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Abstract
Natural killer/T cell lymphoma (NKTCL) is a highly aggressive, heterogeneous non-Hodgkin lymphoma resulting from 
malignant proliferation of cytotoxic natural killer (NK) or T cells. Previous studies demonstrated variable expression of 
CD38 on NKTCL tumors. Daratumumab, a human IgGκ monoclonal antibody targeting CD38 with a direct on-tumor and 
immunomodulatory mechanism of action, was hypothesized to be a novel therapeutic option for patients with relapsed or 
refractory (R/R) NKTCL. In the phase 2 NKT2001 study (ClinicalTrials.gov Identifier: NCT02927925) assessing the safety 
and efficacy of daratumumab, a suboptimal overall response rate was seen in R/R NKTCL patients. One patient, whose 
tumors did not express CD38, responded to treatment, suggesting that the immunomodulatory activities of daratumumab 
may be sufficient to confer clinical benefit. To understand the suboptimal response rate and short duration of response, we 
investigated the immune profile of NKTCL patients from NKT2001 in the context of daratumumab anti-tumor activity. 
Tumor tissue and whole blood were, respectively, analyzed for CD38 expression and patient immune landscapes, which were 
assessed via cytometry by time-of-flight (CyTOF), multiparameter flow cytometry (MPFC), clonal sequencing, and plasma 
Epstein-Barr virus (EBV)-DNA level measurements. Changes observed in the immune profiles of NKTCL patients from 
NKT2001, including differences in B and T cell populations between responders and nonresponders, suggest that modula-
tion of the immune environment is crucial for daratumumab anti-tumor activities in NKTCL. In conclusion, these findings 
highlight that the clinical benefit of daratumumab in NKTCL may be enriched by B/T cell–related biomarkers.
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Introduction

Natural killer/T cell lymphoma (NKTCL) is an aggressive, 
heterogeneous type of non-Hodgkin lymphoma character-
ized by malignant proliferation of cytotoxic natural killer 
(NK) or T cells [1, 2]. The malignancy presents primar-
ily in extranodal sites and is associated with Epstein-Barr 
virus (EBV) infection [2, 3]. For patients with stage I/II 
NKTCL, the standard of care is an asparaginase-contain-
ing regimen combined with radiotherapy, with sequential 
chemotherapy and radiotherapy most commonly employed. 
For patients with stage III/IV NKTCL, the standard treat-
ment regimen contains dexamethasone, methotrexate, ifos-
famide, L-asparaginase, and etoposide (SMILE) [4]. While 
asparaginase-containing chemotherapeutic regimens have 
improved outcomes for patients with NKTCL, patients 
with relapsed/refractory (R/R) NKTCL typically do not 
respond to standard chemotherapy-based regimens. With 
limited treatment options, the prognosis of patients with 
R/R NKTCL is poor, with a reported median overall sur-
vival of approximately 6 months [4]. Thus, a great unmet 
medical need exists for this patient population.

Daratumumab, a human IgGκ monoclonal antibody 
targeting CD38 with a direct on-tumor [5–8] and immu-
nomodulatory [9–11] mechanism of action, demonstrates 
greater cytotoxicity of multiple myeloma (MM) cells 
ex vivo compared with analogs of other CD38 antibodies 
[12], and is approved for MM treatment in many countries 
worldwide [13, 14]. Previous studies have demonstrated 
variable expression of CD38 on NKTCL tumors, with high 
expression observed in approximately 50% of tumor sam-
ples [15]. Therefore, daratumumab was hypothesized to be 
a novel therapeutic option for patients with R/R NKTCL.

The open-label, single-arm, multicenter, phase 
2, NKT2001 study (ClinicalTrials.gov Identifier 
NCT02927925) assessed the safety and efficacy of dara-
tumumab in Asian patients with R/R extranodal NKTCL, 
nasal type [16]. Patients achieved an overall response rate 
(ORR) of 25.0%, with a median duration of response of 
55.0 days, suggesting that daratumumab monotherapy is 
insufficient to treat R/R NKTCL with aggressive features 
[16]. Based on the totality of data, the NKT2001 study did 
not proceed with expansion because the response rate did 
not meet the prespecified target of 30% ORR and lacked 
durable responses. However, we found that baseline B 
cell numbers in responders to daratumumab were higher 
than in nonresponders, while baseline plasma EBV-DNA, 
tumor CD38 expression, and NK cell counts did not show 
a clear correlation with clinical response [16]. Of note, 1 
patient whose tumors did not express CD38 responded to 
daratumumab, suggesting the immunomodulatory activi-
ties of daratumumab may confer clinical benefit [17]. 

Here, we investigate the immune profiles of patients with 
R/R extranodal NKTCL, nasal type, from the NKT2001 
study, in the context of daratumumab anti-tumor activ-
ity to understand the suboptimal response rate and short 
response duration.

Methods

Sample sources

The complete methodology of the NKT2001 study was pre-
viously reported [16]. Briefly, patients were enrolled from 
14 clinical study sites across 5 countries/regions including 
Korea, China, Singapore, Taiwan, and Hong Kong Special 
Administrative Region. Eligible patients had histologi-
cally confirmed extranodal NKTCL, nasal type, classified 
according to the World Health Organization classification 
[18], were refractory to or relapsed after achieving com-
plete or partial remission on ≥ 1 line of chemotherapy, and 
were not candidates for other treatment modalities. Other 
key eligibility criteria included ≥ 1 measurable disease site 
[assessed by positron emission tomography (PET) scan for 
positive uptake of 18F-fluorodeoxyglucose (FDG) in nodal or 
extranodal sites]; an Eastern Cooperative Oncology Group 
performance status (ECOG PS) score of 0 to 2; and a life 
expectancy of ≥ 3 months.

Patients received 28-day cycles of intravenous dara-
tumumab 16 mg/kg once weekly during cycles 1 and 2, 
every 2 weeks during cycles 3 through 6, and every 4 weeks 
thereafter until disease progression, unacceptable toxicity, 
or patient withdrawal. Disease evaluations via radiological 
[computed tomography (CT) or magnetic resonance imag-
ing] and PET-CT (whole-body 18F-FDG PET-CT) scans 
occurred at screening, every 8 weeks (± 7 days) for the first 
6 months, and every 16 weeks (± 7 days) thereafter until dis-
ease progression, withdrawal, or end of study. Patients were 
classified as responders (defined as patients with best clini-
cal response of partial response or better) or nonresponders. 
Blinded independent central review was performed to review 
imaging data and clinical information per a predefined inde-
pendent central review charter. Central reviewers assessed 
disease status based on the Revised Criteria for Response 
Assessment: Lugano classification [19].

A total of 32 patients were enrolled (7 patients from 
mainland China; 25 patients enrolled outside of mainland 
China). The effect of daratumumab on ORR was evaluated 
using Simon’s two-stage design [16]. Clinical response 
and biomarker data were analyzed from patients who were 
enrolled outside of mainland China and received daratu-
mumab with the clinical cutoff date of 9 October 2019. 
Baseline CD38 expression levels on tumor tissues were 
evaluable in 21 patients (responders, n = 6; nonresponders, 
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n = 15), baseline plasma EBV-DNA levels were evaluable in 
23 patients (responders, n = 7; nonresponders, n = 16), and 
baseline T cell, B cell, and NK cell counts and other immune 
profiling results were evaluable in 23 patients (responders,  
n = 7; nonresponders, n = 16).

Biomarker sample collection

Fresh tumor samples were collected for assessment of CD38 
expression from core needle biopsy within 21 days of cycle 
1 day 1 (if unavailable, archived formalin-fixed, paraffin-
embedded blocks/slides were acceptable). Whole blood sam-
ples (~ 12 mL) were collected for assessment of complement 
proteins and immunophenotyping prior to infusion on day 1 
of cycles 1, 2, 3, 6, and 7 and at the end-of-treatment visit. 
An additional 4 mL of blood was collected monthly and at 
the end-of-treatment visit for circulating plasma EBV-DNA 
quantification at the central laboratory as a biomarker of 
tumor load. Clinically nonevaluable patients were excluded 
from biomarker analysis.

Circulating plasma EBV‑DNA quantification

Four milliliters of blood was drawn into an EDTA tube and 
mixed immediately by gentle inversion. Samples were cen-
trifuged (1500–2000 × g) for ≥ 15 min until the cells and 
plasma were separated, and the plasma layer was tested for 
EBV-DNA titer in a central laboratory. Plasma EBV-DNA 
titer was measured via quantitative polymerase chain reaction 
(PCR) assay with a lower limit of quantitation of 45 IU/mL  
(tested at Viracor Eurofins Clinical Diagnostics, Summit, 
MO, USA).

Immunohistochemistry (IHC) for CD38 detection

CD38 expression on tumor tissue was assessed by IHC cen-
trally using rabbit anti-human CD38 monoclonal antibody 
(SP149; Cell Marque, Rocklin, CA, USA), according to the 
previously described protocol [20].

Complement protein assessment

Six milliliters of blood was collected for complement 
protein-level assessment (C1q complex, C2, C3, and C4). 
Serum CIC (circulating immune complexes)-C1q levels 
were measured by ELISA (MicroVue™ CIC-C1q EIA, 
QUIDEL), and serum C2 levels were measured by radial 
immunodiffusion at the laboratory of National Jewish Health 
(Denver, CO, USA). Serum C3 and C4 levels were measured 
using NK023.S and NK025.S kits, respectively, on the SPA-
plus turbidimetric analyzer (The Binding Site, Birmingham, 
UK).

Immune cell phenotyping and quantification 
by flow cytometry

Peripheral blood (PB) was collected in heparinized tubes 
at baseline, prior to the first infusion, and at specified time 
points during treatment, and evaluated using flow cytom-
etry within 24 to 48 h of collection in central laboratories. 
Peripheral blood mononuclear cells (PBMCs) were isolated 
from 4 mL whole blood by density-gradient centrifugation. 
Samples were stained with the indicated antibody panels 
(details in the Supplemental Appendix).

T cell receptor (TCR) and B cell receptor (BCR) clonal 
sequencing

ImmunoSEQ® assay (Adaptive Biotechnologies, Seattle, 
WA, USA) was used for TCR and BCR repertoire char-
acterization. Genomic DNA from frozen PBMCs (2 mL 
blood) was assessed by a multiplex PCR-based method 
that amplifies rearranged TCR and BCR complementarity-
determining region 3 (CDR3) sequences, utilizes capacity 
of high throughput sequencing, and characterizes tens of 
thousands of corresponding T cell receptor beta (TCRβ) 
and BCR immunoglobulin heavy chain (IGH) CDR3 chains 
accordingly [21, 22]. The multiplex PCRs were composed 
of forward and reverse primers directly targeting the fam-
ily of variable (V) genes (forward primers) and joining (J) 
genes (reverse primers). Each V and J gene primer acted as 
priming pairs to amplify somatically recombined TCRs or 
BCRs. Following initial PCR amplification, each amplicon 
was amplified again with forward and reverse primers con-
taining the universal and adaptor sequences needed for DNA 
sequencing by Illumina.

Cytometry by time‑of‑flight (CyTOF) staining 
and acquisition

For CyTOF analysis, 2 mL whole blood samples were col-
lected, fixed in Smart Tubes (Smart Tube, Inc., Las Vegas, NV, 
USA) per manufacturer’s instructions, and stored at – 80 °C  
until analysis. Samples were thawed by gentle shaking in 
a 10 °C water bath for 20 min. Red blood cells were ini-
tially lysed by the addition of Thaw-Lyse Buffer (Smart 
Tube, Inc.) followed by BD Pharm Lyse lysing solution 
(BD Biosciences, Franklin Lakes, NJ, USA), according to 
the manufacturers’ protocol. Cells were washed with stain-
ing buffer and barcoded using Cell-ID 20-Plex Pd Barcode 
Kit (Fluidigm) then washed and pooled for subsequent 
staining. Surface Fc receptors were blocked using Human 
TruStain FcX™ (BioLegend, San Diego, CA, USA) for  
15 min at room temperature followed by staining with an 
antibody cocktail against surface markers for 30 min at room 
temperature. Samples were washed with staining buffer 
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and prepared for intracellular staining using BD Cytofix/
Cytoperm fixation/permeabilization kit (BD Biosciences), 
according to the manufacturer’s instructions. Samples were 
stained with a cocktail of intracellular antibodies for 30 min 
at 4°C, washed, resuspended in phosphate-buffered saline 
containing 0.05 μM Iridium-DNA Intercalator (Fluidigm, 
San Francisco, CA, USA) and 1.6% methanol-free formalde-
hyde solution, and incubated overnight at 4 °C until CyTOF 
measurements.

All antibodies for CyTOF were either purchased conju-
gated from Fluidigm or conjugated in-house using Maxpar 
X8 and Maxpar MCP9 antibody labeling kits (Fluidigm) 
according to the manufacturer’s recommended protocols. A 
complete summary of the CyTOF panel used for the analysis 
is presented in Supplemental Table 1.

CyTOF data acquisition and processing

On the day of acquisition, samples were washed with 
staining buffer, followed by cell acquisition solution (CAS; 
Fluidigm), counted, and resuspended in CAS containing 
1:10 diluted EQ™ Four Element Calibration Beads at  
0.65 × 106 cells/mL. Samples were acquired on a CyTOF2 
system upgraded to Helios specifications with a flow rate 
of 250 to 350 events/second.

Flow Cytometry Standard (FCS) files were normalized 
and debarcoded using FCS-processing and debarcoding 
modules within the CyTOF software. Manual gating of 
immune populations of interest was performed using the 
Cytobank platform (Beckman Coulter, Indianapolis, IN, 
USA), and data were further processed via custom scripts 
based on the flowCore package. Channel intensities were 
normalized with calibration beads following data acquisi-
tion, and the arcsinh function (cofactor = 5) was used to 
transform measured intensities for each channel. Samples 
with > 10,000 live singlet events of lymphocyte/monocyte 
count were clustered into nodes of similar cellular events 
using the spanning-tree progression analysis of density-nor-
malized events (SPADE) algorithm using Cytobank software 
[23, 24]. Clusters were grouped into bubbles corresponding 
to known populations based on intensity profiles. Quality 
control was performed using the HilbertSimilarity distance 
algorithm [25], Earth Mover’s Distance algorithm [26], and 
Marker Enrichment Modeling [27]. These analyses revealed 
the absence of technical batch effects and the expected clus-
tering of control samples.

Statistical analysis

Negative binomial regression was used to model count data 
from different cell populations and was able to account for 
over-dispersion present in the population size. For each cell 
population, a negative binomial generalized linear mixed 

model was fitted, from which the contrasts of interest were 
derived. Each univariate mixed model included response to 
treatment and time point as the main effects, the interaction 
between the two variables, and a random patient effect. The 
total number of cells in the sample was used as the offset 
term in the models, to normalize the count data for clusters 
and bubbles. For manually gated populations, two models 
were built using either the total number of cells in the sam-
ple or the number of cells in the parent population as an off-
set term. Tukey’s method was used for multiple comparison 
correction for the contrasts considered within each popula-
tion’s model. Additionally, false discovery rate was applied 
to correct for testing across different cell populations.

Visualization

Median marker intensity differential testing results were vis-
ualized in a SPADE-Treeblend plot by coloring each SPADE 
tree cluster using a combination of raw P values and fold 
changes computed after changes in marker intensities or 
population fractions. Numbers (nodes) grayed out in SPADE 
trees were not included in the analysis due to a restricted 
parent-child population comparison or the existence of an 
empty node for 1 patient sample in the respective dataset. 
FreeViz projections [28] were used to visualize population-
level differences between response to treatment and time 
point; briefly, cells were projected in the context of channels 
used for the analysis. Channel positions were updated using 
a supervised algorithm to maximize distance between cells 
from different categories. Composition shifts were visual-
ized using density plots and interpreted relative to the chan-
nel positions after optimization. Fan charts developed by 
the Bank of England [29] were used to examine individual 
contributions of each channel and assess homogeneity of 
response across a given cell population. Briefly, centiles for 
each marker and condition were calculated, and correspond-
ing values were visualized as stacked area plots color-coor-
dinated to corresponding centiles. Color intensity is greatest 
at the center of each fan chart (centered on the 50th centile) 
and decreases symmetrically across the spectrum.

Results

Prognostic factors among responders 
and nonresponders

As reported previously [16], baseline tumor CD38 expres-
sion and plasma EBV-DNA levels did not clearly correlate 
with clinical response to daratumumab (Fig. 1a, b). Com-
mon prognostic factors for response to standard of care, 
including β2 microglobulin, prognostic index of NK lym-
phoma, and disease stage, did not predict clinical response to 
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daratumumab (Supplemental Fig. 1). Baseline serum com-
plement protein CIC-C1q, C2, C3, and C4 levels in PB were 
comparable regardless of clinical response (Fig. 1c). IHC 
staining of individual main complement inhibitory proteins 
CD46, CD55, and CD59 in tumor tissue did not show a cor-
relation with clinical response (data not shown).

Immune repertoire effects 
and the immunomodulatory role of daratumumab 
in patients with R/R NKTCL

Based on multiparameter flow cytometry (MPFC) data, 
the baseline number of B cells (CD19+) but not T cells 
(helper/inducer: CD3+CD4+; cytotoxic: CD3+CD8+) 
or NK cells in PB correlated significantly with clinical 
response to daratumumab (Fig. 2a). A reduction in NK cell 
(CD3–CD16+CD56+) numbers in PB after treatment was 
observed in responders and nonresponders (Fig. 2a). B 
cell counts remained unchanged from baseline in respond-
ers after daratumumab treatment, whereas a slight reduc-
tion in B cell counts from baseline was observed in non-
responders (Fig. 2b). Baseline B cell count was higher in 

responders versus nonresponders while baseline T cell 
and NK cell counts were similar between responders and 
nonresponders (Supplemental Fig.  2). Consistent with 
observations in MM patients [9], an increase of T cell 
numbers (both CD8+ and CD4+) was seen post-treatment 
in responders (Fig. 2b), whereas a decrease of T cell num-
bers was observed post-treatment in nonresponders; in 
both responders and nonresponders, no significant differ-
ence was observed in the CD4/CD8 ratio, as measured by 
flow cytometry. Although the absolute number of regula-
tory T cells (Tregs; CD3+CD4+CD8–CD25+CD127dim) 
and total myeloid-derived suppressor cells (MDSCs; 
HLADRloLin−CD33+CD11b+) did not significantly 
change after daratumumab treatment (data not shown), the 
percentage of CD38+ Tregs and CD38+ monocytic MDSCs 
(m-MDSCs) was reduced to a similar extent in both respond-
ers and nonresponders (Fig. 2c).

CyTOF analyses, which allowed a deep dive into cellu-
lar components of the NKTCL-patient peripheral immune 
response, confirmed a higher percentage of B cells at base-
line in responders versus nonresponders (Fig. 3a), consist-
ent with findings obtained by MPFC. High percentages of 

Fig. 1   Response to daratumumab is not associated with CD38 expres-
sion, baseline EBV-DNA, or serum complement function. a CD38 
expression by IHC. b Plasma EBV levels. c Serum complement  

CIC-C1q, C2, C3, and C4 levels. EBV, Epstein-Barr virus; IHC, immu-
nohistochemical analysis;  NR, nonresponder; R, responder; C, cycle; 
D, day; EOT, end of treatment; CIC, circulating immune complexes
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baseline naïve B cells, most of which are CD38–, correlated 
with clinical response (Fig. 3b). Additionally, low percent-
ages of double-negative 2 B cells (DN2; a novel subset 
of CD27–IgD-B cells that are CD38–CD24– but express 
CD11c), plasmablasts, and plasma cells, most of which are 
CD38+, also correlated with clinical response. CD11c+ DN2 
B cells, which have recently been implicated in autoimmune 
diseases, represent a memory B cell subset with a capac-
ity to differentiate into antibody-producing plasma cells 
[30–32]. Additionally, previous data indicate that B cells 

can differentiate into plasma cells in the vaccine setting for 
daratumumab-treated MM patients [33]. Thus, maintenance 
of CD38– naïve B cells and depletion of the small percentage 
of plasmablasts and plasma cell B subtypes after daratu-
mumab treatment are expected to alter BCR immune reper-
toire without changing overall B cell percentages (Fig. 4).

To determine whether daratumumab treatment altered 
the clonal identity of B cells, a representative subgroup of  
13 patients, including 2 responders and 2 nonresponders 
with post-treatment PBMC samples, underwent BCR and 

Fig. 2   Immune repertoire effects and the immunomodulatory role 
of daratumumab as measured by MPFC. a The number of B, T, and 
NK cells in PB. b Fold changes following daratumumab treatment in 
the number of B, T, CD8, and CD4 cells from baseline. c CD38 per-
centages in Treg, total MDSC, and m-MDSC. MPFC, multiparameter 

flow cytometry; NK, natural killer; PB, peripheral blood; C, cycle; D, 
day; EOT, end of treatment; Treg, regulatory T cell; MDSC, myeloid-
derived suppressor cell; m-MDSC, monocytic myeloid-derived sup-
pressor cell; g-MDSC, granulocyte-like myeloid derived suppressor 
cell. *P < 0.05; **P < 0.005; ***P < 0.0005
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TCR sequencing. Since EBV-encoded RNA in situ hybridi-
zation positivity is a diagnostic criteria of NKTCL [34], 
we hypothesized that responders could have large numbers 
of baseline EBV-targeting B clones directed against the 
underlying EBV infection and would have a less diverse 
BCR repertoire. Sequencing of BCR IGH and TCRβ locus 
revealed lower BCR clonality in responders (measured by 
Simpson clonality), whereas TCR clonality was not affected 
(Fig. 5a). Therefore, it is unlikely responses can be fully 

explained by pre-existing EBV-related B cell clones. Fur-
thermore, we asked whether EBV-related B cells could be 
detected in patients. Subsequent annotation of baseline 
clonal sequence and matching to known EBV-associated 
sequence indicated that all patients had ≥ 1 EBV-related 
clone; the patient with the highest sum frequency of EBV-
related clones at baseline was a responder (Fig. 5b). How-
ever, there were no clear relationships between pre-exist-
ing or treatment-emergent EBV-related B or T cell clones 

Fig. 3   Immune repertoire effects and the immunomodulatory role of 
daratumumab as measured by CyTOF. a Baseline cell percentages.  
b B cell subtype percentages by response (P values were calculated 
with the unpaired t test with Welch’s correction). R/R NKTCL, relapsed 
or refractory natural killer/T cell lymphoma; CyTOF, cytometry  
by time-of-flight; R, responder; NR, nonresponder; NK, natural killer; 

mDC, myeloid dendritic cell; pDC, plasmacytoid dendritic cell; 
m-MDSC, monocytic myeloid-derived suppressor cell; SM, switched 
memory; NSM, nonswitched memory; DN, double negative; DN2, 
double negative 2; PB, plasmablast; PC, plasma cell. Graphs with par-
ticular significance are denoted with red boxes. *P < 0.05; **P < 0.01
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with clinical response. Furthermore, daratumumab treat-
ment did not alter repertoire diversity (measured by down 
sample rearrangements) of B or T cell lineages based on 
response (data not shown). However, in the limited samples 
with available longitudinal clonality data, only 0.4 to 1% 
of the BCR repertoire was similar between baseline and 
post-treatment samples, while there was 40 to 100% simi-
larity between TCR repertoire, suggesting the entire BCR 

repertoire was restructured following daratumumab treat-
ment (Fig. 6).

In addition to B cell subtypes and their correlation to 
clinical response, CyTOF analysis demonstrated a reduc-
tion of CD38+ NK cells, and NK T cells with daratu-
mumab treatment, as well as a reduction in MDSCs and 
Tregs within the CD38+ fraction (Fig. 7a, b). We used Tree-
blend plots to visualize significant changes in population 

Fig. 4   Change in the percentage of CD38+ and CD38– B cell subtypes after daratumumab treatment. R, responder; NR, nonresponder; 
PB, plasmablast; PC, plasma cell; C, cycle; D, day; EOT, end of treatment; SM, switched memory; NSM, nonswitched memory

Fig. 5   B cell and EBV clonality in patients with R/R NKTCL.  
a Baseline B cell clonality by response (P values were calculated 
with the Wilcoxon test). b Frequency of EBV-related clones in each 

evaluable patient. EBV, Epstein-Barr virus; R/R NKTCL, relapsed or 
refractory natural killer/T cell lymphoma; IgH, immunoglobulin heavy 
chain; TCRβ, T cell receptor beta; R, responder; NR, nonresponder



Annals of Hematology	

Fig. 6   Clonality similarity between baseline versus post-daratumumab 
treatment. a B cell clones. b T cell clones. DARA, daratumumab; 
IgH, immunoglobulin heavy chain; TCRβ, T cell receptor beta; R, 

responder; NR, nonresponder. Morisita index: a similarity metric that 
ranges from 0 to 1, where a value of 1 indicates identical repertoires 
and a value of 0 indicates no sequences are shared between 2 samples

Fig. 7   Visualizing daratumumab-mediated changes in immune 
cells. a CyTOF analysis of main cell population changes after dara-
tumumab treatment visualized by clustering. b CyTOF analysis of 
population changes in CD38+ NK T cells with daratumumab treat-
ment visualized by a line graph. c FreeViz visualization of functional 

changes in T cells after daratumumab treatment. CyTOF, cytometry 
by time-of-flight; EOT, end of treatment; C, cycle; D, day; Treg, reg-
ulatory T cell; DP, double positive; TCRgd, T cell receptor gamma 
delta; mDC, myeloid dendritic cell; pDC, plasmacytoid dendritic cell; 
R, responder; NR, nonresponder
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size in different conditions. The reduction in Tregs was more 
substantial in responders than in nonresponders (compare 
left and right panels), and there was an increase in CD8+ 
T cells in responders but not in nonresponders. Peripheral 
NK cells were diminished upon daratumumab treatment in 
both responders and nonresponders. Persisting NK cells in 
patients with R/R NKTCL express cell surface markers char-
acteristic of an immature phenotype and dysfunctionality 
(Supplemental Fig. 3). The 4 main nodes identified were 
immature CD57–HLA–DR+CD56bright NK cells. Although 
node 144 expressed functional marker CD16 and all nodes 
expressed granzyme B and perforin, low CD137 expression 
was observed in all nodes, indicating that the persisting NK 
cell functions are likely compromised. To further explore the 
effect of daratumumab on T cells, we trained a FreeViz map 
[28] to visualize differences in cell composition between 
time points and between responders and nonrespond-
ers. After training, cells were visualized as density plots, 
whereas cell surface markers most relevant to the separation 
between time points and responders and nonresponders are 
far away from the center of the projection. Daratumumab 
treatment clearly shifted the composition away from CD38 
in responders and nonresponders, suggesting reduced CD38 
expression in all populations post-treatment. In responders, 
composition shifted towards granzyme B+ CD57+ terminally 
differentiated CD8+ T cells (left panel, arrow) compared to 
nonresponders (right panel, Fig. 7c). Higher density in the 
CD8+ population compared with the CD4+ population was 
observed in responders versus nonresponders, in whom den-
sity of CD8+ was much less, suggesting a unique increase 
of CD8+ in responders (Fig. 7c). The same trend towards a 
decrease in the CD4/CD8 ratio from baseline in responders 
but not nonresponders was also observed by direct gating of 
CyTOF populations (Supplemental Fig. 4). Total frequency 
of Tregs and MDSCs did not change despite diminished CD38 
expression in both responders and nonresponders (Supple-
mental Fig. 5), suggesting that daratumumab did not reverse 
the immune suppression mediated by Tregs or MDSCs.

Discussion

Extranodal NKTCL, nasal type, is a rare, fast-growing (high-
grade) non-Hodgkin lymphoma. It is more common in peo-
ple from Asia, Central America, and South America, but it 
is very rare in the western world. It can start in T cells, but it 
develops most often in NK cells. In general, neoplastic NK 
cells exhibit a larger proportion and homogeneous popula-
tion with a greater intensity of CD56 expression and forward 
scatter level compared with reactive NK cells, as well as a 
homogeneous positive CD38 phenotype [35].

This investigation of the NKT2001 study, to our knowl-
edge, is the first in-depth B cell subtype analysis and first 

observation of the BCR repertoire in daratumumab-treated 
patients with R/R NKTCL. As demonstrated by MPFC, 
treatment with daratumumab led to a reduction in the abso-
lute numbers of NK cells and the percentage of CD38+ Tregs 
and CD38+ m-MDSCs in responders and nonresponders, 
as well as an increase in the number of CD4+ and CD8+ 
T cells with a concomitant decrease of CD4/CD8 ratio in 
responders but not nonresponders. A lower reduction of total 
B cell counts observed in responders versus nonrespond-
ers suggests that the differential response may be correlated 
with specific B cell subtypes or additional cell types unable 
to be measured by MPFC. Analysis by CyTOF supported 
the MPFC findings, and further indicated a specific reduc-
tion in the number of plasma cells and plasmablasts, but not 
in naïve B cells with daratumumab treatment. Data show 
that high percentages of baseline naïve B cells and low per-
centages of DN2 B cells, plasmablasts, and plasma cells are 
correlated with clinical response. However, unclear relation-
ships between EBV-related B or T cell clones (pre-existing 
or treatment-emergent) with clinical response may have been 
confounded by MHC restriction of EBV antigens in the anal-
yses. The high number of baseline B cells did not correlate 
directly with greater EBV-specific immune clones; however, 
responders presented with the highest number of baseline 
EBV-related clones. Daratumumab treatment induced a shift 
in the composition of the T cell compartment in respond-
ers, increasing the fraction of terminally differentiated 
CD8+ T cells. Overall, daratumumab did not significantly 
alter diversity of B or T cells based on response; however, 
daratumumab did restructure B cell clone repertoire without 
impacting T cell clonal identity.

Immune profiling of patients with R/R NKTCL demon-
strated maintenance of CD38– naïve B cells and depletion of 
plasmablasts and plasma cell B subtypes following daratu-
mumab treatment. The findings from NKT2001 indicate that 
CD38 activity contributes to the pathogenic roles of auto-
reactive B cell populations and potentially modulates the 
diverse immune cell types in the autoimmune setting. This 
phenomenon has been observed in pre-clinical data using 
the anti-CD38 antibody TAK-079 in a cynomolgus pri-
mate model of collagen-induced arthritis [36]. Korver et al. 
showed that histomorphometric and radiological analyses 
revealed significantly less joint damage in animals treated 
prophylactically and therapeutically with TAK-079, and this 
benefit relates to the depletion of CD38-expressing leuko-
cytes. Daratumumab treatment was also found to reduce the 
frequency of normal plasma cells in bone marrow samples 
from patients with relapsed or refractory MM, as observed 
through reduced levels of polyclonal IgA, IgE, and IgM [33].

In MM, the on-tumor and immunomodulatory mechanism 
of action of daratumumab has been well described [5–12]. 
In NKTCL, further investigation is needed to determine if 
the immunomodulatory activities of daratumumab confer 
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clinical benefit among patients with CD38-negative tumors. 
The finding that one patient in NKT2001 with CD38-
negative tumors responded to treatment suggests that the 
immunomodulatory activities of daratumumab may provide 
clinical benefit among patients whose tumors do not express 
CD38; however, the small sample size limits this interpre-
tation. Future studies are warranted to examine the immu-
nomodulatory activities of daratumumab and their ability to 
improve clinical outcomes in patients with CD38-negative 
tumors.

Finally, other studies have uncovered the role of CD38 in 
chronic autoimmune diseases, such as inflammatory bowel 
disease and multiple sclerosis, through various mechanisms 
[37], and studies evaluating the efficacy of daratumumab 
in these patient populations may be warranted. In addition, 
studies have investigated the potential of daratumumab to 
treat common vasoactive-mediated allergic reactions and 
post-transplant autoimmune hemolytic anemia [38, 39].

Conclusions

In summary, although daratumumab induces on-tumor activ-
ity, through several CD38 immune-mediated and CD38-
modulating actions, and induces immunomodulatory effects 
in patients with MM, its effects on CD38-expressing R/R 
NKTCL tumor cells as observed in the NKT2001 study 
were suboptimal. In this study, the changes observed in the 
immune profile of patients with R/R NKTCL suggest that 
modulation of the immune environment, including differ-
ences in B and T cell populations among responders and 
nonresponders, is crucial for daratumumab-mediated anti-
tumor activities in this patient population. More broadly, 
the ability of daratumumab to restructure the B cell clone 
repertoire while maintaining T cell clonal identity, coupled 
with its ability to mediate immune responses, may support 
potential clinical benefits of daratumumab in the autoim-
mune disease setting.
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