Skip to main content

Advertisement

Log in

Role and application of chemokine CXCL13 in central nervous system lymphoma

  • Review Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Chemokine ligand 13 (CXCL13) and its chemokine receptor 5 (CXCR5) both play significant roles in the tumor microenvironment (TME). CXCL13 in cerebrospinal fluid (CSF) has recently been found to have significant diagnostic and prognostic value in primary and secondary central nervous system (CNS) diffuse large B-cell lymphoma (DLBCL), and the CXCL13-CXCR5 axis has been shown to play an important chemotactic role in the TME of CNS-DLBCL. In this review, we first describe the clinical value of CXCL13 in CSF as a prognostic and diagnostic biomarker for CNS-DLBCL. In addition, this review also discusses the specific mechanisms associated with the CXCL13-CXCR5 axis in tumor immunity of primary diffuse large B cell lymphoma of the central nervous system (PCNS-DLBCL) by reviewing the specific mechanisms of this axis in the immune microenvironment of DLBCL and CNS inflammation, as well as the prospects for the use of CXCL13-CXCR5 axis in immunotherapy in PCNS-DLBCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Legler DF, Loetscher M, Roos RS, Clark-Lewis I, Baggiolini M, Moser B (1998) B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J Exp Med 187(4):655–660. https://doi.org/10.1084/jem.187.4.655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carlsen HS, Baekkevold ES, Morton HC, Haraldsen G, Brandtzaeg P (2004) Monocyte-like and mature macrophages produce CXCL13 (B cell-attracting chemokine 1) in inflammatory lesions with lymphoid neogenesis. Blood 104(10):3021–3027. https://doi.org/10.1182/blood-2004-02-0701

    Article  CAS  PubMed  Google Scholar 

  3. Wang X, Cho B, Suzuki K, Xu Y, Green JA, An J et al (2011) Follicular dendritic cells help establish follicle identity and promote B cell retention in germinal centers. J Exp Med 208(12):2497–2510. https://doi.org/10.1084/jem.20111449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Allen CD, Ansel KM, Low C, Lesley R, Tamamura H, Fujii N et al (2004) Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat Immunol 5(9):943–952. https://doi.org/10.1038/ni1100

    Article  CAS  PubMed  Google Scholar 

  5. Ansel KM, Harris RB, Cyster JG (2002) CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity. Immunity 16(1):67–76. https://doi.org/10.1016/s1074-7613(01)00257-6

    Article  CAS  PubMed  Google Scholar 

  6. Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12(2):121–127. https://doi.org/10.1016/s1074-7613(00)80165-x

    Article  CAS  PubMed  Google Scholar 

  7. Shi W, Yang B, Sun Q, Meng J, Zhao X, Du S et al (2020) PD-1 regulates CXCR5(+) CD4 T cell-mediated proinflammatory functions in non-small cell lung cancer patients. Int Immunopharmacol 82:106295. https://doi.org/10.1016/j.intimp.2020.106295

    Article  CAS  PubMed  Google Scholar 

  8. Cha Z, Qian G, Zang Y, Gu H, Huang Y, Zhu L et al (2017) Circulating CXCR5+CD4+ T cells assist in the survival and growth of primary diffuse large B cell lymphoma cells through interleukin 10 pathway. Exp Cell Res 350(1):154–160. https://doi.org/10.1016/j.yexcr.2016.11.017

    Article  CAS  PubMed  Google Scholar 

  9. Pimenta EM, De S, Weiss R, Feng D, Hall K, Kilic S et al (2015) IRF5 is a novel regulator of CXCL13 expression in breast cancer that regulates CXCR5(+) B- and T-cell trafficking to tumor-conditioned media. Immunol Cell Biol 93(5):486–499. https://doi.org/10.1038/icb.2014.110

    Article  CAS  PubMed  Google Scholar 

  10. Wang GZ, Cheng X, Zhou B, Wen ZS, Huang YC, Chen HB et al (2015) The chemokine CXCL13 in lung cancers associated with environmental polycyclic aromatic hydrocarbons pollution. eLife:4. https://doi.org/10.7554/eLife.09419

  11. Müller G, Höpken UE, Lipp M (2003) The impact of CCR7 and CXCR5 on lymphoid organ development and systemic immunity. Immunol Rev 195:117–135. https://doi.org/10.1034/j.1600-065x.2003.00073.x

    Article  PubMed  Google Scholar 

  12. Cyster JG (2005) Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol 23:127–159. https://doi.org/10.1146/annurev.immunol.23.021704.115628

    Article  CAS  PubMed  Google Scholar 

  13. Förster R, Emrich T, Kremmer E, Lipp M (1994) Expression of the G-protein--coupled receptor BLR1 defines mature, recirculating B cells and a subset of T-helper memory cells. Blood 84(3):830–840

    Article  PubMed  Google Scholar 

  14. Kazanietz MG, Durando M, Cooke M (2019) CXCL13 and its receptor CXCR5 in cancer: inflammation, immune response, and beyond. Front Endocrinol 10:471. https://doi.org/10.3389/fendo.2019.00471

    Article  Google Scholar 

  15. Jang IK, Cronshaw DG, Xie LK, Fang G, Zhang J, Oh H et al (2011) Growth-factor receptor-bound protein-2 (Grb2) signaling in B cells controls lymphoid follicle organization and germinal center reaction. Proc Natl Acad Sci U S A 108(19):7926–7931. https://doi.org/10.1073/pnas.1016451108

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dürig J, Schmücker U, Dührsen U (2001) Differential expression of chemokine receptors in B cell malignancies. Leukemia 15(5):752–756. https://doi.org/10.1038/sj.leu.2402107

    Article  PubMed  Google Scholar 

  17. Grommes C, DeAngelis LM (2017) Primary CNS Lymphoma. J Clin Oncol 35(21):2410–2418. https://doi.org/10.1200/jco.2017.72.7602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rubenstein JL, Wong VS, Kadoch C, Gao HX, Barajas R, Chen L et al (2013) CXCL13 plus interleukin 10 is highly specific for the diagnosis of CNS lymphoma. Blood 121(23):4740–4748. https://doi.org/10.1182/blood-2013-01-476333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mabray MC, Barajas RF, Villanueva-Meyer JE, Zhang CA, Valles FE, Rubenstein JL et al (2016) The combined performance of ADC, CSF CXC chemokine ligand 13, and CSF interleukin 10 in the diagnosis of central nervous system lymphoma. AJNR Am J Neuroradiol 37(1):74–79. https://doi.org/10.3174/ajnr.A4450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brunn A, Montesinos-Rongen M, Strack A, Reifenberger G, Mawrin C, Schaller C et al (2007) Expression pattern and cellular sources of chemokines in primary central nervous system lymphoma. Acta Neuropathol 114(3):271–276. https://doi.org/10.1007/s00401-007-0258-x

    Article  CAS  PubMed  Google Scholar 

  21. Jahnke K, Coupland SE, Na IK, Loddenkemper C, Keilholz U, Korfel A et al (2005) Expression of the chemokine receptors CXCR4, CXCR5, and CCR7 in primary central nervous system lymphoma. Blood 106(1):384–385. https://doi.org/10.1182/blood-2005-01-0324

    Article  CAS  PubMed  Google Scholar 

  22. Smith JR, Braziel RM, Paoletti S, Lipp M, Uguccioni M, Rosenbaum JT (2003) Expression of B-cell-attracting chemokine 1 (CXCL13) by malignant lymphocytes and vascular endothelium in primary central nervous system lymphoma. Blood 101(3):815–821. https://doi.org/10.1182/blood-2002-05-1576

    Article  CAS  PubMed  Google Scholar 

  23. Smith JR, Falkenhagen KM, Coupland SE, Chipps TJ, Rosenbaum JT, Braziel RM (2007) Malignant B cells from patients with primary central nervous system lymphoma express stromal cell-derived factor-1. Am J Clin Pathol 127(4):633–641. https://doi.org/10.1309/nuqhj79bhwyd9taf

    Article  CAS  PubMed  Google Scholar 

  24. Heming M, Haessner S, Wolbert J, Lu IN, Li X, Brokinkel B et al (2022) Intratumor heterogeneity and T cell exhaustion in primary CNS lymphoma. Genome Med 14(1):109. https://doi.org/10.1186/s13073-022-01110-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li Z, Mahesh SP, Shen DF, Liu B, Siu WO, Hwang FS et al (2006) Eradication of tumor colonization and invasion by a B cell-specific immunotoxin in a murine model for human primary intraocular lymphoma. Cancer Res 66(21):10586–10593. https://doi.org/10.1158/0008-5472.Can-06-1981

    Article  CAS  PubMed Central  Google Scholar 

  26. Chan CC, Shen D, Hackett JJ, Buggage RR, Tuaillon N (2003) Expression of chemokine receptors, CXCR4 and CXCR5, and chemokines, BLC and SDF-1, in the eyes of patients with primary intraocular lymphoma. Ophthalmology 110(2):421–426. https://doi.org/10.1016/s0161-6420(02)01737-2

    Article  PubMed  Google Scholar 

  27. Chan CC (2003) Molecular pathology of primary intraocular lymphoma. Trans Am Ophthalmol Soc 101:275–292

    PubMed  PubMed Central  Google Scholar 

  28. Babst N, Isbell LK, Rommel F, Tura A, Ranjbar M, Grisanti S et al (2022) CXCR4, CXCR5 and CD44 may be involved in homing of lymphoma cells into the eye in a patient derived xenograft homing mouse model for primary vitreoretinal lymphoma. Int J Mol Sci 23(19). https://doi.org/10.3390/ijms231911757

  29. Pasqualucci L, Dalla-Favera R (2018) Genetics of diffuse large B-cell lymphoma. Blood 131(21):2307–2319. https://doi.org/10.1182/blood-2017-11-764332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fischer L, Korfel A, Pfeiffer S, Kiewe P, Volk HD, Cakiroglu H et al (2009) CXCL13 and CXCL12 in central nervous system lymphoma patients. Clin Cancer Res 15(19):5968–5973. https://doi.org/10.1158/1078-0432.Ccr-09-0108

    Article  CAS  PubMed  Google Scholar 

  31. Hochberg FH, Miller DC (1988) Primary central nervous system lymphoma. J Neurosurg 68(6):835–853. https://doi.org/10.3171/jns.1988.68.6.0835

    Article  CAS  PubMed  Google Scholar 

  32. Jiang L, Marlow LA, Cooper SJ, Roemeling CV, Menke DM, Copland JA et al (2010) Selective central nervous system tropism of primary central nervous system lymphoma. Int J Clin Exp Pathol 3(8):763–767

    PubMed  PubMed Central  Google Scholar 

  33. Lemma SA, Pasanen AK, Haapasaari KM, Sippola A, Sormunen R, Soini Y et al (2016) Similar chemokine receptor profiles in lymphomas with central nervous system involvement - possible biomarkers for patient selection for central nervous system prophylaxis, a retrospective study. Eur J Haematol 96(5):492–501. https://doi.org/10.1111/ejh.12626

    Article  CAS  PubMed  Google Scholar 

  34. Tun HW, Personett D, Baskerville KA, Menke DM, Jaeckle KA, Kreinest P et al (2008) Pathway analysis of primary central nervous system lymphoma. Blood. 111(6):3200–3210. https://doi.org/10.1182/blood-2007-10-119099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sugita Y, Terasaki M, Nakashima S, Ohshima K, Morioka M, Abe H (2015) Perivascular microenvironment in primary central nervous system lymphomas: the role of chemokines and the endothelin B receptor. Brain Tumor Pathol 32(1):41–48. https://doi.org/10.1007/s10014-014-0206-0

    Article  CAS  PubMed  Google Scholar 

  36. Alderson L, Fetell MR, Sisti M, Hochberg F, Cohen M, Louis DN (1996) Sentinel lesions of primary CNS lymphoma. J Neurol Neurosurg Psychiatry 60(1):102–105. https://doi.org/10.1136/jnnp.60.1.102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mazzucchelli L, Blaser A, Kappeler A, Schärli P, Laissue JA, Baggiolini M et al (1999) BCA-1 is highly expressed in Helicobacter pylori-induced mucosa-associated lymphoid tissue and gastric lymphoma. J Clin Invest 104(10):R49–R54. https://doi.org/10.1172/jci7830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xanthou G, Polihronis M, Tzioufas AG, Paikos S, Sideras P, Moutsopoulos HM (2001) “Lymphoid” chemokine messenger RNA expression by epithelial cells in the chronic inflammatory lesion of the salivary glands of Sjögren’s syndrome patients: possible participation in lymphoid structure formation. Arthritis Rheum 44(2):408–418. https://doi.org/10.1002/1529-0131(200102)44:2<408::Aid-anr60>3.0.Co;2-0

    Article  CAS  PubMed  Google Scholar 

  39. Sáez de Guinoa J, Barrio L, Mellado M, Carrasco YR (2011) CXCL13/CXCR5 signaling enhances BCR-triggered B-cell activation by shaping cell dynamics. Blood 118(6):1560–1569. https://doi.org/10.1182/blood-2011-01-332106

    Article  CAS  PubMed  Google Scholar 

  40. Venetz D, Ponzoni M, Schiraldi M, Ferreri AJ, Bertoni F, Doglioni C et al (2010) Perivascular expression of CXCL9 and CXCL12 in primary central nervous system lymphoma: T-cell infiltration and positioning of malignant B cells. Int J Cancer 127(10):2300–2312. https://doi.org/10.1002/ijc.25236

    Article  CAS  PubMed  Google Scholar 

  41. van Westrhenen A, Smidt LCA, Seute T, Nierkens S, Stork ACJ, Minnema MC et al (2018) Diagnostic markers for CNS lymphoma in blood and cerebrospinal fluid: a systematic review. Br J Haematol 182(3):384–403. https://doi.org/10.1111/bjh.15410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maeyama M, Sasayama T, Tanaka K, Nakamizo S, Tanaka H, Nishihara M et al (2020) Multi-marker algorithms based on CXCL13, IL-10, sIL-2 receptor, and β2-microglobulin in cerebrospinal fluid to diagnose CNS lymphoma. Cancer Med 9(12):4114–4125. https://doi.org/10.1002/cam4.3048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Masouris I, Manz K, Pfirrmann M, Dreyling M, Angele B, Straube A et al (2021) CXCL13 and CXCL9 CSF levels in central nervous system lymphoma-diagnostic, therapeutic, and prognostic relevance. Front Neurol 12:654543. https://doi.org/10.3389/fneur.2021.654543

    Article  PubMed  PubMed Central  Google Scholar 

  44. Qi XW, Xia SH, Yin Y, Jin LF, Pu Y, Hua D et al (2014) Expression features of CXCR5 and its ligand, CXCL13 associated with poor prognosis of advanced colorectal cancer. Eur Rev Med Pharmacol Sci 18(13):1916–1924

    PubMed  Google Scholar 

  45. Mir MA, Maurer MJ, Ziesmer SC, Slager SL, Habermann T, Macon WR et al (2015) Elevated serum levels of IL-2R, IL-1RA, and CXCL9 are associated with a poor prognosis in follicular lymphoma. Blood 125(6):992–998. https://doi.org/10.1182/blood-2014-06-583369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wieduwilt MJ, Valles F, Issa S, Behler CM, Hwang J, McDermott M et al (2012) Immunochemotherapy with intensive consolidation for primary CNS lymphoma: a pilot study and prognostic assessment by diffusion-weighted MRI. Clin Cancer Res 18(4):1146–1155. https://doi.org/10.1158/1078-0432.Ccr-11-0625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Grommes C, Nayak L, Tun HW, Batchelor TT (2019) Introduction of novel agents in the treatment of primary CNS lymphoma. Neuro-oncology 21(3):306–313. https://doi.org/10.1093/neuonc/noy193

    Article  PubMed  Google Scholar 

  48. Yu L, Li L, Medeiros LJ, Young KH (2017) NF-κB signaling pathway and its potential as a target for therapy in lymphoid neoplasms. Blood Rev 31(2):77–92. https://doi.org/10.1016/j.blre.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  49. Young RM, Wu T, Schmitz R, Dawood M, Xiao W, Phelan JD et al (2015) Survival of human lymphoma cells requires B-cell receptor engagement by self-antigens. Proc Natl Acad Sci U S A 112(44):13447–13454. https://doi.org/10.1073/pnas.1514944112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB et al (2010) Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 463(7277):88–92. https://doi.org/10.1038/nature08638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lenz G, Davis RE, Ngo VN, Lam L, George TC, Wright GW et al (2008) Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science (New York, NY) 319(5870):1676–1679. https://doi.org/10.1126/science.1153629

    Article  CAS  Google Scholar 

  52. Soussain C, Choquet S, Blonski M, Leclercq D, Houillier C, Rezai K et al (2019) Ibrutinib monotherapy for relapse or refractory primary CNS lymphoma and primary vitreoretinal lymphoma: final analysis of the phase II ‘proof-of-concept’ iLOC study by the Lymphoma study association (LYSA) and the French oculo-cerebral lymphoma (LOC) network. Eur J Cancer 117:121–130. https://doi.org/10.1016/j.ejca.2019.05.024

    Article  CAS  PubMed  Google Scholar 

  53. Buggy JJ, Elias L (2012) Bruton tyrosine kinase (BTK) and its role in B-cell malignancy. Int Rev Immunol 31(2):119–132. https://doi.org/10.3109/08830185.2012.664797

    Article  CAS  PubMed  Google Scholar 

  54. Kil LP, de Bruijn MJ, van Nimwegen M, Corneth OB, van Hamburg JP, Dingjan GM et al (2012) Btk levels set the threshold for B-cell activation and negative selection of autoreactive B cells in mice. Blood 119(16):3744–3756. https://doi.org/10.1182/blood-2011-12-397919

    Article  CAS  PubMed  Google Scholar 

  55. Robak T, Robak P (2013) BCR signaling in chronic lymphocytic leukemia and related inhibitors currently in clinical studies. Int Rev Immunol 32(4):358–376. https://doi.org/10.3109/08830185.2013.786711

    Article  CAS  PubMed  Google Scholar 

  56. Quiroga MP, Balakrishnan K, Kurtova AV, Sivina M, Keating MJ, Wierda WG et al (2009) B-cell antigen receptor signaling enhances chronic lymphocytic leukemia cell migration and survival: specific targeting with a novel spleen tyrosine kinase inhibitor, R406. Blood 114(5):1029–1037. https://doi.org/10.1182/blood-2009-03-212837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. de Gorter DJ, Beuling EA, Kersseboom R, Middendorp S, van Gils JM, Hendriks RW et al (2007) Bruton’s tyrosine kinase and phospholipase Cgamma2 mediate chemokine-controlled B cell migration and homing. Immunity 26(1):93–104. https://doi.org/10.1016/j.immuni.2006.11.012

    Article  CAS  PubMed  Google Scholar 

  58. de Rooij MF, Kuil A, Geest CR, Eldering E, Chang BY, Buggy JJ et al (2012) The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood 119(11):2590–2594. https://doi.org/10.1182/blood-2011-11-390989

    Article  CAS  PubMed  Google Scholar 

  59. Ponader S, Chen SS, Buggy JJ, Balakrishnan K, Gandhi V, Wierda WG et al (2012) The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 119(5):1182–1189. https://doi.org/10.1182/blood-2011-10-386417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Irani DN (2016) Regulated production of CXCL13 within the central nervous system. J Clin Cell Immunol 7(5). https://doi.org/10.4172/2155-9899.1000460

  61. Huber AK, Irani DN (2015) Targeting CXCL13 during neuroinflammation. Adv Neuroimmune Biol 6(1):1–8. https://doi.org/10.3233/nib-150101

    Article  PubMed  PubMed Central  Google Scholar 

  62. Li R, Ma L, Huang H, Ou S, Yuan J, Xu T et al (2017) Altered expression of CXCL13 and CXCR5 in intractable temporal lobe epilepsy patients and pilocarpine-induced epileptic rats. Neurochem Res 42(2):526–540. https://doi.org/10.1007/s11064-016-2102-y

    Article  CAS  PubMed  Google Scholar 

  63. Kowarik MC, Cepok S, Sellner J, Grummel V, Weber MS, Korn T et al (2012) CXCL13 is the major determinant for B cell recruitment to the CSF during neuroinflammation. J Neuroinflammation 9:93. https://doi.org/10.1186/1742-2094-9-93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang J, Yin C, Pan Y, Yang Y, Li W, Ni H et al (2023) CXCL13 contributes to chronic pain of a mouse model of CRPS-I via CXCR5-mediated NF-κB activation and pro-inflammatory cytokine production in spinal cord dorsal horn. J Neuroinflammation 20(1):109. https://doi.org/10.1186/s12974-023-02778-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shen Y, Zhang Y, Du J, Jiang B, Shan T, Li H et al (2021) CXCR5 down-regulation alleviates cognitive dysfunction in a mouse model of sepsis-associated encephalopathy: potential role of microglial autophagy and the p38MAPK/NF-κB/STAT3 signaling pathway. J Neuroinflammation 18(1):246. https://doi.org/10.1186/s12974-021-02300-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schaff LR, Grommes C (2021) Update on novel therapeutics for primary CNS lymphoma. Cancers 13(21). https://doi.org/10.3390/cancers13215372

  67. Ponzoni M, Berger F, Chassagne-Clement C, Tinguely M, Jouvet A, Ferreri AJ et al (2007) Reactive perivascular T-cell infiltrate predicts survival in primary central nervous system B-cell lymphomas. Br J Haematol 138(3):316–323. https://doi.org/10.1111/j.1365-2141.2007.06661.x

    Article  CAS  PubMed  Google Scholar 

  68. Riemersma SA, Oudejans JJ, Vonk MJ, Dreef EJ, Prins FA, Jansen PM et al (2005) High numbers of tumour-infiltrating activated cytotoxic T lymphocytes, and frequent loss of HLA class I and II expression, are features of aggressive B cell lymphomas of the brain and testis. J Pathol 206(3):328–336. https://doi.org/10.1002/path.1783

    Article  CAS  Google Scholar 

  69. Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B (2000) CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med 192(11):1553–1562. https://doi.org/10.1084/jem.192.11.1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, Lipp M et al (2000) Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med 192(11):1545–1552. https://doi.org/10.1084/jem.192.11.1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pedemonte E, Mancardi G, Giunti D, Corcione A, Benvenuto F, Pistoia V et al (2006) Mechanisms of the adaptive immune response inside the central nervous system during inflammatory and autoimmune diseases. Pharmacol Ther 111(3):555–566. https://doi.org/10.1016/j.pharmthera.2005.11.007

    Article  CAS  PubMed  Google Scholar 

  72. Nerviani A, Pitzalis C (2018) Role of chemokines in ectopic lymphoid structures formation in autoimmunity and cancer. J Leukoc Biol 104(2):333–341. https://doi.org/10.1002/jlb.3mr0218-062r

    Article  CAS  PubMed  Google Scholar 

  73. Harrer C, Otto F, Radlberger RF, Moser T, Pilz G, Wipfler P et al (2022) The CXCL13/CXCR5 immune axis in health and disease-implications for intrathecal B Cell activities in neuroinflammation. Cells 11(17). https://doi.org/10.3390/cells11172649

  74. Tang J, Zha J, Guo X, Shi P, Xu B (2017) CXCR5(+)CD8(+) T cells present elevated capacity in mediating cytotoxicity toward autologous tumor cells through interleukin 10 in diffuse large B-cell lymphoma. Int Immunopharmacol 50:146–151. https://doi.org/10.1016/j.intimp.2017.06.020

    Article  CAS  PubMed  Google Scholar 

  75. Ohmatsu H, Sugaya M, Kadono T, Tamaki K (2007) CXCL13 and CCL21 are expressed in ectopic lymphoid follicles in cutaneous lymphoproliferative disorders. J Invest Dermatol 127(10):2466–2468. https://doi.org/10.1038/sj.jid.5700873

    Article  CAS  PubMed  Google Scholar 

  76. Yu H, Shahsafaei A, Dorfman DM (2009) Germinal-center T-helper-cell markers PD-1 and CXCL13 are both expressed by neoplastic cells in angioimmunoblastic T-cell lymphoma. Am J Clin Pathol 131(1):33–41. https://doi.org/10.1309/ajcp62wrkerpxdrt

    Article  PubMed  Google Scholar 

  77. Rousset F, Garcia E, Defrance T, Péronne C, Vezzio N, Hsu DH et al (1992) Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc Natl Acad Sci U S A 89(5):1890–1893. https://doi.org/10.1073/pnas.89.5.1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cha Z, Gu H, Zang Y, Wang Z, Li J, Huang W et al (2018) The prevalence and function of CD4(+)CXCR5(+)Foxp3(+) follicular regulatory T cells in diffuse large B cell lymphoma. Int Immunopharmacol 61:132–139. https://doi.org/10.1016/j.intimp.2018.05.025

    Article  CAS  PubMed  Google Scholar 

  79. Müller G, Lipp M (2001) Signal transduction by the chemokine receptor CXCR5: structural requirements for G protein activation analyzed by chimeric CXCR1/CXCR5 molecules. Biol Chem 382(9):1387–1397. https://doi.org/10.1515/bc.2001.171

    Article  PubMed  Google Scholar 

  80. Dieu-Nosjean MC, Giraldo NA, Kaplon H, Germain C, Fridman WH, Sautès-Fridman C (2016) Tertiary lymphoid structures, drivers of the anti-tumor responses in human cancers. Immunol Rev 271(1):260–275. https://doi.org/10.1111/imr.12405

    Article  CAS  PubMed  Google Scholar 

  81. Nayak L, Iwamoto FM, LaCasce A, Mukundan S, Roemer MGM, Chapuy B et al (2017) PD-1 blockade with nivolumab in relapsed/refractory primary central nervous system and testicular lymphoma. Blood 129(23):3071–3073. https://doi.org/10.1182/blood-2017-01-764209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ferreri AJM, Calimeri T, Cwynarski K, Dietrich J, Grommes C, Hoang-Xuan K et al (2023) Primary central nervous system lymphoma. Nat Rev Dis Primers 9(1):29. https://doi.org/10.1038/s41572-023-00439-0

    Article  PubMed  Google Scholar 

  83. Li H, van der Leun AM, Yofe I, Lubling Y, Gelbard-Solodkin D, van Akkooi ACJ et al (2019) Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 176(4):775–89.e18. https://doi.org/10.1016/j.cell.2018.11.043

    Article  CAS  PubMed  Google Scholar 

  84. Groeneveld CS, Fontugne J, Cabel L, Bernard-Pierrot I, Radvanyi F, Allory Y et al (2021) Tertiary lymphoid structures marker CXCL13 is associated with better survival for patients with advanced-stage bladder cancer treated with immunotherapy. Eur J Cancer 148:181–189. https://doi.org/10.1016/j.ejca.2021.01.036

    Article  CAS  PubMed  Google Scholar 

  85. Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M, Mitra S et al (2020) Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577(7791):561–565. https://doi.org/10.1038/s41586-019-1914-8

    Article  CAS  PubMed  Google Scholar 

  86. Goswami S, Chen Y, Anandhan S, Szabo PM, Basu S, Blando JM et al (2020) ARID1A mutation plus CXCL13 expression act as combinatorial biomarkers to predict responses to immune checkpoint therapy in mUCC. Sci Transl Med 12(548). https://doi.org/10.1126/scitranslmed.abc4220

  87. Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC et al (2016) Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537(7620):417–421. https://doi.org/10.1038/nature19330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Liu B, Zhang Y, Wang D, Hu X, Zhang Z (2022) Single-cell meta-analyses reveal responses of tumor-reactive CXCL13(+) T cells to immune-checkpoint blockade. Nat Can 3(9):1123–1136. https://doi.org/10.1038/s43018-022-00433-7

    Article  CAS  Google Scholar 

  89. Phillips D, Matusiak M, Gutierrez BR, Bhate SS, Barlow GL, Jiang S et al (2021) Immune cell topography predicts response to PD-1 blockade in cutaneous T cell lymphoma. Nat Commun 12(1):6726. https://doi.org/10.1038/s41467-021-26974-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Miyao K, Yokota H, Sakemura RL (2022) Is CD19-directed chimeric antigen receptor T cell therapy a smart strategy to combat central nervous system lymphoma? Front Oncol 12:1082235. https://doi.org/10.3389/fonc.2022.1082235

    Article  CAS  Google Scholar 

  91. Frigault MJ, Dietrich J, Gallagher K, Roschewski M, Jordan JT, Forst D et al (2022) Safety and efficacy of tisagenlecleucel in primary CNS lymphoma: a phase 1/2 clinical trial. Blood 139(15):2306–2315. https://doi.org/10.1182/blood.2021014738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tu S, Zhou X, Guo Z, Huang R, Yue C, He Y et al (2019) CD19 and CD70 dual-target chimeric antigen receptor T-Cell therapy for the treatment of relapsed and refractory primary central nervous system diffuse large B-Cell lymphoma. Front Oncol 9:1350. https://doi.org/10.3389/fonc.2019.01350

    Article  PubMed  PubMed Central  Google Scholar 

  93. Alcantara M, Houillier C, Blonski M, Rubio MT, Willems L, Rascalou AW et al (2022) CAR T-cell therapy in primary central nervous system lymphoma: the clinical experience of the French LOC network. Blood 139(5):792–796. https://doi.org/10.1182/blood.2021012932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bunse M, Pfeilschifter J, Bluhm J, Zschummel M, Joedicke JJ, Wirges A et al (2021) CXCR5 CAR-T cells simultaneously target B cell non-Hodgkin’s lymphoma and tumor-supportive follicular T helper cells. Nat Commun 12(1):240. https://doi.org/10.1038/s41467-020-20488-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the “National Natural Science Foundation of China (NSFC)” (grant number 82260041), the “Natural Science Foundation of Gansu Province” (grant number 22JR11RA053), and the “Cui Ying Postgraduate Tutor” training program of Lanzhou University Second Hospital (grant number201710).

Author information

Authors and Affiliations

Authors

Contributions

CL and LZ composed the manuscript and literature review. QJ searched, screened, and collated the works of literature. HJ provided figures and the analysis and interpretation of the literature. CW revised it critically for important intellectual content, final approval of the version to be published, and is accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Chongyang Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhang, L., Jin, Q. et al. Role and application of chemokine CXCL13 in central nervous system lymphoma. Ann Hematol (2023). https://doi.org/10.1007/s00277-023-05560-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00277-023-05560-4

Keywords

Navigation