    Article  CAS  PubMed  Google Scholar 

  41. Maciejewski J, Selleri C, Anderson S, Young NS (1995) Fas antigen expression on CD34 + human marrow cells is induced by interferon gamma and tumor necrosis factor alpha and potentiates cytokine-mediated hematopoietic suppression in vitro. Blood 85(11):3183–3190

    Article  CAS  PubMed  Google Scholar 

  42. Luzzatto L, Risitano AM (2018) Advances in understanding the pathogenesis of acquired aplastic anaemia. Br J Haematol 182(6):758–776. https://doi.org/10.1111/bjh.15443

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was conducted at the Institute of Clinical Science of Zhongshan Hospital, Fudan University. The study was supported by the Medical Science Data Center of Shanghai Medical College of Fudan University. We sincerely thank all staff and participants for their important contributions.

Funding

This work was supported by grants from the National Natural Science Foundation of China (82370130, 81870098), Program of the Shanghai Academic/Technology Researcher leader (20XD1401000), and Shanghai Engineering Research Center of Tumor Multi-Target Gene Diagnosis (20DZ2254300), and Key Subject Construction Program of Shanghai Health Administrative Authority (ZK2019B30).

Author information

Authors and Affiliations

Authors

Contributions

Shanshan Qin, Yingxin Jiang, Yang Ou, Yanxia Zhan, and Yunfeng Cheng performed the literature review, drafted and revised the manuscript; Hao Chen, Tong Chen and Yunfeng Cheng contributed to the critical revision of the manuscript; Yanxia Zhan, Lili Ji, Xia Shao, Pengcheng Xu, Shanshan Qin, Hao Chen, and Yunfeng Cheng analyzed data. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Tong Chen or Yunfeng Cheng.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Ethics approval and consent to participate

Each study included was approved by their institutional ethics review committee, and all participants provided written informed consent.

Permission to reproduce material from other sources

N/A.

Clinical trial registration (including trial number)

N/A.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, S., Jiang, Y., Ou, Y. et al. Mendelian randomization of circulating proteome identifies IFN-γ as a druggable target in aplastic anemia. Ann Hematol (2024). https://doi.org/10.1007/s00277-024-05746-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00277-024-05746-4

Keywords

Navigation