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Abstract
PLK1 is overexpressed in acute myeloid leukemia (AML). A phase 1b trial of the PLK1 inhibitor onvansertib (ONV) com-
bined with decitabine (DAC) demonstrated initial safety and efficacy in patients with relapsed/refractory (R/R) AML. The 
current study aimed to identify molecular predictors of response to ONV + DAC in R/R AML patients. A total of 44 R/R 
AML patients were treated with ONV + DAC and considered evaluable for efficacy. Bone marrow (BM) samples were col-
lected at baseline for genomic and transcriptomic analysis (n = 32). A 10-gene expression signature, predictive of response 
to ONV + DAC, was derived from the leading-edge genes of gene set enrichment analyses (GSEA). The gene signature was 
evaluated in independent datasets and used to identify associated mutated genes. Twenty percent of the patients achieved 
complete remission, with or without hematologic count recovery (CR/CRi), and 32% exhibited a ≥50% reduction in bone 
marrow blasts. Patients who responded to treatment had elevated mitochondrial function and OXPHOS. The gene signature 
was not associated with response to DAC alone in an independent dataset. By applying the signature to the BeatAML cohort 
(n = 399), we identified a positive association between predicted ONV + DAC response and mutations in splicing factors 
(SF). In the phase 1b/2 trial, patients with SF mutations (SRSF2, SF3B1) had a higher CR/CRi rate (50%) compared to those 
without SF mutations (9%). PLK1 inhibition with ONV in combination with DAC could be a potential therapy in R/R AML 
patients, particularly those with high OXPHOS gene expression and SF mutations.
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Introduction

Acute myeloid leukemia (AML) is predominantly a disorder 
of older patients (median age at diagnosis: 69 years [1]) that 
is characterized by the clonal expansion of myeloid blasts 
and results in bone marrow failure. AML typically features 
epigenetic modifications, with mutations in genes involved 
in DNA methylation and histone modification [2, 3]. Con-
sequently, AML patients who are unable to tolerate standard 
intensive induction chemotherapy have historically received 
hypomethylating agents (HMA) such as decitabine (DAC) 
and azacytidine (AZA), or alternatively low-dose cytarabine 
(LDAC). However, complete response rates are low and 
durations short [4]. The introduction of the BCL2 inhibi-
tor venetoclax (VEN) in combination with HMA/LDAC has 
greatly improved frontline outcomes with response rates up 
to 67–73% and median OS up to 15–17.5 months [5, 6]. 
However, patients with relapsed or refractory (R/R) AML 

 *	 Amer M. Zeidan 
	 amer.zeidan@yale.edu

1	 Cardiff Oncology Inc., 11055 Flintkote Avenue, San Diego, 
CA 92121, USA

2	 Leukemia Division, Department of Hematology 
and Hematopoietic Cell Transplantation, City of Hope 
National Medical Center, Duarte, CA 91010, USA

3	 Division of Hematologic Malignancies and Cellular 
Therapeutics, University of Kansas, Kansas City, KS 66205, 
USA

4	 SLS Oncology LLC, Durham, NC 27713, USA
5	 Leukemia Service, Roswell Park Comprehensive Cancer 

Center, Buffalo, NY 14263, USA
6	 Yale University and Yale Cancer Center, New Haven, 333 

Cedar Street, PO Box 208028, New Haven, CT 06520‑8028, 
USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00277-023-05442-9&domain=pdf
http://orcid.org/0000-0001-7017-8160


3050	 Annals of Hematology (2023) 102:3049–3059

1 3

still have few effective treatment options and poor outcomes 
(median OS: 3–7 months) [6, 7].

PLK1 is a member of the polo-like kinase (PLK) fam-
ily of serine/threonine kinases and is a key regulator of the 
cell cycle. PLK1 is intimately involved in numerous steps 
of mitosis, in the DNA damage response, and in DNA rep-
lication [8, 9]. Furthermore, PLK1 has been shown to be 
over expressed in numerous cancers, including AML [10]. 
In AML patients, PLK1 inhibition induces dose-dependent 
G2-M arrest and subsequent cell death via apoptosis [10]. 
Early pan-PLK1 inhibitors with activity against PLK2 and 
PLK3, although promising in preclinical studies, had high 
toxicity profiles and failed in the clinic [11].

Onvansertib (ONV) is a next-generation, highly selective 
ATP-competitive PLK1 inhibitor that has shown activity in 
AML cell lines and AML xenografts [12, 13]. The short 
in vivo half-life of onvansertib (~24 h) and oral bioavail-
ability allows flexible dosing schedules and hence the poten-
tial to optimize the therapeutic window whilst minimizing 
toxicities.

A multicenter phase 1b/2 study (NCT03303339) was 
established to assess the safety, pharmacokinetics, and clin-
ical activity of ONV in combination with either DAC or 
LDAC in patients with R/R AML. The phase 1b aspect of 
that study has previously been reported [14], and we refer 
the reader to that study for details. In phase 2, the safety and 
efficacy of the combination of ONV (60 mg/m2) and DAC 
was explored.

Objectives

Here, we focus on the use of correlative studies from patients 
across the phase 1b/2 trial that received ONV + DAC, to 
identify molecular predictors of response to ONV + DAC. 
Using RNA-Seq data derived from blood samples collected 
at baseline, we developed a gene expression signature pre-
dictive of patient response to ONV + DAC. We then applied 
this signature to independent patient gene expression data-
sets: (1) to identify the mutational status of AML-associ-
ated genes in those patients predicted to respond and (2) to 
verify that the gene signature predicts response to the ONV 
+ DAC combination, and not merely response to DAC as a 
single agent. We then verified the predicted AML mutational 
spectrum in the phase 1b/2 trial patients using the results of 
targeted sequencing.

Materials and methods

For an analytical outline see Fig. 1.

Patient eligibility and treatment

For patient eligibility criteria, please refer to the phase 1b 
trial [14]. We note that up to three prior treatments for AML 
disease were permitted in phase 1b, and up to one prior treat-
ment in phase 2, including HMA and VEN. Patients who 
were treatment naïve and not candidates for intensive induc-
tion therapy were also eligible. Onvansertib was adminis-
tered orally on days 1 through 5. DAC was administered at 
20 mg/m2 intravenously over 1 h, also on days 1 through 5. 
The treatment cycle was 28 days but could be shortened to 
21 days if the investigators deemed that more frequent dos-
ing could benefit the patient. Onvansertib doses ranged from 
12 to 90 mg/m2 according to the phase 1b dose escalation 
with all phase 2 patients receiving the recommended phase 
2 dose of 60 mg/m2 (Supplemental Table S1). Safety and 
efficacy assessments were also as in the phase 1b trial [14]. 
Patients were considered evaluable for efficacy if they had 
successfully completed at least one cycle of treatment.

Bone marrow evaluation and anti‑leukemic activity

Bone marrow aspirates were taken at screening, between 
15 and 28 days of cycles 1 and 2, and following every other 
subsequent cycle, if considered appropriate by the investiga-
tor. Response to treatment was evaluated by the investigators 
using the modified International Working Group criteria [15] 
(see [14]). For biomarker analysis, we additionally defined 
“bone marrow response” (BMR) as ≥50% drop in bone mar-
row blast counts from baseline screening whilst on study.

Blood collection and processing

Blood samples were collected from patients on day 1 (prior to 
treatment) of the first treatment cycle and processed 24 h after 
collection at Cardiff Oncology. For AML blast cell enumera-
tion, blood samples were collected in CellSave Preservative 
Tubes (Silicon Biosystems); for genomic DNA extraction, sam-
ples were collected in EDTA tubes; and, for RNASeq, samples 
were collected into PAXgene tubes (Qiagen). AML blast per-
centages were quantified by fluorescence-activated cell sorting 
(FACS) using both a low side scatter/CD45dim profile and the 
expression of blast markers as previously described [14].

Genomic DNA (gDNA) was extracted from peripheral 
blood mononuclear cells (PBMCs) and bone marrow mono-
nuclear cells (BMMCs) and subject to targeted sequencing 
of 75 AML-associated genes using the Archer Myeloid Vari-
antPlex system, also as previously described [14].

For RNA-Seq, total intracellular RNA was extracted from 
32 of the 55 patients (Supplemental Table S1), plus from 
PBMCs from three healthy donors (HD), using the PAXgene 
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Blood RNA Kit (Qiagen). Following pre-treatment with 
ezDNase (ThermoFisher), cDNA synthesis was carried out 
using the SMART-Seq v.4 Ultra Low Input RNA Kit (Takara 
Bio). Next-generation sequencing libraries were generated 
using the Nextera XT DNA Library Preparation kit (Illu-
mina) and sequenced (paired-end 100bp) on a HiSeq4000 
(Illumina). RNASeq data is available under the following 
GEO accession number: GSE239678.

Gene expression and peripheral blast correction

Transcript expression quantification was estimated by quasi-
mapping of raw reads to the human reference transcriptome 
GRCh38 (GENCODE v.36) [16] using Salmon (v1.4.0) [17] 
and converted to gene counts (length scaled transcripts per 
million, TPM) using tximport [18]. Gene counts were nor-
malized for library size and, to limit the effect of skewness 
and mean-variance dependency, were variance-stabilizing 
transformed (VST) [19] using DESeq2 [20] in R.

Peripheral blood samples from AML patients contain 
a variable proportion of leukemic blast cells. Principal 
component analysis (PCA) was therefore used to control 
for this variation in the gene expression data by removing 
the principal components (PCs) that were most strongly 

correlated with %peripheral blasts (%PB). The variation 
explained (coefficient of determination, R2) between the 
%PB (including HD with 0%PB) and each PC was used as 
a weighting to, in turn, adjust the percent of overall varia-
tion in the expression data that was explained by each PC 
(POV), i.e., R2 × POV. The PCs were then sorted by their 
weighted POV, and the cumulative sum calculated. Those 
PCs most strongly associated with %PB (those with the 
largest weighted POV) were identified by the cumulative 
sum inflection point [21] and the data were then back-
transformed excluding these PCs.

Disease manifestation may result from sample-specific 
modulation of different genes within a particular biological 
pathway; this potential noise was accounted for by convert-
ing the gene counts to pathway enrichment scores, using 
gene set variation analyses (GSVA v1.38) [22]. GSVA used 
21,693 gene sets from the Molecular Signatures Database 
(MSigDB v.7.1): hallmarks (H), canonical pathways (C2), 
regulatory target gene sets (C3), cancer gene neighbor-
hoods (C4), GO gene ontology (C5), oncogenic signatures 
(C6), and immunologic signatures (C7). The 1345 most 
variable, %PB corrected, GSVA scores were then used as 
input for unsupervised (k = 2) consensus clustering (“Con-
sensusClusterPlus” in R; Supplemental Fig. S1).

Fig. 1   Analytical process 
outline
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Gene set enrichment analyses and gene signature 
modeling

The %PB corrected gene expression VST count data and 
the clustered BMR (BMR_CC vs No-BMR_CC; see 
“Results” and Supplemental Fig. S1) sample categoriza-
tion were analyzed for differential gene expression using 
limma’s [23, 24] moderated t tests and results ranked 
by the signed significance score (log2 Fold Change × 
−log10(P value)) [25]. The ranked data was used as input 
for a gene set enrichment analysis (GSEA) [26, 27] against 
the MSigDB v.7.1 gene set collections. Gene sets with an 
adjusted P value [28] < 0.05 were retained, and the 3433 
leading-edge genes that contributed to the peak enrich-
ment score were collated. The leading-edge genes were 
then filtered to exclude genes not present in the BeatAML 
RNA-Seq data [29] (see below), ranked by their absolute 
significance score, and the inflection point used as a cut-
off to yield 266 genes.

Model selection utilized gradient-boosted decision trees 
(XGBoost 1.5.2 [30]) for regression-based classification. 
Prior to machine learning, the count data were Blom (inverse 
normal) transformed. As the sample size was small (n = 
32), a nested validation scheme was used (see Supplemental 
Fig. S2). In brief, the samples were a priori divided into an 
inner train set (80%) and an outer test hold-out set (20%). 
This was done randomly and repeated 100 times to yield 
100 train-test data set pairs that were retained throughout the 
analysis. Genes (“features”) were selected and ordered via 
two rounds of feature selection on the inner train sets. In the 
first round of feature selection, each inner set was randomly 
divided into a training (80%) and a validation (20%) set and 
XGBoost run with default hyperparameters. This process 
was repeated 20 times and genes ordered by their mean gain 
across all 2000 iterations (20 × 100). Next, the top 50 genes 
were selected and the XGBoost hyperparameters optimized 
using repeated cross-validation (5 folds × 4 = 20). The top 
50 genes were subject to a second round of feature selec-
tion analogous to the first except that the tuned hyperparam-
eters were used and the top 10 genes extracted (Fig. 2). The 
hyperparameters for the 10 genes were then also optimized. 
Final models were generated using both the top 10 and top 
50 selected genes using repeated cross-validation (5 folds × 
4 = 20) on each of the 100 inner sample sets. Performance 
metrics were gathered with each cross-validation test set, and 
for predictions on the corresponding 100 hold-out test sets. 
These indicated that the 10-gene models were sufficient and 
performed better than the 50-gene models. The final model 
(“the gene signature”) was the ensemble of these 2000, 
10-gene, models (Supplemental Fig. S2). Each predicted 
sample was characterized as a responder or non-responder 
based on the mode of the probability density distribution for 
that sample across all 2000 models.

Predicting response to onvansertib plus decitabine 
in the BeatAML cohort

In order to explore the utility of the gene expression signa-
ture in an external dataset, it was applied to publicly available 
RNASeq data from 399 primary AML patient specimens in 
the BeatAML [29] project. The count data (CPM) were Blom 
transformed before applying the gene signature. If the gene sig-
nature is truly predictive, then it might be expected to correlate 
with the mutational status of genes in the samples. Genes that 
were mutated at least 3 times across the samples were selected 
(179 of 3333 genes), and dichotomously coded (non-mutated 
vs mutated). The mutated genes most strongly associated 
with the gene signature were identified by two approaches. 
First, regularized regression (elastic net) using glmnet (v4.1) 
and caret (v6.0) in R was used to identify 20 genes. Second, 
XGBoost was used to identify 17 genes. Being a tree-based 
algorithm, XGBoost can detect more complex interactions 
(e.g., epistasis) among genes than linear regression.

Results

Study population

A total of 55 patients were treated with onvansertib in combi-
nation with decitabine (ONV + DAC): 24 in phase 1b and 31 

Fig. 2   Variable (gene) importance from XGBoost. Variable importance 
shown for the top 20 genes (mean weighted gain from 2000 iterations 
(nested cross-validation) from the second round of feature selection). 
The top 10 genes used as the final gene signature are indicated
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in phase 2. Baseline characteristics are summarized in Table 1 
and in more detail in Supplemental Table S1. The overall 
median age of patients was 71 years (range, 23–85) and 34 
(62%) were male. 32 (58%) of patients had an adverse risk 
cytogenetic profile at enrollment based on 2017 ELN recom-
mendations [31]. Overall, 6 (11%) of patients had untreated 
AML, 34 (62%) had received one prior regimen, and 15 
(27%) had received two or more treatments. The proportion 
of patients with ECOG 2 was higher in phase 2 patients (31%) 
than in phase 1b patients (4%). Phase 2 patients had also more 
often received HMA (DAC or AZA) treatment and/or VEN 
prior to study entry. Overall, 17 (31%) patients had received 
HMA and 8 (15%) had received VEN; all patients receiving 
VEN had also received HMA. The overall median percentage 
of bone marrow myeloblasts was 32% (range, 3–95%) and the 
median percentage of circulating peripheral blasts was 19.4 
(range, 1.3–95.0%) (Supplemental Table S1).

Clinical responses and consensus clustering

Clinical responses for each of the 55 patients are summa-
rized in Table 2 (see Supplemental Table S1). Of 44 evalu-
able patients, 9 (20%) patients achieved complete remission, 
with or without complete hematopoietic recovery (CR/CRi). 
Seven patients had a CR and two patients a CRi. The over-
all response rate (ORR), including CR, CRi, morphologic 
leukemia-free state (MLFS), and partial response (PR), was 
27% (12/44 patients). Fourteen (32%) of the 44 evaluable 
patients exhibited a ≥50% reduction in bone marrow myelo-
blasts, defined as bone marrow response (BMR).

Thirteen evaluable patients had received prior HMA 
therapy. No patients with a CR or CRi had previously been 
treated with an HMA (AZA, or DAC; P = 0.041; Table 3), 
and prior HMA treatment was equally counter indicative 
in terms of bone marrow response with zero BMR having 
prior HMA exposure (P = 0.003; Table 3). Seven evaluable 
patients had received prior VEN therapy and, as expected, 
all of these had also received prior HMA. No VEN-treated 
patient exhibited a response to ONV + DAC, though sample 
sizes were too small to achieve significance (Table 3).

Baseline blood samples from 32 patients with sufficient 
RNA were analyzed by RNA-Seq, including 9 patients with 
CR/CRi and 13 with bone marrow response (BMR) (Table 2). 
To account for the variability in peripheral blasts between 
patients (Supplemental Table S1), the gene expression data 
were corrected based on the % of peripheral blasts at baseline 
(refer to Methods for details). Consensus clustering, a form of 

Table 1   Patient enrollment and 
baseline characteristics

For patient details see Supplemental Table S1

N (%) or median (range) Phase 1b (n = 24) Phase 2 (n = 31) Phase 1b/2 
combined (n 
= 55)

Age, years 66 (33–81) 73 (23–85) 71 (23–85)
Male gender 15 (65%) 19 (59%) 34 (62%)
ECOG 0–1 22 (96%) 22 (69%) 44 (80%)
ECOG 2 1 (4%) 10 (31%) 11 (20%)
Prior treatment
  0 4 (17%) 2 (6%) 6 (11%)
  1 6 (25%) 28 (90%) 34 (62%)
  2+ 14 (58%) 1(3%) 15 (27%)
Prior HMA treatment (AML/MDS) 3 (13%) 14 (45%) 17 (31%)
Prior venetoclax treatment (AML) 0 (0) 8 (26%) 8 (15%)
Cytogenetic risk
  Favorable 1 (4%) 4 (13%) 5 (9%)
  Intermediate 8 (35%) 9 (28%) 17 (31%)
  Adverse 14 (61%) 18 (56%) 32 (58%)
  Unknown 0 (0%) 1 (3%) 1 (2%)

Table 2   Clinical responses to ONV + DAC by AML patients

*Note, the RNASeq subset was selected to enrich BMR and there-
fore does not reflect actual population response rates. *ORR includes 
CR, CRi, MLFS, PR. BMR, bone marrow response (≥50% decrease 
in blasts); BMR_CC, consensus clustered bone marrow response

Response* All evaluable patients (n 
= 44)

RNA-Seq 
cohort (n = 
32)*

CR/CRi 9 (20%) 9 (28%)
ORR 12 (27%) 12 (38%)
BMR 14 (32%) 13 (41%)
BMR_CC NA 17 (53%)
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unsupervised class discovery, permits the discovery of natu-
ral data-driven groupings without supervision and a priori 
defined phenotypic classes. Since it is possible that some indi-
viduals exhibiting no BMR might have the genetic character-
istics of responders and may have responded had other factors 
been different (e.g., their physical condition when entering the 
trial, their dosing scheme), consensus clustering was used to 
(1) verify the existence of 2 (k) clusters corresponding to bone 
marrow response (BMR_CC) and no bone marrow response 
(no-BMR_CC) and (2) reassign patients’ responses. This pro-
cess resulted in 3 no-BMR being reassigned to BMR_CC, 
2 non-evaluable (NE) to BMR_CC, and 1 NE to no-BMR_
CC giving 17 (53%) BMR_CC and 15 (47%) no BMR_CC 
(Table 2 and Supplemental Table S1).

Gene expression signature associated 
with sensitivity to ONV + DAC

Gene Set Enrichment Analysis (GSEA) was carried out 
(1) to gain insight into key pathways that are differentially 
regulated between ONV + DAC responders (BMR_CC) 
and non-responders and (2) to identify leading-edge genes 
as the basis for predictive model building (see “Methods”). 
Responders to the ONV + DAC combination were enriched 
for oxidative phosphorylation (OXPHOS), mitochondrial 
function, and protein synthesis (Supplemental Figs. S3–S6).

The RNAseq data from the 32 patients was next used to 
generate a 10 gene signature (SDF4, LBX-AS1, ZNF341, 
HTT, DHRS12, ATRN, ESPN, UBE3A, PRRC2B, and 
CYP2S1) predictive of ONV + DAC response (Fig. 2, Sup-
plemental Fig. S2). The 10-gene signature was realized as 
an ensemble of 2000 XGBoost models.

In order to confirm that the gene expression signature of 
response to ONV + DAC was likely indicative of response to 
the combination and not merely predictive of response to DAC 
alone, the ONV + DAC gene signature was applied to Blom 
transformed array data (GEO GSE84334) from a study from 
Bohl et al. [32] in which AML patients were subject to single 
agent DAC therapy in a first line setting. The predicted response 
to ONV + DAC was contrasted with the known response to 
DAC in the 38 evaluable AML patients from the Bohl data 
(Supplemental Tables S2–S3). Eighteen patients in the Bohl 
study had shown a response to DAC (CR = 4, PR = 6, blast 
reduction > 25% = 8), and 20 patients had no response. There 
was no association between the observed response to DAC 
and the predicted response to ONV + DAC (P = 0.7449; see 
Supplemental Table S3)—indicating that the gene signature is 
not predictive of response to DAC single agent and is likely to 
reflect sensitivity to the combination of ONV + DAC.

Gene expression signature is associated 
with spliceosome mutations in an independent AML 
cohort

The gene signature model ensemble was then applied to gene 
expression data from 399 patients in the BeatAML cohort 
[29]. It predicted 241 putative responders to ONV + DAC 
and 158 putative non-responders. For each BeatAML sam-
ple, its predicted probability of responding to ONV + DAC 
was then regressed against the set of 179 AML genes that 
were mutated at least 3 times across the samples (see “Meth-
ods”) resulting in a set of 27 associated, mutated genes. A 
summary multivariate linear regression summarizes the 
effects of these 27 genes (Table 4), and their incidence in 
the BeatAML cohort is illustrated in Fig. 3.

Table 3   Stratified clinical responses to ONV + DAC

*ORR includes CR, CRi, MLFS, PR. BMR, bone marrow response (≥50% decrease in blasts)

A. Clinical responses to ONV + DAC in relation to prior HMA exposure
Response* Prior HMA exposure (n = 13) No prior HMA exposure (n = 31) Total (n = 44) Odds ratio (95% CI) P value
CR/CRi 0 (0%) 9 (29%) 9 (20%) 0 (0–1.05) 0.041
ORR 1 (7%) 11 (35%) 13 (30%) 0.30 (0–1.34) 0.075
BMR 0 (0%) 14 (45%) 14 (32%) 0 (0–0.50) 0.003
B. Clinical responses to ONV + DAC in relation to prior venetoclax exposure
Response Prior VEN exposure (n = 7) No prior VEN exposure (n = 37) Total (n = 44) Odds ratio (95% CI) P value
CR/CRi 0 (0%) 9 (24%) 9 (20%) 0 (0–2.68) 0.314
ORR 0 (0%) 12 (32%) 12 (27%) 0 (0–1.74) 0.163
 BMR 0 (0%) 14 (61%) 14 (32%) 0 (0–1.36) 0.078
C. Clinical responses to ONV + DAC in relation to splice factor mutations
Response SRSF2 or SF3B1 mutations (n = 12) Other mutations (n = 32) Total (n = 44) Odds ratio (95% CI) P value
CR/CRi 6 (50%) 3 (9%) 9 (20%) 9.00 (1.45–72.38) 0.007
ORR 8 (67%) 4 (13%) 12 (27%) 12.82 (2.27–92.86) 0.001
BMR 7 (58%) 7 (22%) 14 (32%) 4.79 (0.97–26.27) 0.032
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One gene, the splicing factor SRSF2, was significantly 
and positively associated with the predicted response to 
ONV + DAC (P = 0.0009). Other mutated genes positively 
related to the gene signature included GATA3 which regu-
lates the balance between self-renewal and differentiation 
in hematopoietic stem cells [33], the splicing factor PUF60, 
and the cohesion factor SMC3. This suggested that spliceo-
some factors could be important in the response to ONV + 
DAC. The prevalence of the spliceosome genes SRSF2, and 
the less frequently mutated SF3B1, U2AF1, and ZRSR2, 
was therefore examined in the BeatAML samples. Twenty-
two percent (86 of 399) of BeatAML samples carried a spli-
ceosome mutation and 73% (63) of these were predicted 
to be responders to ONV + DAC, confirming that splicing 
factor genes, as a group, were associated with the predicted 
response in the BeatAML cohort (χ2

df=1 = 4.46, P = 0.035).

SRSF2 and SF3B1 mutations are associated 
with response to ONV + DAC in AML

The mutational profiling of the ONV + DAC cohort was per-
formed at baseline for all patients (n = 55) using DNA from 
PBMCs or BMMCs. The most frequently mutated genes 
were ASXL1 (22%), SRSF2 (22%), TP53 (16%), NRAS 
(16%), FLT3_ITD (15%), FLT3_TKD (13%), TET2 (11%), 
and DNMT3A (11%; see Supplemental Tables S4 and S5).

Given the putative association observed between the pre-
dicted probability of ONV + DAC response and splice factor 
genes in BeatAML, the mutational status of the core splice 
factor genes SRSF2 and SF3B1 was examined in the ONV + 
DAC cohort. Indeed, patients with SRSF2 or SF3B1 muta-
tions were 9.0 times more likely to be responders (CR/CRi) 
than not (P = 0.007; Table 3). When the overall response 
rate (CR/CRi/MFLS/PR) was considered, patients carrying 
a SRSF2 or SF3B1 mutation were 12.8 times more likely to 
be responders than not (P = 0.001; Table 3). Mutations in 
the splice factor gene ZRSR2 were not observed in the phase 
1b/2 study, and the splice factor U2AF1 was only mutated 
in 3 non-responders.

Discussion

In this study, of R/R AML patients enrolled in a phase 1b/2 
clinical trial for combination treatment with onvansertib plus 
decitabine (ONV + DAC), we derived gene expression data 
using bulk RNAseq from circulating, peripheral myeloid 
blasts. After correcting the data for the varying percentage 
of blasts present, transforming the gene counts, and subject-
ing the expression data to unsupervised clustering, we used 
nested, tree-based boosted regression (XGBoost) to build 
an ensemble of 2000 models that could be used to predict 
response to ONV + DAC.

The initial set of genes (features) for model building 
was selected using the leading edge from GSEA on mul-
tiple gene sets. Given limited and somewhat heterogenous 
samples, GSEA provides a robust way to identify gene sets/
pathways that are enriched in association with a response, 
and the leading edge identified those genes contributing 
to that enrichment. The final set of 10 genes was selected 
through two rounds of model building and variable selection. 
The final 2000 model ensemble had 100% recall on the full 
original (consensus clustered) dataset, reflecting the value 
of a model ensemble. However, despite attempts to mini-
mize over-fitting through the judicious use of a nested and 
cross-validated design, we acknowledge that having only 32 
samples necessitates the re-using of samples for training and 
testing making some model over-fitting inevitable.

In addition to providing the initial set of genes for predic-
tive modeling building, GSEA also indicated that ONV + 

Table 4   Multiple linear regression of 27 mutated AML genes asso-
ciated with gene expression–predicted ONV+DAC response in 
BeatAML (n = 399)

Mutated genes associated with predicted response were selected by 
regularized regression (elastic net) and a simple XGBoost regression 
model and then summarized by simple multivariate linear regression 
as shown here. Bold = P value < 0.05

Mutated gene Coefficient P value

SRSF2 0.0929 0.0009
GATA3 0.1383 0.0764
PUF60 0.1185 0.0900
SMC3 0.0952 0.0902
MTA2 0.1116 0.2231
TEX15 0.0758 0.2849
RUNX1 0.0395 0.1363
ASXL1 0.0248 0.4175
DNMT3A 0.0070 0.7319
WT1 0.0028 0.9192
FLT3 (ITD) −0.0002 0.9928
TP53 −0.0221 0.4318
JAK2 −0.0327 0.4467
FLT3 (TKD) −0.0274 0.2355
IDH2 −0.0318 0.2217
PTPN11 −0.0551 0.1202
TET2 −0.0496 0.0399
BCOR −0.0643 0.0587
CEBPA −0.0694 0.0304
LRRCC1 −0.1272 0.0997
CCND3 −0.1036 0.0579
GATA2 −0.0914 0.0302
NPM1 −0.0636 0.0042
FILIP1 −0.1770 0.0426
PML-RARA​ −0.1265 0.0057
GRIK2 −0.1958 0.0306
ZFHX4 −0.2687 0.0023
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DAC responders had elevated mitochondrial function, most 
notably oxidative phosphorylation (OXPHOS). OXPHOS 
addiction in AML cells is known to be associated with 
chemotherapy resistance and adverse prognosis in AML. 
OXPHOS-addicted AML cells are targeted by VEN + HMA 
through inhibition of electron transport chain complex II 
[34]. High OXPHOS AML cells are also typically glucose 
addicted through ATP inhibition of AMPK and activation 
of mTORC1 [35, 36], and they use the pentose phosphate 
pathway (PPP) to metabolize glucose. Since PLK1 is known 
to phosphorylate and activate G6PD [37], this represents 
a possible way in which PLK inhibition could target high 
OXPHOS AML cells, and warrants further investigation.

When the ONV + DAC gene signature was applied to 
the external BeatAML cohort, predicted responders were 
characterized by enrichment of mutations in the splice fac-
tor gene SRSF2 (Table 4; Fig. 3). Mutations in other core 
splicing factor genes (SF3B1, U2AF1, ZRSR2) were also 
somewhat enriched in the predicted responders. In the ONV 
+ DAC–treated patients examined in the current study, we 
observed that patients with SRSF2 or SF3B1 mutations were 
9 times more likely to be responders (CR/CRi) than not (P 

= 0.007; Table 3), with that value increasing to 12.8 times 
(P = 0.001) when overall response rate (CR/CRi/MLFS/PR) 
was considered.

Spliceosome mutations (such as SRSF2, SF3B1, U2AF1, 
and ZRSR2), along with driver mutations in the cohesion com-
plex, transcriptions factors (RUNX1), and chromatin modifiers 
(e.g., ASXL1), define a chromatin-spliceosome molecular sub-
type of AML (CS-AML). Overlapping characteristics are also 
frequently observed in MDS and secondary AML [38, 39]. 
Spliceosome mutations define a high-risk AML subtype that 
tends to have poor outcomes to intensive chemotherapy, and 
are found more frequently in older patients for whom intensive 
treatment may not be an option [2, 39, 40]. However, the pres-
ence of spliceosome mutations in the HMA + VEN setting 
has been shown to provide outcomes for patients with spli-
ceosome mutations that are at least as favorable as wildtype 
(ORR of 89% vs 79%)2. SRSF2 and SF3B1 mutations alter 
the normal sequence-specific RNA binding activity of their 
proteins driving aberrant splicing [41]. Aberrant splicing (AS) 
has also been shown to be linked to both cell cycle control and 
apoptosis, suggesting direct relationships between AS and cell 
cycle control agents including PLK1 [42].

Fig. 3   Heatmap showing the 
prevalence of 27 mutated 
genes in the BeatAML cohort 
that were associated with the 
ONV + DAC predictive gene 
signature
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In the current study, no patient who had received prior 
HMA, or HMA + VEN, responded to ONV + DAC. This 
would suggest that these patients were either resistant or had 
become resistant to HMA or HMA + VEN, and that the fail-
ure of these patients to respond to ONV + DAC results from 
this prior HMA resistance. Also, although HMA + VEN has 
been shown to be efficacious following HMA failure, ONV 
+ DAC would appear unlikely to be able to rescue HMA + 
VEN failure.

Given this, one may ask if the observed ONV + DAC 
responders were largely responding to DAC and not specifi-
cally to the combination. Although we cannot know whether 
the (HMA naïve) patients in the current study would, or would 
not, have responded to DAC as a single agent, several lines 
of evidence suggest that it is highly unlikely that the ONV + 
DAC responders were simply responding to DAC and not to 
the combination. First, when the response to ONV + DAC 
was predicted in patients with a known status of response 
to single agent DAC [32], neither predicted ONV + DAC 
responders nor predicted non-responders were associated 
with known DAC response (Supplemental Tables S2 and S3). 
Second, additional support comes from the observation that 
none of the responders to ONV+DAC carried TET2 or TP53 
mutations (Supplemental Table S5), although both TET2 and 
TP53 mutations have previously been associated with favora-
ble response to HMA in AML and MDS [43, 44]. Chronic 
myelomonocytic leukemia (CMML) is a hybrid myelopro-
liferative/myelodysplastic with a tendency to progress to 
AML [45]. Like MDS and cs-AML, it is characterized, in up 
to 80% of cases, by mutations both in epigenetic modifiers, 
notably ASXL1 truncations leading to highly proliferative 
phenotypes, and SF genes [45, 46]. Consequently, safety and 
preliminary efficacy of onvansertib in R/R CMML are being 
studied in a phase 1 trial [NCT05549661].

Conclusion

Our results suggest that ONV + DAC has preliminary effi-
cacy as a treatment for R/R AML in patients who have not 
received prior HMA (DAC or AZA, either alone or in com-
bination with VEN). The efficacy of ONV + DAC is not 
predicted by the efficacy of DAC as a single agent; however, 
prior HMA failure may predict lack of response to ONV + 
DAC. A gene expression signature–based model, applied 
to an independent dataset predicted that mutations in splice 
factor genes, notably SRSF2 and SF3B1, may be predic-
tive of ONV + DAC response. This association was veri-
fied in ONV + DAC–treated patients and warrants further 
investigation.
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