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100 different chromosomal aberrations described in AML. 
A subset of chromosomal abnormalities, termed recurrent 
genetic abnormalities, directly influence AML pathogenesis 
and are thus closely related to distinctive clinical features 
and survival. While AML classification was initially based 
on bone marrow blast cytomorphology, the presence of spe-
cific genetic aberrations is increasingly replacing traditional 
cytomorphology criteria.

Currently, two different classification systems exist for 
AML. The 5th edition of the World Health Organization 
Classification of Hematolymphoid Tumours (5th WHO-
Hem) recognizes nine subtypes of AML defined by recur-
rent chromosomal abnormalities [1], and the International 
Consensus Classification (ICC) of myeloid malignancies 
recognizes 11 subtypes [2].

The ICC includes the subtype of AML with rare recur-
ring translocations, which encompasses 12 different trans-
locations that occur in less than 4% of patients with AML 
(Table 1). The data for these subtypes mainly come from 

Introduction

Acute myeloid leukemia (AML) is a heterogeneous con-
dition characterized by genetic alterations that disrupt the 
differentiation of hematopoiesis and cause the expansion 
of immature myeloid blast cells. Approximately 50% of 
patients show chromosomal aberrations, with more than 
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Abstract
Two different systems exist for subclassification of acute myeloid leukemia (AML); the World Health Organization (WHO) 
Classification and the International Consensus Classification (ICC) of myeloid malignancies. The two systems differ in 
their classification of AML defined by recurrent chromosomal abnormalities. One difference is that the ICC classification 
defines an AML subset that includes 12 different genetic abnormalities that occur in less than 4% of AML patients. These 
subtypes exhibit distinct clinical traits and are associated with treatment outcomes, but detailed description of these enti-
ties is not easily available and is not described in detail even in the ICC. We searched in the PubMed database to identify 
scientific publications describing AML patients with the recurrent chromosomal abnormalities/translocations included in 
this ICC defined patient subset. This patient subset includes AML with t(1;3)(p36.3;q21.3), t(3;5)(q25.3;q35.1), t(8;16)
(p11.2;p13.3), t(1;22)(p13.3;q13.1), t(5;11)(q35.2;p15.4), t(11;12)(p15.4;p13.3) (involving NUP98), translocation involv-
ing NUP98 and other partner, t(7;12)(q36.3;p13.2), t(10;11)(p12.3;q14.2), t(16;21)(p11.2;q22.2), inv(16)(p13.3q24.3) and 
t(16;21)(q24.3;q22.1). In this updated review we describe the available information with regard to frequency, biological 
functions of the involved genes and the fusion proteins, morphology/immunophenotype, required diagnostic procedures, 
clinical characteristics (including age distribution) and prognostic impact for each of these 12 genetic abnormalities.
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small case series or aggregated data from large multicenter 
trials. Although these AML subtypes exhibit distinct clini-
cal traits and are highly correlated with treatment outcomes, 
information on these entities is limited and often difficult to 
assess.

This review discusses the biological and clinical rel-
evance of the ICC subtypes of AML with rare reoccurring 
translocations. The review also includes the total number of 
the specific mutations reported in the Mitelman Database 
of Chromosome Aberration and Gene Fusions in Cancer 
(last updated on the 3rd of August 2023). The study aims 
to describe its clinical characteristics and responses to treat-
ment in order to provide a concise and easily available refer-
ence for clinicians.

Acute myeloid leukemias with translocations 
involving NUP98 encoded on chromosome 11q15

Cytogenetic features and biological characteristics

Currently, more than 40 different translocations involv-
ing NUP98 have been described. While all AMLs with 
NUP98 translocations are defined as a single entity in the 
5th edition of the WHO Classification, the ICC defines three 
different subtypes: (i) AML with NUP98:: NSD1 transloca-
tions, (ii) AML with NUP98::KMD5A translocations, and 
(iii) AML with NUP98 other translocation partners [1, 2]. 
While NUP98 translocations are seen in myelodysplastic 
syndrome (MDS), AML, blast-phase chronic myelogenous 
leukemia (CML), and t-ALL, NUP98 translocations are 
exceedingly rare in myeloproliferative disorders [3]. While 
some NUP98 translocations occur in multiple neoplasia, 
others are confined to specific hematological entities.

Table 1  The entities included in the international consensus classification
AML subtype Chromo-

some
location

Genes 
involved

Protein type/ function Age 
group

AML with
t(1;3)(p36.3;q21.3)

1p36.32 PRDM16 Zinc finger transcription factor and histone methyl-transferase activity.
3q21.3 RPN1 Ribophorin, an endoplasmic reticulum transmembrane protein.

AML with t(3;5)(q25.3;q35.1) 3q25.32 MLF1 Nucleocytoplasmic shuttling protein
5q35.1 NPM1 Nucleolar protein, interacts with a wide variety of nuclear pro-

tein, involved in transport of nuclear proteins and organization of 
centromere.

AML with t(8;16)(p11.2;p13.3) 8p11.21 KAT6A Histone acetyltransferase and transcriptional regulator activities
16p13.3 CREBBP Histone acetyltransferases

AML with t(1;22)(p13.3;q13.1) 1p13.3 RBM15 Split-end family of proteins, repressor signaling pathways. RNA bind-
ing properties

Pediatric

22q13.1 MKL1 Chromatin organization
AML with t(5;11)(q35.2;p15.4) 11p15.4 NUP98 Nuclear pore complexes (NPCs) regulate the transport of macromol-

ecules between the nucleus and cytoplasm
Pediatric

5q35.2 NSD1 Transcription coregulator protein
AML with t(11;12)(p15.4;p13.3) 11p15.4 NUP98 Nuclear pore complexes (NPCs) regulate the transport of macromol-

ecules between the nucleus and cytoplasm
Pediatric

12p13.33 KDM5A Chromatin-regulation through histone demethylation and transcrip-
tional repressor

AML with NUP98 and other 
partner

11p15.4 NUP98 Nuclear pore complexes (NPCs) regulate the transport of macromol-
ecules between the nucleus and cytoplasm

AML with t(7;12)(q36.3;p13.2) 7q36.3 MNX1 Transcription factor. Pediatric
12p13.2 ETV6 Transcription factor.

AML with t(10;11)(p12.3;q14.2) 10p12.31 MLLT10 Transcription factor and nuclear localization
11q14.2 PICALM Regulates signals between several pathways (clathrin, phosphoinosi-

tols, receptor-mediated endocytosis).
AML with t(16;21)(p11.2;q22.2) 16p11.2 FUS RNA-binding protein

21q22.2 ERG( Mitogenic signal transduction pathways and methylation regulation
AML with inv(16)(p13.3q24.3) 16p13.3 GLIS2 Transcription factor, repressor of the Hedgehog signaling and Wnt 

signaling pathway.
Pediatric

16q24.3 CBFA2T3 Transcriptional repressor
AML with t(16;21)(q24.3;q22.1) 16q24.3 CBFA2T3 Transcriptional repressor

21q22.12 RUNX1 Transcription factor
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The NUP98 codes for nucleoporin 98kD protein. Nucleo-
porin 98kD protein is a member of the nuclear membrane 
complex that regulates protein and mRNA traffic between 
the cytoplasm and the nucleus [4]. NUP98 is found diffusely 
throughout the nucleus and is located in specific clusters 
associated with other transcription factors and chroma-
tin-modifying proteins. All NUP98 translocation fusions 
are similar in that they involve the N-terminal portion of 
NUP98 and the C-terminal portion of the fusion partner [4, 
5]. NUP98 is a type II mutation that leads to the impair-
ment of hematopoietic stem cell differentiations through 
various mechanisms, including disruption of spindle forma-
tion, mitosis, aberrant DNA damage repair, and disruption 
of chromatin modulation [3, 4, 6]. A low mutational burden, 
gene expression profiles, and similar clinical characteristics 
indicate similar pathophysiological events in AML with 
NUP98 rearrangement [3, 4].

All NUP98 rearrangements detected in MDS are also 
seen in AML. Furthermore, the incidence of NUP98 rear-
rangements in the MDS population is extremely low, indi-
cating rapid progression to AML after the initial genetic 
event [7].

Clinical and molecular features

NUP98 rearrangements are typically cryptic and are associ-
ated with a normal karyotype [8]. The incidence of NUP98 
rearrangements in AML is 3–5% in pediatric AML and 
approximately 1.3% in adult AML (Table 2), but it is 16.1% 
in pediatric AML and 2.3% in adult AML with a normal 
karyotype. To some extent, the observed difference in inci-
dence in adult AML is explained by the practice of omitting 
NUP98 detection in adult AML.

Approximately 75% of NUP98-mutated AMLs have the 
NUP98::NSD1 translocations [9]. The median age is 10 
years for pediatric AML, with only a few cases reported in 
children younger than 2 years [5, 10–15]. Approximately 
25% of NUP98-rearranged AMLs is therapy related [16]. 
AMLs with NUP98-NSD1 typically show M4/M5 mor-
phology and a high leukocyte count [5, 7, 12, 15].

The karyotype in NUP98::NSD1 AML is usually normal. 
Other cytogenetic abnormalities occur in a small number 
of patients with trisomy 8; the deletion of chromosome 5 
and a complex karyotype are the most commonly observed 
concurrent cytogenetic aberrations [5, 7, 14, 17]. FLT3-ITD 
mutations happen in most patients, with a small number also 
having WT1 mutations [13]. Screening for NUP98::NSD1 
in adult patients with high leukocyte counts, normal karyo-
type AML, and FLT3-ITD mutations has been proposed.

While most other NUP98-mutated AMLs closely resem-
ble AML with NUP98::NSD1, AML with NUP98::KMD5A 

(previously termed NUP98::JAR1A), NUP98::RARG, and 
NUP98::RARA show distinct clinical features [15].

Clinical and molecular characteristics of AML 
NUP98::KDM5A are summarized in Table  3. AML with 
NUP98::KDM5A typically presents as acute megakaryo-
cytic leukemia (AMKL) (34%), at a significantly lower age 
(median: 3.2 years; range: 0 to 18) [16], with a lower white 
blood cell count, and has a very low frequency of WT1 and 
FLT3 mutations [12, 18, 19]. Structural chromosomal aber-
rations involving the RB1 gene are seen in more than half 
of patients [15].

NUP98::NSD1 is usually positive for CD34 and CD117 
and express the monocytic markers CD36 and CD64 in 
patients with concurrent FLT3-ITD. NUP98:KDM5A show 
a typical flowcytometric profile with CD34 negative blast 
cells and megakaryocytic maturation, partial expression of 
CD36 absence CD123 [15].

NUP98-RARG and NUP98-RARA have clinical pheno-
types of acute promyelocytic leukemia with similar bone 
marrow morphologies, coagulation abnormalities, and 
immunophenotypes [20, 21]. Patients with NUP98-RARG 
seem resistant to all-trans-retinoic acid and arsenic trioxide 
treatment [20]. In vitro studies indicate that NUP98-RARA 
is sensitive to ATRA. No clinical data exist on the use of 
ATRA or arsenic trioxide treatment prior to complete remis-
sion [21].

Response to chemotherapy and prognosis

NUP98::NSD translocation is associated with a poor prog-
nosis, primarily because of the high rates of induction failure. 
The reported remission rates vary between 30% and 50%, the 
relapse rates between 50% and 80%, and the long-term sur-
vival between 30% and 50%; there is a five times higher risk 
of death compared with other non-NUP98::NDS1-mutated 
AML [7, 22]. Concurrent FLT3-ITD and WT1 mutations are 
associated with a dismal prognosis, with complete remission 
rates of 10% [13]. For patients with NUP98::KMD5A, sev-
eral older studies reported low rates of complete remission 
[12, 23, 24], however a recently published study reported a 
complete remission rate of 80% [15]. Long-term survival 
remained poor because of high relapse rates [15].

Acute myeloid leukemias with translocations 
involving transcriptional regulators encoded on 
chromosome 16

Cytogenetic features and biological characteristics

This subset includes three translocations involving chro-
mosome 16: CBFA2T3::GLIS2, t(16;21)(q24/q22)/ 
RUNX1::CBFA2T3, and t(16;21)(p11;q22)/ FUS::ERG. 
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[29]. The two other translocations can be detected by 
karyotyping.

Clinical and molecular features

The three translocations are all uncommon. They involve 
genes that are important in transcriptional regulation; new 
fusion genes/proteins are thereby formed by the translo-
cations, and these fusion proteins alter transcription regu-
lation and contribute to malignant transformation. The 
CBFA2T3::GLIS2 translocation can occur in patients with a 
normal karyotype [26], and the two t(16;21) translocations 

All three translocations involve genes that encode 
proteins involved in transcriptional regulation. The 
CBFA2T3::GLIS2 translocation seems to be a pediatric 
variant [25, 26], whereas the two other variants are also 
detected in adults [27, 28]. The leukemia cell morphol-
ogy shows a wide variation for all three variants. Although 
some cytomorphological variants show increased frequen-
cies for some of them (e.g., AMKL is more common for 
the CBFA2T3::GLIS2 variant), it is important to emphasize 
that such variations are not absolute [25, 27, 28]. Further-
more, the CBFA2T3::GLIS2 variant cannot be diagnosed by 
karyotyping, but can be suspected by immunophenotyping 

Table 2  Studies on clinical characteristics and outcome in pediatric and adult patients with NUP98-NSD1 translocation
Study Year Pediatric

/adult
Frequency Sex

Male/female
Median 
age 
(range)

FAB Karyotype Molecular Survival

Hollink 
[5]

2011 Pediatric
Adult

Pediatric 4.2% 
(293)
Adult 1.3% 
(808)

65,2/ 24,8 16.8
(2.3 
63.0)

M1:13%
M2: 13%
M4: 34,8
M5: 30,4%

78,3% 
normal

91,3%
FLT3-ITD: 
45% WT

Pediatric: CR 12/12
4-years CIR/EFS/ 
OS 83%/8% 31%
Adult: CR 4/10
4-years CIR/EFS/
OS 89%/32%/ 11%

Thol [7] 2013 Adult 7/504 (1.4%)
AML
MDS 0/193

3/4 34
(23–48)

M1/M2: 3/7
M4: 4/7

5/7 normal FLT3-ITD 5/7
WT2/4
NPM1 0/7

CR 43%
Approx. 25% long 
term survival

Strusk 
[12]

2017 Pediatric 22/574 3.8% 
NUP98 
mutated
16/574 
NUP98-NSD 
mutated

16/22 11.5
(3–17)

M1: 3/16
M2:3/16
M4:4/16
M4/M5; 
1/16
M5: 5/16

9/16 normal
2/16 complex
5/16 trisomy 
8

FLT3-
ITD:13/16
WT: 3/16
CEBPA: 3/16

5-year EFS 30%
5-year OS 48%

Bolouri 
[11]

2018 Pediatric 
aAdult

Age 1–15 : 
0,8%
Adult 0,2%

NR NR NR 1/4 normal
1/4 del(9q)
1/4 abnormal
1/4 unknown

NR CR 54.8%.

Marceau-
Renaut 
[10]

2018 Pediatric 9/385
(2,3%)

NR 9.9
(1.3–
16.8)

NR 5/9 normal FLT3–ITD 
(7/10)
WT1 (5/10),
CEBPA 2/10
RUNX1 
(2/10)

CR.
3 year-EFS 10%
3 year-EFS 25%

Shiba 
[14]

2019 Pediatric 11/369 5/1 7,2
(2–15)

M0,M1,M2: 
3/11
M4:2/11
M5:6/11

5 normal
4 trisomy 8
1 complex
1 other

FLT3-ITD: 
8/11

HR, 5.07(2.54–
10.1) compared 
with other types

Niktoreh 
[13]

2019 Pediatric 15/246
(4%)

NR NR NR NR FLT3-ITD: 
9/15
WT: 8/15

3-year CIR 81%
3 year-EFS 13%
3 year-EFS 52%

WU [119] 2023 Adult NR 5/6 30
(14–59)

NR 9/11 normal
1/ trisomy 8
1 other

FLT3-ITD 
7/11

CR 3/11
1-year OS 54.5%

Bertrums 
[15]

2023 Pediatric
Adult

Pediatric: 108/ 
2,235
Adult: 1.3% 
(13/825)

64.8% male 
versus 35.2% 
female patients

10.2 M6/M7 
2,9%

18.8% tri-
somy 8
4,2% mono-
somy 5% 
del5q

FLT3-ITD 
74% WT1 
42%

CR 38.2%
5-year CIR 64%
5 year-EFS 17%
5 year-OS 36%

The Study by Osternoff [22] omitted sine some of the patients also were included in the study by Bertumset al [15]. Abbreviations: FAB: 
French–American–British classification, CR: Complete remission, NR not reported, CIR: cumulative incidence of relapse, EFS: event-free 
survival, OS: Overall survival
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hematological remission after intensive chemotherapy 
(< 80% of pediatric patients), they have a high risk of later 
relapse, and in pediatric patients, the relapse risk seems to 
exceed 70% [27]. Finally, both t(16;21) translocations seem 
to be independent risk factors, at least for pediatric patients 
[27].

AML with t(8:16)(p11.2;p13.3)/MYST3::CREBBP

Cytogenetic features and biological characteristics

The t(8;16)(p11;p13) translocation leads to the fusion of 
MYST3 on chromosome 8p11 and of CREBBP on chro-
mosome 16p13, leading to an MYST3::CREBBP chimeric 
protein. MYST3, previously termed KAT6A, has protein 
with zinc-finger and acetyltransferase domains and acts as 
a co-activator transcription factor regulating hematopoi-
esis, such as RUNX1, PU.1, and NF-KB [31–33], while 
CREBBP is a co-activator of hematopoietic transcription 
factors that regulate hematopoietic stem cell stemness [34–
37]. MYST3::CREBBP chimera protein is thought to dis-
rupt hematopoiesis through aberrant chromatin acetylation 
and interaction with transcription factors [38]. AML with 
t(8;16)/MYST3::CREBBP has been shown to share many 
clinicopathological features with AML with t(11q23;v)/
KMT2A rearrangements. Both entities are associated with 
infant AML or t-AML, extramedullary disease, and mono-
cytic/monoblastic or myelomonocytic differentiation, 

can occur as the only cytogenetic abnormality for a small 
number of patients [27, 30]. All three anomalies can be 
detected in combination with a variety of cytogenetic and 
molecular genetic abnormalities, and it is difficult to know 
on the basis of the available data how the different genetic 
abnormalities interact in the process of malignant transfor-
mation. The characteristics of each of the three variants are 
described in detail in Table 4.

Response to chemotherapy and prognosis

The possible prognostic impact of these three genetic abnor-
malities has only been investigated in small patient popula-
tions. Some conclusions are suggested by the available data, 
although the observations should be interpreted with great 
care. First, the CBFA2T3::GLIS2 translocation seems to be 
associated with an adverse outcome, and many studies sug-
gest an overall four- to five-year survival rate of less than 
30% [26]. Taken together, these studies suggest that survival 
is lower than that of fusion-negative patients and that many 
of these patients present with resistant diseases. Second, a 
pediatric study suggested that the RUNX1::CBFA2T3 vari-
ant has a more favorable prognosis, at least in children, 
with a four-year overall survival rate of 74% [27]. How-
ever, whether this also applies to adult patients, especially 
adults with secondary AML, is currently unclear. Finally, 
the FUS::ERG variant is regarded as a high-risk abnor-
mality. Although most patients seem to achieve complete 

Table 3  Studies on clinical characteristics and outcome in pediatric and adult patients with NUP98-KDM5a translocation
Study Year Pediatric/adult Frequency Sex

(Male/Female)
Median 
age 
(range)

FAB Additional chro-
mosomal ab.

Molecular Survival

Rooij 
[19]

2013 Pediatric
3 cohorts

4/293 1.6(1.2–5.9) 60%/40% M5:1
M7:3

4/4 chromosomal 
rearrangements

NRAS 1/5 CR 78%
5-year CIR 56
5 year-OS 2211/105 

pediatric 
AMKL

1.8(0.9–4.8) 45%/55% M7:11 11/11
chromosomal 
rearrangements

KRAS 1/11

Hara [18] 2017 Pediatric 4/44 AMKL 1 (1–2) NR M7: 4 1 Normal
3 complex

None CR 3/4

Noort 
[120]

2021 Pediatric 47/2,393 
(2.0%)

53/47 3,2
(0,07–
18,5)

M0,M1, 
M2: 4/47
M4:2
M5:6
M6: 5
M7:10
Not 
know: 18

Cryptic rear-
rangement 29/44

FLT3/ITD 
1/45
FLT3 point 
mutation* 1/29
CEBPA* 1/47 
NPM1* 1/47 
TET2* 0/25 
ASXL1* 0/21
CKIT* 0/9
WT1* 3/29

CR 91%
5-year CIR 
62,6%
5 year-EFS 
29,6%
5 year-OS 
34,1%

Bertrums 
[15]

2023 Pediatric
Adult

Pediatric 2
Adult 0

18/14 2,7 (0.98–
15.92)

M6/M7 N 
46.9%

4 Trisomy 8
19 Chrom 13 ab

WT 1/32
FLT3 1/32

CR 80.6%
5-year CIR 68%
5 year-EFS 25%
5 year-OS 36%

Abbreviations: FAB: French–American–British classification, CR: Complete remission, NR not reported, CIR: cumulative incidence of relapse, 
EFS: event-free survival, OS: Overall survival
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CBFA2T3-GLIS2 translocation t(16;21) (q24/q22)/ RUNX1-CBFA2T3 t(16;21)(p11;q22)/ FUS-ERG
Frequency It is the most frequent oncogene 

identified in pediatric non-Down 
Syndrome acute megakaryoblas-
tic leukemia, being detected in 
15–20% of these cases [25, 26].

An infrequent but recurrent AML vari-
ant. Different RUNX1 translocations have 
been described in various hematological 
malignancies, the RUNX1T3/CBFA2T3 
fusion being the fifth most frequent partner 
in cancer-associated RUNX1 rearrangements 
[121].

This is an uncommon AML variant 
both in in children and adults [27]. 
It is a recurrent translocation in 
acute leukemia and in certain solid 
tumors [28].

Chromosomal 
abnormality

A cryptic inversion of chromo-
some 16.the lesion can thus not be 
identified by cytogenetic analysis 
[122]. Concomitant cytogenetic 
abnormalities are uncommon; 
about 30% of these patients have 
a normal karyotype and the other 
patients can have various cyto-
genetic abnormalities including 
complex karyotype and hyperdip-
loidy [24].

The translocation involves the RUNX1T3/
CBFA2T3 gene on chromosome 16q24 and 
the RUNX1 gene on chromosome 21q22. 
The oncogenic fusion protein has a struc-
tural similarity with the oncogenic protein 
RUNX1-RUNX1T1 [30].

This t(16;21) abnormality is the 
sole cytogenetic abnormality in 
30–40% of patients [27].

Additional genetic 
abnormalities

Patients with this lesion have a 
lower mutational burden than 
other AML patients. Combina-
tions with FLT3, GATA1, KIT, 
RAS and JAK/STAT mutations 
have been described [24, 25, 103].

The translocation can be the only cytogenetic 
marker, but a majority of the patients have 
additional cytogenetic abnormalities [30]. It 
can be detected at the first time of diagnosis 
or develop during disease progression (CML 
blast phase) or at the time of relapse [30]. 
Various molecular genetic abnormalities 
have been detected in combination with this 
translocation, the translocation can be a part 
of a complex karyotype or be observed in 
patients with clonal cytogenetic heterogene-
ity [30].
The most frequent additional abnormalities 
are trisomy 8 and del(7q) [30].

The abnormality can be detected 
especially in combination with tri-
somy 8 and trisomy 10; a complex 
karyotype is seen for one third of 
the patients [27].
Several abnormaities in genes 
encoding epigenetic regulators 
have been detected in combina-
tion with the translocation (e.g. 
DNMT3A, ASXL1, BCOR) [28]

Table 4  AML with translocations involving the CBFA2T3 gene (synonyms ETO2; MTG16; MTGR2; ZMYND4; RUNX1T3; see the Gene 
database). The full official name of this gene is CBFA2/RUNX1 partner transcriptional co-repressor 3, and it encodes a member of the myeloid 
translocation gene family which interacts with DNA-bound transcription factors and recruit a range of corepressors to facilitate transcriptional 
repression (information from the Gene database, accessed 230,213)
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CBFA2T3-GLIS2 translocation t(16;21) (q24/q22)/ RUNX1-CBFA2T3 t(16;21)(p11;q22)/ FUS-ERG
Function of the trans-
located gene

CBFA2T3. The full official name 
of this gene is CBFA2/RUNX1 
partner transcriptional co-repres-
sor 3, and it encodes a member 
of the myeloid translocation gene 
family which interacts with DNA-
bound transcription factors and 
recruit a range of corepressors to 
facilitate transcriptional repres-
sion (Gene database).
GLIS2: The encoded molecule 
is a member of the Krüppel-like 
zinc finger transcription factor 
group; animal studies suggest 
it be involved in hematopoietic 
stem cell regulation but it is not 
expressed in differentiating hema-
topoietic cells.
Fusion protein: The fusion protein 
does not include the CBFA2T3 
molecular domain involved in 
binding to the nuclear receptor-
coreceptor complex. The zinc fin-
ger domain of GLIS2 and thereby 
the ability to bind to DNA is 
maintained in the fusion protein.

RUNX1 (Runt-related transcription factor 
1): The encoded protein is a transcription 
factor. Core binding factor (CBF) is a het-
erodimeric transcription factor that binds to 
the core element of many enhancers and pro-
moters of transcription. The protein encoded 
by this gene represents the alpha subunit of 
CBF and is involved in the development of 
normal hematopoiesis (Gene database).
Fusion protein: The RUNX1-CBFA2T3 
fusion protein functions as an altered 
transcriptional corepressor able to recruit 
histone deacetylases and thereby capable of 
suppressing the expression of RUNX1 target 
genes

FUS. The official name is FUS 
RNA binding protein. This 
encoded multifunctional protein is 
a component of the heterogeneous 
nuclear ribonucleoprotein complex. 
This complex is involved in pre-
mRNA splicing and the export of 
fully processed mRNA to the cyto-
plasm. This protein belongs to the 
FET family of RNA-binding pro-
teins which have been implicated 
in cellular processes that include 
regulation of gene expression, 
maintenance of genomic integrity 
and mRNA/microRNA processing 
(Gene database).
ERG: The official name is ETS 
transcription factor ERG. The 
encoded protein is a member of the 
erythroblast transformation-spe-
cific (ETS) family of transcriptions 
factors. All members of this family 
are key regulators of embryonic 
development, cell proliferation, dif-
ferentiation, angiogenesis, inflam-
mation, and apoptosis. The protein 
is mainly expressed in the nucleus. 
It contains a DNA-binding domain 
and a PNT (pointed) domain which 
is implicated in the self-association 
of chimeric oncoproteins; it is 
also a regulator of hematopoiesis 
including differentiation and matu-
ration of megakaryocytic cells.
Fusion protein. Different fusion 
variants of FUS-ERG have been 
described [28].

Clinical characteristics Detected in children, most 
patients being younger than 5 
years of age [25, 123].
The degree of peripheral blood 
leukocytosis is comparable to 
other AML patients, but they 
seem to have relatively high bone 
marrow blast counts. Extramedul-
lary involvement is more freuwnt 
(25% of patients) than for toehr 
pediatric AML patients [25].

The translocation is observed both in chil-
dren and adult patients [28].
The majority of patients have de novo AML, 
but it can also be secondary to previous che-
motherapy (e.g. sarcoma treatment including 
alkylators and topoisomerase 2 inhibitors 
with a median latency of 24 months (range 
12–108 months [30]. It has also been 
described in patients with CML-blast phase 
[30]]. Therapy-related forms are observed 
both in children and adults [30].
Circulating blast levels are usually relatively 
low (< 20 × 109/L), levels > 100 × 109/L are 
uncommon [27].

Detected both in children and adult 
patients.
It can be secondary to previous 
chemotherapy [27].
Circulating blast levels are usu-
ally relatively low (< 20 × 109/L), 
levels > 100 × 109/L are uncommon 
[27].

Morphology The abnormality is common in 
patients with acute megakaryo-
blastic leukemia, but apptoxi-
mately half of the patients seem 
to have a non-FAB M7 phenotyp 
that can be both M0, M1, M2 and 
M4/M5 [122].

The morphology shows relatively large 
blasts with both a prominent nucleolus and 
perinuclear hof; dysplastic granulopoiesis 
can be seen whereas dysplastic erythropoi-
esis/megakaryopoiesis is uncommon [30]. 
Eosinophilia can be a part of the morpho-
logical picture [124].
Most of the patients have a FAB-M1/M2 
morphological phenotype [27]].

The abnormality has no pre-
dominant FAB type. Eosino-
philia, micromegakaryocytes and 
hemophagocytosis can be a part 
of the microscopic picture [27]. 
Basophilic leukemia has also been 
described [125].

Table 4  (continued) 
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However, the significance of MYST3::CREBBP molecular 
minimal residual disease before and after allogeneic stem 
cell transplant-HCST is not known [43].

Interestingly, a significant number of spontaneous remis-
sions have been described in pediatric patients and in one 
adult individual [44]. However, the relapse rates are high 
following spontaneous remission, thus requiring long-term 
monitoring.

AML with t(10;11)(p12-13;q14-21)/PICALM::MLLT10

Cytogenetic features and biological characteristics

The t(10;11)(p12-13;q14-21) translocation leads to the for-
mation of a PICALM::MLLT10 fusion gene previously des-
ignated as CALM::AF10. PICALM, the phosphatidylinositol 
binding clathrin assembly protein gene, located on chromo-
some 11, encodes a protein involved in endocytosis that also 
co-locates to the nucleus, while the MLLT10 gene located 
on chromosome 10 encodes a nuclear protein within the 
DOT1L protein [45–47]. It is believed that the fusion tran-
scripts disrupt MLLT10 functions so that DOT1L is misdi-
rected to the promoters of certain HOXA genes that encode 
the transcription factors involved in hematopoiesis, lead-
ing to the hypermethylation of H3K79 and preventing cell 
maturation and differentiation [48–50]. PICALM::MLLT10 
translocation occurs in AML, ALL, and acute undifferen-
tiated leukemia. Because of the spatial proximity of the 
PICALM gene to KMT2A, PICALM::MLLT10 can be 
misinterpreted as the t(10;11)(p11-13);q23 translocation; 
thus, fluorescence in situ hybridization (FISH) or molecular 
analysis is required for accurate identification [45]. While 
PILCAM::MLL occurs in 10% of adult and pediatric T-ALL 
cases [45, 46], less than 100 cases of PICALM::MLLT10 
have been reported in AML [45, 51, 52].

and they may be related to the important roles that the 
MYST3::CREBBP and KMT2A fusion genes play in his-
tone modification [8]. A total of 159 cases of AML carrying 
the t(8;16)(p11;p13) translocation are currently registered 
in the Mitelman Database of Chromosome Aberration and 
Gene Fusions.

Clinical and molecular features

AML with t(8;16)(p11;p13) accounts for 0.2–0.4% of all 
AMLs and 1.6% of therapy-related AMLs. It can occur at 
all ages, with a peak during infancy and between 52 and 60 
years. Pediatric cases are usually de novo, and for adults, 
they are often therapy related [8, 35, 39, 40].

The typical features of AML with t(8;16)(p11;p13) are 
extramedullary disease, intravascular coagulation, mono-
cytic/myelomonocytic differentiation, and erythrophago-
cytosis. The characteristic flow cytometric findings are a 
bright CD45 expression and high side scatter, making it dif-
ficult to distinguish blasts from maturing myeloid elements. 
Blasts typically express CD13, CD33, and CD64 and are 
negative for CD34 and CD117 [40, 41]. Patients with ther-
apy-related cases often exhibit a complex karyotype, while 
t(8;16)(p11;p13) is typically the sole genetic abnormality in 
patients with de novo AML [42]. Common secondary aber-
rations include trisomy 8 and trisomy 21. FLT3-TKD is fre-
quent [43].

Response to chemotherapy and prognosis

Although a complete response is achieved in 80% of 
patients, most relapse within the first year [35, 40, 43]. 
The factors associated with inferior survival are anteced-
ent hematological malignancies, therapy-related AML, and 
a complex karyotype [43]. The MYST3::CREBBP tran-
script can be used to assess minimal residual disease [44]. 

CBFA2T3-GLIS2 translocation t(16;21) (q24/q22)/ RUNX1-CBFA2T3 t(16;21)(p11;q22)/ FUS-ERG
Immunophenotype The typical phenotype is over-

expression of CD56 and low 
expression of CD38 (dim to nega-
tive) and HLA-DR. The diagnosis 
can thus be suspected by flow 
cytometry. another characteristic 
is dim-to-negative CD45 expres-
sion [29].

Blasts are often positive for the myeloid 
markers CD13 and CD33, the stem cell 
markers CD34 and CD117, CD38, HLA-
DR and myeloperoxidase; abberant CD19 
expression can be seen whereas they are 
usually negative for aberrant expression of T 
cell markers [30].

The AML blasts cab express 
CD11b, CD13, CD18, CD33, 
CD38, CD56 and CD117; myelo-
peroxidase can be negative [126, 
127]. HLA-DR expression is vari-
able [127].

Clinical outcome Overall survival rate of 15–30% 
[66, 103]. 

A majority of patients seem to reach com-
plete hematological remission after intensive 
induction chemotherapy, but despite this a 
median overall survival of only 22 months 
has been reported [30]. Results from a 
recent pediatric study (23 patients, five with 
secondary AML) showed a four-years event-
free survival of 77% [27].

Complete remission is usually 
obtained (> 80% of patients) after 
intensive induction chemotherapy, 
but relapse is common and the 
4-year overall survival in a pedi-
atric group of patients was < 10% 
[27].
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22% and 26% respectively, with relapse being the most com-
mon cause of death [50]. Interestingly, long-term survival 
was observed after consolidation with both allogeneic stem 
cell transplant and high-dose cytarabine, but most patients 
were treated with the former. Pharmacological inhibition of 
the histone methyltransferase DOT1L has been suggested 
as a potential target in leukemias with PICALM::MLLT10 
[60].

AML with t(1;22)(p13.3;q13.1)/RBM15::MKL1

Cytogenetic features and biological characteristics

The t(1;22)(p13.3;q13.1) translocations result in a fusion of 
the oncogene RNA-binding motif protein-15 (RBM15) on 
chromosome 1 and of megakaryocytic leukemia-1 (MKL1) 
on chromosome 22. The fusion results in the relocation 
of the MKL1 nucleus and the constitutive activation of 
downstream pathways [61]. Transgenic mice with t(1;22)
(p13.3;q13.1) show abnormal hematopoiesis and aber-
rant expression of cytokines, but transformation to AMKL 
occurs only in a fraction of transgenic mice [62]. Additional 
immunogenic or mutational events are required for leuke-
mic transformation, but additional genetic events have not 
yet been identified.

Clinical and molecular features

AML with t(1;22)(p13.3;q13.1)/RBM15::MKL1 almost 
exclusively occurs in children [61, 63], and only a few adult 
cases have been reported. AML with t(1;22)(p13.3;q13.1)/
RBM15::MKL1 presents as AMKL and accounts for 50% 
of non-Down-syndrome AMKL [64]. With a peak incidence 
at 6 months and with most patients being below 3 years of 
age, the time of presentation is significantly lower than that 
of other AMKL types. There is a female preponderance. 
In the Mitelman Database of Chromosome Aberration and 
Gene Fusions in Cancer, there are now 65 cases of AML 
carrying this translocation.

Only two case reports of adult AML carrying t(1;22)
(p13q13) have been reported. Saito et al. reported on a 
patient with AML following four months of treatment for 
a non-mediastinal germ cell tumor. After receiving a con-
ventional 7 + 3 induction regimen, the patient achieved 
complete remission and received three cycles of high-dose 
cytarabine before allo-HSCT [64]. Although the patient 
experienced severe acute graft-versus-host disease, he 
remained in remission more than 200 days after transplanta-
tion. Hsiao et al. reported a 59-year-old male with AML with 
46 XY, +der(1)t(1;22)(p13,q13) [65]. The patient achieved 
remission after 3 + 7 induction therapy, one course of 2 days 
of anthracycline and 5 days of cytarabine, followed by four 

Clinical and molecular features

Fewer than 100 patients with PICALM-MLLT10-mutated 
AML have been reported [45, 51, 52]. In the Mitelman 
Database of Chromosome Aberration and Gene Fusions in 
Cancer, there are now 79 cases of AML carrying the t(10;11)
(p12-13;q14-21) translocation. This translocation occurs at 
all ages, mainly in late adolescence, with a median age of 
20 years. PICALM::MLLT10-mutated AML occurs as both 
de novo and secondary AML [45, 53]. Because of the low 
number of patients reported, drawing clear conclusions on 
clinical and laboratory characteristics is difficult. However, 
extramedullary leukemia seems common, with a report on 
central nervous system and extensive skin involvement 
[54]. PICALM::MLLT10 AMLs typically exhibit immature 
cytomorphology and express CD13, CD33, CD34, CD65, 
CD117, HLA-DR, myeloperoxidase (MPO), and the T-cell 
antigen CD7; in some cases, they have mixed lineage phe-
notypes [16, 53].

Mark et al. reported the outcome of 39 individual’s 
age ≤ 21 with PICALM-MLLT10-mutated AML. The dis-
ease only occurred in older children with a median age of 
14 with no cases younger than 9 or older than 15 years. The 
majority of cases showed either minimally differentiated 
(FAB M0/M1 16/39) or monocytic differentiated (FAB M5 
7/39). CNS and extramedullary leukemia was only reported 
in 1 and 2 respectively [50].

In 50% of cases with AML and t(10;11)(p12-13;q14-21), 
no other cytogenetic abnormalities are found. The most fre-
quently observed secondary changes include trisomy 4, tri-
somy 19, and deletion of 17p [55]. While rearrangements of 
the immunoglobulin heavy chain and T-cell receptor genes 
are frequent [46, 55–57], data on other concurrent mutations 
are scarce. Grossman et al. presented a case with a concur-
rent EZH2 mutation and speculated that EZH2 mutations 
and PICALM::MLLT10 are related because of possible 
synergistic effects on the deregulation of HOX gene expres-
sion [58]. Mark et al. reported RAS pathway mutation 21%, 
WT1 mutations in 12%, NOTCH in 6% and EVT6 muta-
tions in 3% of patients [50].

Response to chemotherapy and prognosis

The prognostic impact of PICALM::MLLT10 in AML is not 
well defined. Although an in vitro model suggested resistance 
to conventional chemotherapeutic treatment, this is not sup-
ported by observational data [59]. In a study of 18 patients 
by Borel et al., the complete response rates were 71%, and 
they did not differ from those of PICALM::MLLT10-nega-
tive AML. However, the relapse rates were high, with a 50% 
survival rate at 12 months [55]. In pediatric cohort reported 
by Mark et al. the 5-year event-free an overall survival was 
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hematopoietic tissue does not express MLF1, approxi-
mately a quarter of high-risk myelodysplastic syndrome and 
MDS-associated AML show overexpression of MLF1. It is 
believed that the NPM1::MLF1 fusion induces leukemo-
genesis by promoting ectopic MLF1 expression in hemato-
poietic cells. NPM1::MLF1 and AML with NPM1-positive 
AML share similar flow cytometry and gene expression pro-
files and thus probably similar leukemogenic events [72].

Clinical and molecular features

The t(3;5)(q25;q35) NPM1::MLF1 fusion happens in 0.5% 
of AMLs and occurs at all ages, with a reported median age 
between 24 and 47 years and with 18.4% being older than 60 
years [51, 71, 73]. Young patients are frequently male, while 
older patients are typically female. The common bone mar-
row findings are three-lineage dysplasia and blast cell with 
myeloid maturation typically characterized as FAB M2. The 
flow cytometric profile is similar to that of NPM1-mutated 
AML, with blast cells being negative for CD34 and posi-
tive for CD117, CD13, and CD33 [71]. In younger patients, 
this translocation is usually the sole karyotypic abnormality, 
whereas older patients often exhibit a complex karyotype 
[71]. In the Mitelman Database of Chromosome Aberration 
and Gene Fusions in Cancer, there are now 8 cases of AML 
and 2 cases of MDS carrying this translocation.

Response to chemotherapy and prognosis

Although the complete remission rate after intensive che-
motherapy is high, most patients relapse within the first 
year [74], and the long-term survival rate is poor. One study 
reported a long-term survival rate of 34% at 10 years [51].

AML with t(7;12)(q36.3;p13.2)/ETV6::MNX1

Cytogenetic features and biological characteristics

The translocation t(7;12)(q36;p13) involves the MNX1 
and ETV6 genes. Translocation occurs in both AML and 
ALL. AML with t(7;12)(q36;p13) exhibits several dis-
tinctive characteristics [75]. First, the fusion transcript 
is only detected in half of the patients, a corresponding 
MNX1::ETV6 protein is not identified, and the leuke-
mogenic effects of the fusion transcript are questionable 
[76–78]. Second, the entire MNX1 gene, including regu-
latory domains, is translocated to chromosome 12. This 
results in the overexpression of MNX1 [79]. Experimental 
models show that ectopic MNX1 expression mediates the 
leukemogenic effect through a blockage in the differentia-
tion of hematopoetic stem cells and aberrant methylation 
that results in histone modifications, accumulation of DNA 

courses of a high dose of cytarabine. At one year, the patient 
was in complete remission but with persistence of the fusion 
transcript, and he relapsed at 18 months. A second complete 
remission was achieved after salvage chemotherapy with 
mitoxantrone and etoposide, but the patient relapsed and 
died within 3 months.

Most cases have t(1;22)(p13.3;q13.1) as the sole karyo-
type abnormality at diagnosis [63]. A hyperdiploid karyo-
type with t(1;22) and + der(1)t(1;22) is seen in a small 
number of patients [63, 66–68]. With the exception of small 
case series describing the absence of FLT3-ITD, WT, and 
nucleolar phosphoprotein nucleophosmin 1 (NPM1), data on 
the mutational landscape in AML with t(1;22)(p13.3;q13.1)/
RBM15::MKL1 are scarce [63].

Most patients show pancytopenia with normal or elevated 
platelet counts [67]. Clinical characteristics at diagnosis 
include pancytopenia and significant hepatosplenomegaly 
that sometimes impair venous abdominal drainage [61, 
67, 68]. A significant number of cases present as extra-
medullary disease, with less than 20% of blast cells in the 
blood or bone marrow. Marrow aspiration is often difficult 
because of extensive marrow fibrosis. Because of extensive 
extramedullary disease, bone marrow fibrosis, and cyto-
morphological small round blue cells, AML can initially 
be misinterpreted as medulloblastoma, hepatoblastoma, or 
Ewing sarcoma [69]. Blast cells typically express CD31, 
CD41, CD42b, NSE, factor VIII, and CD61, and they have 
variable positivity for MPO [70]. In the Mitelman Database 
of Chromosome Aberration and Gene Fusions in Cancer, 
there are now 65 cases of AML carrying this translocation.

Response to chemotherapy and prognosis

The outcome of pediatric AMKL is regarded as favorable, 
with a long-term survival rate of approximately 70%. Some 
studies have reported high early death rates in patients with 
extensive abdominal extramedullary disease at diagnosis. 
However, in contrast to most other non-Down syndrome 
AMKLs, AML t(1;22)(p13q13) has a high response rate 
after intensive chemotherapy and a favorable prognosis. 
Allogeneic stem cell transplantation is not recommended in 
the first remission.

AML with t(3;5)(q25.3;q35.1)/NPM1::MLF1

Cytogenetic features and biological characteristics

The translocation t(3;5) leads to the formation of the 
NPM1::MLF1 chimeric gene involving NPM1 on chromo-
some 3 and of the myeloid/myelodysplastic leukemia fac-
tor 1 (MLF1) gene on chromosome 5. The translocation has 
only been described in AML or MDS [71]. While normal 
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M1, and M2. However, several cases with M7 morphology 
have been described [81]. Blasts typically express CD34, 
CD117, HLA-DR, CD4, and CD7 [76, 83]. In the Mitelman 
Database of Chromosome Aberration and Gene Fusions 
in Cancer, there are now 29 cases of AML carrying this 
translocation.

Response to chemotherapy and prognosis

AML with t(7;12)(q36;p13) is associated with poor clinical 
outcomes [76]. However, more recent survival analyses by 
Espersen et al. reported improved prognostic outcomes with 
a three-year event-free survival rate of 43% and a three-year 
overall survival rate of 100% [82] (Table 5).

AML with t(1;3)(p36;q21)

Cytogenetic features and biological characteristics

Chromosomal band 1p36 is a recurring breakpoint involved 
in a variety of rearrangements in hematological neoplasms, 
with the most frequent being t(1;3)(p36;q21), and it has 
been reported in AML, MDS, CMML, CML, and ALL [84–
86]. The t(1;3)(p36;q21) translocation involves the MEL1 
(PRDM16) gene at 1p36.3 and the RPN1 gene at 3q21. The 
breakpoints for the RPN1 gene are located within a 60 kb 
region centromeric to the breakpoint cluster region of the 
3q21q26/inv(3) involved in MECOM-rearranged AML [87, 

damage, and leukemia transformation [79]. Third, AML 
with t(7;12)(q36;p13) is highly age specific, with all cases 
restricted to children below 2 years of age. One possible 
explanation for the incapability of MNX1 ectopic expres-
sion in adult progenitor cells is dramatic apoptotic induction 
through p53/p21-dependent cell cycle arrest, which has not 
been observed in hematopoietic progenitor cells of fetal ori-
gin [77]. Lastly, animals transduced to express MNX1 only 
show leukemic transformation in immunocompromised 
recipients, supporting the assumption that specific immu-
nological events in the developing immune system of new-
borns facilitate the disease [80].

Clinical and molecular features

AML with t(7;12)(q36;p13) is mostly restricted to infants 
(defined as 0–2 years old), with a peak at 6 months [75, 
81], and accounts for 18–30% of AML in infants, thereby 
being the most common cytogenetic abnormality in this age 
group. The prevalence could be somewhat underestimated, 
as the translocated regions are subtelomeric and not related 
to specific bands and are therefore difficult to detect with 
conventional karyotyping [75].

AML with t(7;12)(q36;p13) often show additional cop-
ies of chromosomes 8, 19, and 22 and screening for cryptic 
t(7;12) in young children with trisomy 19 is recommended 
[75, 82]. Thrombocytosis is common, and blasts are typi-
cally poorly differentiated, usually categorized as FAB M0, 

Table 5  Studies on AML with t(7;12)(q36.3;p13.2)/ETV6::MNX1*
Study Year Pediatric

/adult
Frequency Sex

(Male/Femal)
Median 
age 
(range)

FAB
(number)

Chromosomal Molecular Survival

Espersen
 [82]

2018 7/0 7/651
(1.1%)

1/6 6
(2–8 
mo)

M0: 1/ M1: 3
M2: 1/ M7: 1
Unclassified (1)

t(7;12)
(q36;p13) + 19

3-year EFS 43%
5-year EFS 43%
3-year OS 100%
5-year OS 83%
Relapse 57%

Espersen
 [76, 82]

2017 35/0 35 16/19 6 (2–24 
mo)

M0: 8/ M1: 4
M2: 5/ M4: 2
M5: 3/ M7: 3
RAEB-T: 1/
MPAL: 2
Unclassified: 7

t(7;12)
30/35 had + 19

Outcome avail-
able in 22/35
3-year EFS 24%
3-year OS 42%
Relapse 57%

Park [76] 2009 3/0 3/215
(1,4%)

3/0 7
(3–12 
mo)

M0: 1
M5a: 1
Biphenotypic 
leukemia: 1

t(7;12)
t(5;7;12)
t(1;7;12)
additional 
chromosome 
19 in all cases

HLXB9 
overexpres-
sion
In all cases

2 patients dead 
in relapse
1 patients early 
death during 
induction

Slater 
[81]

2001 10 10/130
(7,7%)

4/6 6
(4–18 
mo)

M0: 1/ M1: 2
M1/ M2: 2
M3v: 1/M4:1
M5: 1/ M7: 1
RAEB-t (1)

t(7;12) All dead within 
56 months

Abbreviations: FAB: French–American–British classification, CR: Complete remission, NR not reported, CIR: cumulative incidence of relapse, 
EFS: event-free survival, OS: Overall survival
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Differences between adult and pediatric AML 
patients; possible relevance for the uncommon 
abnormalities included in this subclassification

Pediatric and adult AML patients differ with regard to the 
frequencies of various genetic abnormalities; chromosomal 
abnormalities are generally more common in pediatric 
patients and a normal karyotype is thereby less common 
(20% versus 50%), whereas molecular genetic abnormali-
ties are generally fewer per patient and with only a limited 
number of AML-associated molecular abnormalities being 
frequently detected [102]. Some important differences are:

	● Cytogenetic abnormalities t(8;21)(p22;q22), inv(16)
(p13;q22) and t(16;16)(p13.1;q22) are more prevalent in 
pediatric AML, and they are regarded as favorable both 
for adult and pediatric patients. Certain translocations 
creating fusion genes (e.g. RUNX1-RUNX1T1, KMT2A 
rearrangements, NUP98-NSD1) as well as certain trans-
locations have a much higher frequency in pediatric 
AML, e.g. t(1;22)(p13;q13/RBM15-MKL1), t(7;12) 
(q36;p13/ETV6-MNX1 and t(11;12)/(p15;q13)/NUP98-
KDM5A [102, 103]. Some other cytogenetic abnormali-
ties associated with adverse prognosis also seem to oc-
cur mainly/only in pediatric AML, i.e. t(5;11)(NUP98/
NSD1) and inv(16)(CBFA2T3/GLIS2) that is seen in 
Down syndrome-associated acute megakaryoblastic 
leukemia [102]. 

	● Abnormalities involving 11q23 are also more frequent 
in younger/pediatric patients, whereas complex cytoge-
netic abnormalities are more frequent in elderly patients 
[102].

	● Relatively frequently mutated genes in pediatric AML 
include especially CEBPA (11%), WT1 (7.8%) and 
ASXL1/2 (8.8%) [104]. On the other hand, other muta-
tion (e.g. DNMT3A that is very rare, NPM1 with 3.8% 
occurrence) are less common in pediatric AML [102, 
104].

	● Complex cytogenetic abnormalities have an adverse 
prognostic impact in both groups although this impact 
has been regarded as weaker in pediatric than in adult 
patients [102, 104–107], and monosomal karyotype 
does not seem to have an adverse impact in pediatric but 
only adult AML [108].

	● The large majority of pediatric patients has de novo 
AML; secondary AML following previous hematologi-
cal disease or chemotherapy is much less common in 
pediatric AML although it has been described for cer-
tain abnormalities, e.g. t(16;21(q24;q22) after treatment 
with topoisomerase 2 II inhibitors [109, 110].

	● There are also age-dependent differences within pedi-
atric AML; this is not only true for infant AML that is 

88]. The t(1;3) results in the transcriptional upregulation of 
the MEL1 gene through promoter swapping with the house-
keeping gene RPN1. No MEL1 fusion transcripts have been 
identified. MEL1 is not expressed in normal hematopoiesis 
but in leukemic cells with t(1;3)(p36;q21), and it is believed 
that RPN1 at 3q21 is the main driver of the ectopic expres-
sion of the truncated MEL1 of a protein lacking the PR 
domain [89–91].

Clinical and molecular features

The median age of patients with t(1;3)(p36;q21) is 60 years, 
with a reported range of 30–80 years, and occurrence is 
typically equal among males and females. Fifteen to 20% of 
t(1;3) have prior genotoxic exposure [42, 92]. However, in 
contrast to most other reciprocal translocations in t-AML, 
t(1;3) is associated with irradiation and alkylating agents 
rather than with topoisomerase II inhibitors [93–96].

AML with t(1;3)(p32q21) shows cytomorphological 
characteristics similar to those of AML MECCOM rear-
rangements with trilinear dysplasia and an excess of small 
monolobated clustered megakaryocytes, with one-third hav-
ing high platelet counts [71, 97]. Blast cells show monocytic 
differentiation with low myeloperoxidase expression [98]. 
To our knowledge, a characteristic flow cytometry immu-
nophenotypic profile has not been described for this entity.

The t(1,3) aberration is typically identified by conven-
tional karyotyping. Most of the t(1;3)-positive myeloid 
neoplasms described are AML and are diagnosed during a 
short MDS pre-phase [99, 100]. In two-thirds of cases, no 
other cytogenetic alterations are found. The most frequent 
additional changes are a complex karyotype in approxi-
mately 20% and del(5q) found in 15%. The t(1;3) has been 
described in a small number of cases with acute promy-
elocytic leukemia and chronic myeloid leukemia [85, 92]. 
In the Mitelman Database of Chromosome Aberration and 
Gene Fusions in Cancer, there are now 60 cases of AML and 
23 cases of MDS carrying this translocation.

Response to chemotherapy and prognosis

AML with t(1,3) is associated with non-responsiveness to 
conventional chemotherapy and a dismal prognosis [85, 93, 
97, 99, 101]. In a review of 36 patients with t(1;3)(p32q21 
(i.e., including some ALL cases), only a few patients with 
t(1;3) experienced complete remission, and the median sur-
vival was 21.3 months; the authors suggested that stem cell 
transplant should be offered in the first remission [92].
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translocations in adult patients, larger cooperative work 
is required to better characterize these entities. The major 
challenge in the rare AML variants is to incorporate clini-
cal and molecular data to develop robust algorithms for risk 
stratification, guide consolidation therapy that might allow 
for exploration of new targeted drugs.
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