Skip to main content

Advertisement

Log in

Can novel methods replace the gold standard chimerism method after allogeneic hematopoietic stem cell transplantation?

  • Review Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

After hematopoietic stem cell transplantation, chimerism assay is a useful approach to monitor the success of the transplant and to select the appropriate treatment strategy, such as donor leukocyte infusion or immunosuppressive drug dosage. Short tandem repeat PCR is the method that has been accepted as the gold standard for chimerism. However, it has not yet been sufficient to detect mixed chimerism in patients with minimal residual disease. Simultaneously, recent years have been marked by developing sensitive, high-throughput, and accurate molecular genetic assays. These novel methods have subsequently been adapted for the analysis of post-transplant chimerism. In this review, we discuss the technical features of both novel and conventional gold standard chimerism assays. We also discuss their advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Anderson D, Billingham R, Lampkin GH, Medawar P (1951) The use of skin grafting to distinguish between monozygotic and dizygotic twins in cattle. Heredity 5:379–397

    Google Scholar 

  2. Ford CE, Hamerton JL, Barnes DW, Loutit JF (1956) Cytological identification of radiation-chimaeras. Nature 177(4506):452–454

    ADS  CAS  PubMed  Google Scholar 

  3. Thiede C, Florek M, Bornhäuser M, Ritter M, Mohr B, Brendel C et al (1999) Rapid quantification of mixed chimerism using multiplex amplification of short tandem repeat markers and fluorescence detection. Bone Marrow Transplant 23(10):1055–1060

    CAS  PubMed  Google Scholar 

  4. Fundia AF, De Brasi C, Larripa I (2004) Feasibility of a cost-effective approach to evaluate short tandem repeat markers suitable for chimerism follow-up. Mol Diagn 8(2):87–91

    PubMed  Google Scholar 

  5. Schichman S, Suess P, Vertino A, Gray PS (2002) Comparison of short tandem repeat and variable number tandem repeat genetic markers for quantitative determination of allogeneic bone marrow transplant engraftment. Bone Marrow Transplant 29:243–248

    CAS  PubMed  Google Scholar 

  6. Martínez-López J, Crooke A, Grande S, Ayala R, Jimenez-Velasco A, Gamarra S et al (2010) Real-time PCR quantification of haematopoietic chimerism after transplantation: a comparison between TaqMan and hybridization probes technologies. Int J Lab Hematol 32:e17–e25

    PubMed  Google Scholar 

  7. George D, Czech J, John B, Yu M, Jennings LJ (2013) Detection and quantification of chimerism by droplet digital PCR. Chimerism 4(3):102–108

    PubMed  PubMed Central  Google Scholar 

  8. Sharma D, Egidio C, Grskovic M, Fernandez Mina MA, Zhang BM (2020) Chimerism monitoring with highly sensitive and precise next-generation sequencing assay in patients post-allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 26(3):s310

    Google Scholar 

  9. Buño I, Nava P, Simón A, González-Rivera M, Jiménez JL, Balsalobre P et al (2005) A comparison of fluorescent in situ hybridization and multiplex short tandem repeat polymerase chain reaction for quantifying chimerism after stem cell transplantation. Haematologica 90(10):1373–1379

    PubMed  Google Scholar 

  10. Almeida CA, Dreyfuss JL, Azevedo-Shimmoto MM, Figueiredo MS, de Oliveira JS (2013) Evaluation of 16 SNPs allele-specific to quantify post hSCT chimerism by SYBR green-based qRT-PCR. J Clin Pathol 66(3):238–242

    CAS  PubMed  Google Scholar 

  11. Martínez-López J, Crooke A, Grande S, Ayala R, Jiménez-Velasco A, Gamarra S et al (2010) Real-time PCR quantification of haematopoietic chimerism after transplantation: a comparison between TaqMan and hybridization probes technologies. Int J Lab Hematol 32(1 Pt 1):e17-25

    PubMed  Google Scholar 

  12. Faraci M, Bagnasco F, Leoni M, Giardino S, Terranova P, Subissi L et al (2018) Evaluation of chimerism dynamics after allogeneic hematopoietic stem cell transplantation in children with nonmalignant diseases. Biol Blood Marrow Transplant 24(5):1088–1093

    PubMed  Google Scholar 

  13. Dumache R, Enache A, Barbarii L, Constantinescu C, Pascalau A, Jinca C et al (2018) Chimerism monitoring by short tandem repeat (STR) markers in allogeneic stem cell transplantation. Clin Lab 64(9):1535–1543

    CAS  PubMed  Google Scholar 

  14. Abatay-Sel F, Savran-Oguz F, Kalayoglu-Besisik S, Mastanzade M, Duvarci-Ogret Y, Yonal-Hindilerden I et al (2019) Short tandem repeat-polymerase chain reaction (STR-PCR) with quantitative real time-polymerase chain reaction (qRT-PCR) method using for chimerism analysis. Clin Lab 65(9):1697–1703

    CAS  Google Scholar 

  15. Li SX, Zhu HL, Guo B, Da WM (2011) Application of short-tandem-repeat amplification and fluorescent-multiplex PCR for chimerism analysis. Zhongguo Shi Yan Xue Ye Xue Za Zhi 19(3):749–753

    CAS  PubMed  Google Scholar 

  16. Siddiqui Z, Maldonado J, Grojean J, Ye F, Zhang D, Longtine J et al (2020) Rchimerism: an R package for automated chimerism data analysis. J Mol Diagn 22(1):21–29

    CAS  PubMed  Google Scholar 

  17. Tyler J, Kumer L, Fisher C, Casey H, Shike H (2019) Personalized chimerism test that uses selection of short tandem repeat or quantitative PCR depending on patient’s chimerism status. J Mol Diagn 21(3):483–490

    CAS  PubMed  Google Scholar 

  18. Kruse A, Abdel-Azim N, Kim HN, Ruan Y, Phan V, Ogana H et al (2020) Minimal residual disease detection in acute lymphoblastic leukemia. Int J Mol Sci 21(3):1054

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hagen-Mann K, Mann W (1995) RT-PCR and alternative methods to PCR for in vitro amplification of nucleic acids. Exp Clin Endocrinol Diabetes 103(3):150–155

    CAS  PubMed  Google Scholar 

  20. Sathirapatya T, Worrapitirungsi W, Sukawutthiya P, Rasmeepaisarn K, Vongpaisarnsin K (2020) A SNP panel for early detection of artificial chimerism in HSCT patients using TaqMan technology. Int J Legal Med 134:1553–1561

    PubMed  Google Scholar 

  21. Alizadeh M, Bernard M, Danic B, Dauriac C, Birebent B, Lapart C et al (2002) Quantitative assessment of hematopoietic chimerism after bone marrow transplantation by real-time quantitative polymerase chain reaction. Blood 99(12):4618–4625

    CAS  PubMed  Google Scholar 

  22. Shabani E, Dowlatshahi S, Abdekhodaie MJ (2021) Laboratory detection methods for the human coronaviruses. Eur J Clin Microbiol Enfect Dis 40(2):225–246

    CAS  Google Scholar 

  23. Kireev DE, Farzan VM, Shipulin GA, Korshun VA, Zatsepin TS (2020) RT-qPCR detection of low-copy HIV RNA with Yin-Yang probes. Methods Mol Biol 2063:27–35

    CAS  PubMed  Google Scholar 

  24. Kletzel M, Huang W, Olszewski M, Khan S (2013) Validation of chimerism in pediatric recipients of allogeneic hematopoietic stem cell transplantation (HSCT) a comparison between two methods: real-time PCR (qPCR) vs. variable number tandem repeats PCR (VNTR PCR). Chimerism 4(1):1–8

    PubMed  Google Scholar 

  25. Oliver DH, Thompson RE, Griffin CA, Eshleman JR (2000) Use of single nucleotide polymorphisms (SNP) and real-time polymerase chain reaction for bone marrow engraftment analysis. J Mol Diagn 2(4):202–208

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiménez-Velasco A, Barrios M, Román-Gómez J, Navarro G, Buño I, Castillejo JA et al (2005) Reliable quantification of hematopoietic chimerism after allogeneic transplantation for acute leukemia using amplification by real-time PCR of null alleles and insertion/deletion polymorphisms. Leukemia 19(3):336–343

    PubMed  Google Scholar 

  27. Brookes AJ (1999) The essence of SNPs. Gene 234(2):177–186

    MathSciNet  CAS  PubMed  Google Scholar 

  28. Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM et al (2015) A global reference for human genetic variation. Nature 526(7571):68–74

    ADS  Google Scholar 

  29. Bader P, Niethammer D, Willasch A, Kreyenberg H, Klingebiel T (2005) How and when should we monitor chimerism after allogeneic stem cell transplantation? Bone Marrow Transplant 35(2):107–119

    CAS  PubMed  Google Scholar 

  30. Jacque N, Nguyen S, Golmard JL, Uzunov M, Garnier A, Leblond V et al (2015) Chimerism analysis in peripheral blood using indel quantitative real-time PCR is a useful tool to predict post-transplant relapse in acute leukemia. Bone Marrow Transplant 50:259–265

    CAS  PubMed  Google Scholar 

  31. Willasch AM, Kreyenberg H, Shayegi N, Rettinger E, Meyer V, Zabel M et al (2014) Monitoring of hematopoietic chimerism after transplantation for pediatric myelodysplastic syndrome: real-time or conventional short tandem repeat PCR in peripheral blood or bone marrow? Biol Blood Marrow Transplant 20(12):1918–1925

    PubMed  Google Scholar 

  32. Dubois V, Alizadeh M, Bourhis JH, Etancelin P, Farchi O, Ferrand C et al (2017) Étude du chimérisme après allogreffe de cellules hématopoïétiques : recommandations de la Société francophone de greffe de moelle et de thérapie cellulaire (SFGM-TC) [Chimerism analysis after hematopoietic cell transplantation: Guidelines from the Francophone Society of bone marrow transplantation and cellular therapy (SFGM-TC)]. Bull Cancer 104(12S):S59–S64

    PubMed  Google Scholar 

  33. Haugaard AK, Madsen HO, Marquart HV, Rosthoj S, Masmas TN, Heilman C et al (2019) Highly sensitive chimerism detection in blood is associated with increased risk of relapse after allogeneic hematopoietic cell transplantation in childhood leukemia. Pediatr Transplant 23(7):e13549

    PubMed  Google Scholar 

  34. Kinsella FAM, Inman CF, Gudger A, Chan YT, Murray DJ, Zuo J et al (2019) Very early lineage-specific chimerism after reduced intensity stem cell transplantation is highly predictive of clinical outcome for patients with myeloid disease. Leuk Res. 83:106173

    PubMed  Google Scholar 

  35. Lion T (2007) Detection of impending graft rejection and relapse by lineage-specific chimerism analysis. Methods Mol Med 134:197–216

    CAS  PubMed  Google Scholar 

  36. Bach C, Tomova E, Goldmann K, Weisbach V, Roesler W, Mackensen A et al (2015) Monitoring of hematopoietic chimerism by real-time quantitative PCR of micro insertions/deletions in samples with low DNA quantities. Transfus Med Hemother 42(1):38–45

    PubMed  Google Scholar 

  37. Navarro-Bailón A, Carbonell D, Escudero A, Chicano M, Muniz P, Suarez-Gonzalez J et al (2020) Short Tandem Repeats (STRs) as biomarkers for the quantitative follow-up of chimerism after stem cell transplantation: methodological considerations and clinical application. Genes (Basel). 11(9):993

    PubMed  PubMed Central  Google Scholar 

  38. Andrikovics H, Őrfi Z, Meggyesi N, Bors A, Varga L, Kövy P et al (2019) Current trends in applications of circulatory microchimerism detection in transplantation. Int J Mol Sci 20(18):4450

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Santurtún A, Riancho JA, Arozamena J, López-Duarte M, Zarrabeitia MT (2017) Indel analysis by droplet digital PCR: a sensitive method for DNA mixture detection and chimerism analysis. Int J Legal Med. 131(1):67–72

    PubMed  Google Scholar 

  40. Majumdar N, Banerjee S, Pallas M, Wessel T, Hegerich P (2017) Poisson plus quantification for digital PCR systems. Sci Rep 7:9617

    ADS  PubMed  PubMed Central  Google Scholar 

  41. Waterhouse M, Pfeifer D, Follo M, Duyster J, Schafer H, Bertz H et al (2017) Early mixed hematopoietic chimerism detection by digital droplet PCR in patients undergoing gender-mismatched hematopoietic stem cell transplantation. Clin Chem Lab Med 55:1115–1121

    CAS  PubMed  Google Scholar 

  42. Stahl T, Rothe C, Böhme MU, Kohl A, Kröger N, Fehse B (2016) Digital PCR panel for sensitive hematopoietic chimerism quantification after allogeneic stem cell transplantation. Int J Mol Sci 17(9):1515

    PubMed  PubMed Central  Google Scholar 

  43. Mika T, Baraniskin A, Ladigan S, Wulf G, Dierks S, Haase D et al (2019) Digital droplet PCR-based chimerism analysis for monitoring of hematopoietic engraftment after allogeneic stem cell transplantation. Int J Lab Hematol 41(5):615–621

    PubMed  Google Scholar 

  44. Fortschegger M, Preuner S, Printz D, Poetsch AR, Geyeregger R, Pichler H et al (2020) Detection and monitoring of lineage-specific chimerism by digital droplet PCR-based testing of deletion/ınsertion polymorphisms. Biol Blood Marrow Transplant 26(6):1218–1224

    CAS  PubMed  Google Scholar 

  45. Tozzo P, Delicati A, Zambello R, Caenazzo L (2021) Chimerism monitoring techniques after hematopoietic stem cell transplantation: an overview of the last 15 years of ınnovations. Diagnostics (Basel) 11(4):621

    PubMed  Google Scholar 

  46. Cruz NM, Mencia-Trinchant N, Hassane DC, Guzman ML (2017) Minimal residual disease in acute myelogenous leukemia. Int J Lab Hematol 39(1):53–60

    PubMed  PubMed Central  Google Scholar 

  47. Waterhouse M, Pfeifer D, Duque-Afonso J, Follo M, Duyster J, Depner M et al (2019) Droplet digital PCR for the simultaneous analysis of minimal residual disease and hematopoietic chimerism after allogeneic cell transplantation. Clin Chem Lab Med 57(5):641–647

    CAS  PubMed  Google Scholar 

  48. Okano T, Tsujita Y, Kanegane H, Mitsui-Sekinaka K, Tanita K, Miyamoto S et al (2018) Droplet Digital PCR based chimerism analysis for primary ımmunodeficiency diseases. J Clin Immunol 38:300–306

    CAS  PubMed  Google Scholar 

  49. Kreuze JF, Perez A, Untiveros M, Quispe D, Fuentes S, Barker I et al (2009) Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a genetic method for diagnosis, discovery and sequencing of viruses. Virology 388(1):1–7

    CAS  PubMed  Google Scholar 

  50. Adams IP, Glover RH, Monger WA, Mumford R, Jackeviciene E, Navalinskiene M et al (2009) Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology. Mol Plant Pathol 10(4):537–545

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Nielsen R, Paul JS, Albrechtsen A, Song YS (2011) Genotype and SNP calling from next-generation sequencing data. Nat Rev Genet 12(6):443–451

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee EJ, Luo J, Wilson JM, Shi H (2013) Analyzing the cancer methylome through targeted bisulfite sequencing. Cancer Lett 340(2):171–178

    CAS  PubMed  Google Scholar 

  53. Metzker ML (2010) Sequencing technologies — the next generation. Nat Rev Genet 11:31–46

    CAS  PubMed  Google Scholar 

  54. Parkinson NJ, Maslau S, Ferneyhough B, Zhang G, Gregory L, Buck D et al (2012) Preparation of high-quality next-generation sequencing libraries from picogram quantities of target DNA. Genome Res 22(1):125–133

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Troll CJ, Kapp J, Rao V, Harkins KM, Cole C, Naughton C et al (2019) A ligation-based single-stranded library preparation method to analyze cell-free DNA and synthetic oligos. BMC Genomics 20:1023

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Muzzey D, Evans EA, Lieber C (2015) Understanding the Basics of NGS: From mechanism to variant calling. Curr Genet Med Rep 3(4):158–165

    PubMed  PubMed Central  Google Scholar 

  57. Harkins KM, Schaefer NK, Troll CJ, Rao V, Kapp J, Naughton C et al (2020) A novel NGS library preparation method to characterize native termini of fragmented DNA. Nucleic Acids Res 48(8):e47

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Buermans HP, den Dunnen JT (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta 1842(10):1932–1941

    CAS  PubMed  Google Scholar 

  59. Aloisio M, Licastro D, Caenazzo L, Torboli V, D’Eustacchio A, Severini GM et al (2016) A technical application of quantitative next generation sequencing for chimerism evaluation. Mol Med Rep 14:2967–2974

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee JM, Kim YJ, Park SS, Han E, Kim M, Kim Y (2019) Simultaneous monitoring of mutation and chimerism using next-generation sequencing in myelodysplastic Syndrome. J Clin Med 8(12):2077

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Minuti B, Lari A, Iozzi S, Palchetti S, Boschi B, Gerundino F et al (2019) Chimerism analysis using next generation sequencing. Forensic Sci Int 7(1):152–153

    Google Scholar 

  62. Behjati S, Tarpey PS (2013) What is next generation sequencing? Arch Dis Child Educ Pract Ed 98(6):236–238

    PubMed  PubMed Central  Google Scholar 

  63. Cao MD, Balasubramanian S, Bodén M (2015) Sequencing technologies and tools for short tandem repeat variation detection. Brief Bioinform 16(2):193–204

    CAS  PubMed  Google Scholar 

  64. Tan B, Zhao Z, Zhang Z, Li S, Li SC (2017) Search for more effective microsatellite markers for forensics with next-generation sequencing. IEEE Trans Nanobioscience 16(5):375–381

    PubMed  Google Scholar 

  65. Vives J, Casademont-Roca A, Martorell L, Nogues N (2020) Beyond chimerism analysis: methods for tracking a new generation of cell-based medicines. Bone Marrow Transplant 55:1229–1239

    PubMed  Google Scholar 

  66. Clark JR, Scott SD, Jack AL, Lee H, Mason J, Carter GI et al (2015) Monitoring of chimerism following allogeneic haematopoietic stem cell transplantation (HSCT): technical recommendations for the use of short tandem repeat (STR) based techniques, on behalf of the United Kingdom National External Quality Assessment Service for Leucocyte Immunophenotyping Chimerism Working Group. Br J Haematol 168(1):26–37

    PubMed  Google Scholar 

  67. Roy DC, Tantravahi R, Murray C, Dear K, Gorgone B, Anderson KC et al (1990) Natural history of mixed chimerism after bone marrow transplantation with CD6-depleted allogeneic marrow: a stable equilibrium. Blood 75(1):296–304

    CAS  PubMed  Google Scholar 

  68. Blouin AG, Askar M (2022) Chimerism analysis for clinicians: a review of the literature and worldwide practices. Bone Marrow Transplant 57(3):347–359

    PubMed  PubMed Central  Google Scholar 

  69. Peci F, Dekker L, Pagliaro A, van Boxtel R, Nierkens S, Belderbos M (2022) The cellular composition and function of the bone marrow niche after allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 57(9):1357–1364

    PubMed  PubMed Central  Google Scholar 

  70. Anasetti C, Logan BR, Lee SJ, Waller EK, Weisdorf DJ, Wingard JR et al (2012) Peripheral-blood stem cells versus bone marrow from unrelated donors. N Engl J Med 367(16):1487–96

    CAS  PubMed  Google Scholar 

  71. Berger M, Barone M, Spadea M, Saglio F, Pessolano R, Fagioli F (2022) HSCT with mismatched unrelated donors: Bone marrow versus peripheral blood stem cells sources in pediatric patients. Pediatr Transplant. 26(4):e14233

    CAS  PubMed  Google Scholar 

  72. Lindahl H, Vonlanthen S, Valentini D, Björklund AT, Sundin M, Mielke S et al (2022) Lineage-specific early complete donor chimerism and risk of relapse after allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia. Bone Marrow Transplant 57(5):753–759

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Bendjelloul M, Usureau C, Etancelin P, Saidak Z, Lebon D, Garçon L et al (2022) Utility of assessing CD3+ cell chimerism within the first months after allogeneic hematopoietic stem-cell transplantation for acute myeloid leukemia. HLA 100(1):18–23

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Fuchs EJ, O’Donnell PV, Eapen M, Logan B, Antin JH, Dawson P et al (2021) Double unrelated umbilical cord blood vs HLA-haploidentical bone marrow transplantation: the BMT CTN 1101 trial. Blood 137(3):420–428

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kharfan-Dabaja MA, Reljic T, Yassine F, Nishihori T, Kumar A, Tawk MM et al (2022) Efficacy of a second allogeneic hematopoietic cell transplant in relapsed acute myeloid leukemia: results of a systematic review and meta-analysis. Transplant Cell Ther S2666–6367(22):01547

    Google Scholar 

  76. Haugaard AK, Kofoed J, Masmas TN, Madsen HO, Marquart HV, Heilmann C et al (2020) Is microchimerism a sign of imminent disease recurrence after allogeneic hematopoietic stem cell transplantation? A systematic review of the literature. Blood Rev 44:100673

    CAS  PubMed  Google Scholar 

  77. Valero-Garcia J, González-Espinosa MDC, Barrios M, Carmona-Antonanzas G, Garcia-Planells J, Luiz-Lafora C et al (2019) Earlier relapse detection after allogeneic haematopoietic stem cell transplantation by chimerism assays: Digital PCR versus quantitative real-time PCR of insertion/deletion polymorphisms [published correction appears in PLoS One. 2019 Mar 13;14(3):e0213966]. PLoS One 14(2):e0212708

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

FAS, and FSO conceived of the contents and wrote this review. All authors read and approved the final manuscript and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Figen Abatay Sel.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sel, F.A., Oğuz, F.S. Can novel methods replace the gold standard chimerism method after allogeneic hematopoietic stem cell transplantation?. Ann Hematol 103, 1035–1047 (2024). https://doi.org/10.1007/s00277-023-05448-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-023-05448-3

Keywords

Navigation