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Abstract
Diagnosis and prognostic stratification of myelodysplastic syndromes (MDS) have been complemented by new techniques, 
including flow cytometry and NGS. To analyze the relationship between molecular and cytofluorimetric data, we enrolled 
in this retrospective study, 145 patients, including 106 diagnosed with MDS and 39 controls. At disease onset, immunophe-
notypic (IF), cytogenetic tests, and cytomorphological (CM) examination on bone marrow were carried out in all patients, 
while NGS was performed in 58 cases. Ogata score presented a specificity of 100% and a sensitivity of 59%. The detection 
of at least two phenotypic aberrancies in Ogata negative patients increased the sensitivity to 83% and specificity to 87%. 
Correlations were identified between IF aberrancies and mutations, including positive Ogata>2 and mutations in SRSF2 
(p=0.035), CD15 and U2AF1 (0.032), CD56 and DNMT3A (p=0.042), and CD38 and TP53 (p=0.026). In multivariate 
analysis, U2AF1 mutations, associated with del(20q) and/or abnormalities of chromosome 7 (group 4 as defined by the 
EuroMDS score), significantly correlated with an inferior overall survival (p=0.019). These parameters and Ogata score>2 
also showed a significant correlation with inferior event-free survival (p=0.023 and p=0.041, respectively). Both CM and FC 
features correlated with prognosis and mutational patterns. In an integrated MDS work-up, these tools may guide indications 
for mutational screening for optimal risk stratification.
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Introduction

Myelodysplastic syndromes (MDS) are a heterogene-
ous group of clonal disorders characterized by persistent 
peripheral cytopenia, dysplasia of myeloid progenitors, and 
increased risk of acute myeloid leukemia (AML) [1]. The 
backbone for establishing diagnosis and prognosis of MDS 
are a careful anamnesis (to exclude potential other causes of 
cytopenia), bone marrow (BM), cytomorphological (CM) 
examination, and cytogenetic tests [2].

Over the years, these valuable tools have been comple-
mented by new techniques for a better characterization and 
prognosis assessment of MDS. In this line in 2014, the Euro-
pean Leukemia Net (ELN) working group for flow cytom-
etry strongly recommended the use of this technique in the 
work-up of MDS [3].

Despite the lack of a standardized profile for diagno-
sis, flow cytometry (FC) has been shown to be reliable in 
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enumerating bone marrow progenitors and CD34+ cells and 
identifying phenotypic aberrancies, which correlate with 
transfusion dependence, poor response to therapy, unfa-
vorable cytogenetics, evolution into AML, and decreased 
overall survival (OS) [3–6]. In clinical practice, a FC score 
has been proposed by Ogata et al. in 2009 [7] and validated 
by Della Porta et al. in 2012 [8] for IPSS low-risk MDS, 
whose diagnosis may be challenging in absence of blasts, 
ring sideroblasts, or clonal cytogenetic abnormalities.

More recently, the advances in genome sequencing have 
led to a better understanding of the genomic landscape of 
MDS, detecting mutations in 78–89% of cases [9–12]. These 
acquisitions have allowed to create new classifications and 
predict more accurately response to treatment and prognosis.

In particular, the recently published International Molec-
ular Prognosis Scoring System (IPSS-M) [13], combining 
genomic profiling with hematologic and cytogenetic param-
eters, improved risk stratification of patients with primary 
and secondary or therapy-related MDS. Indeed, by stratify-
ing MDS into 6 risk classes, IPSS-M predicts survival with 
significantly higher accuracy, as compared to IPSS [14] and 
revised IPSS (R-IPSS) [15, 16].

Despite these advances, the relationship between molecu-
lar and FC data and the diagnostic potential of the combined 
analysis need to be defined.

In this retrospective study, we propose a FC panel to 
detect phenotypic aberrancies on CD34+ myeloid progeni-
tors, in combination with the “Ogata score,” to support the 
diagnosis and prognosis of MDS and explore the correla-
tions with morphologic examination and mutational profile.

Patients and methods

Patient characteristics

This retrospective study included 145 patients consecutively 
diagnosed with MDS from November 2017 to February 
2022 at Policlinico Universitario di Roma Tor Vergata and 
Policlinico Universitario di Roma Umberto I (106 with MDS 
and 39 with non-clonal cytopenias, as controls). Diagnosis 
of MDS was made according to 2016 WHO criteria [1]. 
Patient characteristics are summarized in Table 1.

For each case, potential causes of cytopenia were ruled 
out, including vitamin or iron deficiency, liver or kidney fail-
ure, alcohol intake, heavy metal poisoning, chronic inflam-
matory diseases, thyroid dysfunction, infectious diseases, 
immunological or rheumatological causes, autoimmune 
cytopenias, drug-induced cytopenias, and other hematologi-
cal disorders.

The threshold to define morphological dysplasia was 
at least 10% cells of one or more myeloid lineage (eryth-
roid, granulocytic, and megakaryocytic). The R-IPSS and 

IPSS-M were used to categorize MDS from a prognos-
tic perspective [13, 15]. At the onset of disease, immu-
nophenotypic (IF), cytogenetic tests, and morphologic 
examination on bone marrow (BM), according to current 
indications [17–19], were carried out on every sample. A 
subset of 58 patients underwent next-generation sequenc-
ing (NGS).

MDS were defined “lower-risk” when R-IPSS was from 
very low, to intermediate risk, and IPSS-M from very low to 
intermediate-low. Higher-risk MDS included high and very 
high risk by R-IPSS, and intermediate-high to very high risk 
by IPSS-M.

Patients were also categorized basing on the classification 
proposed by Bersanelli et al. [12] (EuroMDS score): Group 
1, MDS with SF3B1 mutations and co-existing mutations 
in other genes (ASXL1 and RUNX1); Group 2, MDS with 
TP53 mutations and/or complex karyotype; Group 3, MDS 
with SRSF2 and concomitant TET2 mutations; Group 4, 
MDS with U2AF1 mutations associated with deletion of 
chromosome 20q and/or abnormalities of chromosome 7; 
Group 5, MDS with SRSF2 mutations with co-existing muta-
tions in other genes (ASXL1, RUNX1, IDH2, and EZH2); 
Group 6, MDS with isolated SF3B1 mutations (or associ-
ated with mutations of TET2 and/or JAK/STAT pathways 
genes); Group 7, MDS with AML-like mutation patterns 

Table 1  Study population

*Blast count was evaluated by morphology and, if not evaluable, by 
FC

Age, years (N=106) Median (range) 73 (37–89)

Sex (N=106) Male (%) 63 (59)
Female (%) 43 (41)

WHO 2016 (N=106) MDS with single lineage dys-
plasia

19 (18)

MDS with multilineage dysplasia 46 (43)
MDS with isolated del(5q) 8 (8)
MDS with ring sideroblasts and 

single lineage dysplasia
10 (9)

MDS with excess blasts-1 15 (14)
MDS with excess blasts-2 7 (7)
MDS, unclassifiable 1 (1)

R-IPSS* (n=105) Very low (%) 24 (23)
Low (%) 51 (49)
Intermediate (%) 11 (10)
High (%) 17 (16)
Very high (%) 2 (2)

IPSS-M* (n=49) Very low (%) 2 (4)
Low (%) 32 (65)
Moderately low (%) 6 (12)
Moderately high (%) 2 (4)
High (%) 6 (12)
Very high (%) 1 (2)
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(DNMT3A, NPM1, FLT3, IDH1, and RUNX1 genes); and 
Group 0, MDS without specific genomic profiles.

Flow cytometry

Ogata score was performed as described by Della Porta 
et al. [8] by analysing the following parameters: (1) lym-
phocyte to myeloblast CD45 ratio (mean fluorescence inten-
sity [MFI] of CD45 on lymphocytes ÷ MFI of CD45 on 
CD34+myeloblasts); (2) granulocyte to lymphocyte SSC 
peak channel ratio (SSC channel number where the maxi-
mum number of CD10– granulocytic cells occurs ÷ SSC 
channel number where the maximum number of lympho-
cytes occurs); (3) the percentage of CD34+ B-progenitor-
related cells in all CD34+ cells; and (4) the percentage of 
CD34+ myeloblasts in all nucleated cells. One point was 
given for each parameter outside the normal values. The 
analysis of phenotypic aberrancies was performed on gated 
CD34+ cells evaluating: abnormal expression of CD200 
and CD25, lack or reduced expression of CD117, HLA-DR, 
CD33, CD38, and CD13; asynchronous expression of CD15 
and CD64; and cross lineage expression of CD7, CD2, CD5, 
and CD56 (Supplementary table 1). Supplementary table 2 
shows the monoclonal antibody panels used for immunophe-
notypic testing.

Molecular screening

Bone marrow mononuclear cells (BM-MNC) were isolated 
from diagnostic samples of MDS patients by Ficoll gradient 
centrifugation using lympholyte-H (Cedaralane).

DNA samples were extracted using the QIAamp DNA 
Mini Kit (Qiagen AG, Milan, Italy), in accordance with 
the manufacturer’s instructions and quantified using a 
Qubit Fluorometer (Life Technologies). DNA samples 
for NGS screening were processed and analyzed as previ-
ously reported [20]. In brief, NGS screening for common 
somatic mutations in thirty genes known to be involved in 
MDS pathogenesis (supplementary table 3) was performed 
according to the commercial Myeloid Solution by SOPHiA 
GENETICS (SOPHiA GENETICS, Saint-Sulpice, Swit-
zerland) on a MiniSeq® sequencing platform (Illumina, 
San Diego, California). The NGS analysis was performed 
on generated FASTQ sequencing files using the SOPHiA 
DDM® platform that allows for detection, annotation, and 
pre-classification of genomic mutations (SNVs and Indels) 
through its SOPHiA™ artificial intelligence. Reads were 
aligned to the human reference genome (hg19 assembly). 
Only mutations with a VAF ≥ 2% (variant allele frequency), 
threshold coverage ≥ 1000x, and identified as highly or 
potentially pathogenic by the SOPHiA DDM® platform 
were considered for all subsequent steps of the analysis. 
Single-nucleotide polymorphisms (SNP), variants localized 

in the intronic and UTR regions, and synonymous vari-
ants were also excluded from the analysis. Targeted-NGS 
sequencing data are stored at https:// www. sophi agene tics. 
com (SOPHiA DDM platform) and can be extracted using 
the Sophia-DDM-v4 password-protected software. Raw data 
will be provided to researchers upon request to the corre-
sponding author.

Statistical analysis

Univariate and multivariate analyses were used to establish 
the connections between the variables. Categorical variables 
were compared using the chi-square test; odds ratios (OR) 
with 95% confidence intervals (CI) were also calculated. 
For expected cell values less than 5, Fisher’s exact test and 
the exact limits for confidence intervals were preferred. The 
independent test or Mann-Whitney test was used for con-
tinuous variables as appropriate. A p value less than 0.05 
was considered significant. Sensitivity [true positives (TP)/
TP + false negatives (FN)] and specificity [true negatives 
(TN)/TN + false positives (FP)] were used to determine the 
diagnostic power and reliability of the scores.

Survival functions were computed with the Kaplan-Meier 
method; significance was established with log-rank test. OS 
was defined as survival from date of first diagnosis, while 
event-free survival (EFS) indicated time from initial diagno-
sis and disease progression to HR-MDS, AML, or death by 
any cause. Cox regression was used to determine significant 
independent prognostic factors affecting survival. Statisti-
cal analysis was performed through IBM SPSS Statistics 27 
(IBM Corp. in Armonk, NY).

Results

Flow cytometry and morphology

In this paper, we show that Ogata score >2 was able to iden-
tify 63 of 106 MDS patients without misclassifying any con-
trol, resulting in 59% sensitivity and 100% specificity. The 
analysis of CD34+ cells revealed a median of two phenotype 
aberrations per patient (range 0–7, supplementary fig. 1), 
with lack of CD33 expression being the most commonly 
detected (44%, Supplementary fig. 2).

In the subset of patients with a negative Ogata score 
(score 0–1, 43/106 MDS, 40%), at least 2 aberrancies, 
among those investigated in the FC panel (as listed in sup-
plemental table 1), were detected in 58% of cases (25/43). 
This increased the sensitivity of the combined analysis to 
83% (TP 88/106), and the specificity to 87% (true negative, 
TN 34/39).

The sensitivity of Ogata score, in the subgroup of lower-
risk MDS, was 51% and 47.5% (true positive, TP: 44/86 and 

https://www.sophiagenetics.com
https://www.sophiagenetics.com
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19/40, respectively), while, as expected, sensitivity in higher 
risk MDS was 100% and 78% (TP 19/19 and 7/9, according 
to R-IPSS and IPSS-M, respectively.

Moreover, in Ogata score ≤1 lower-risk MDS (R-IPSS: 
42/86, 49%; IPSS-M 21/40, 52.5%) the detection of at least 
2 phenotypic aberrancies markedly increased the reliability 
of the tool, bringing the sensitivity to 79% (R-IPSS, 24/42 
patients) and 75% (IPSS-M, 11/21 patients), despite lower-
ing specificity to 87% in both groups (TN 34/39).

The mean FC blast count (CD34+ blasts) was 2.2% 
(median 0.9, range 0–12). We identified a correlation 
between higher blast counts and specific FC aberrancies 
(CD38, p=0.002, R=0.357; CD56, p=0.024, R=0.101) and 
Ogata score ≥2 (p<0.001, R=0.424) (Supplementary fig. 3).

To assess the predictive role of FC in our patient cohort, 
we performed an outcome analysis, which revealed a cor-
relation between Ogata score ≥2 and higher FC blast count 
with AML evolution (p=0.001 and p=0.024, respectively), 
shorter OS (p=0.004 and p=0.002, respectively), and 
event-free survival (p=0.003 and p=0.001, respectively). 
Furthermore, we found a correlation with higher R-IPSS 
(both p<0.001), while IPSS-M did not reach the signifi-
cance threshold.

CM blast count was performed in 92 patients (mean 
blast count 3.1; median 2, range 0–15). Higher blast counts 
correlated with specific FC aberrancies (CD15, p=0.024, 
R=0.271; CD56, p=0.006, R=0.156), and a positive Ogata 
score (p=0.007, R=0.338) (Supplementary fig. 3), pro-
gression to AML (p=0.001), shorter EFS (p<0.001), OS 
(p<0.001), and higher R-IPSS (p<0.001), but not with 
IPSS-M.

Blast enumerations through FC and CM were strongly 
correlated (p<0.001). We then compared the two techniques 
subgrouping the patients according to blast counts (group 1: 
<5% blasts, group 2: ≥5% and <10%, and group 3: ≥10%). 
Using FC, 78 (85%) patients were assigned to group 1, 9 
(10%) to group 2, and 5 (5%) to group 3, while using CM, 71 
(77%) patients were assigned to group 1, 15 (16%) to group 
2, and 6 (6%) to group 3. The concordance index was 81.5% 
(Supplementary fig. 4).

Mutational screening

Using NGS, we detected a total of 81 pathogenic/likely 
pathogenic mutations in 38 out of 58 patients, (65.5%; 
median number of mutation per patient: 1, range 0–6) (Sup-
plementary table 4). The median number of mutated genes 
per patient was 1 (range 0–5).

The most frequently mutated genes were SF3B1 (17%, 
10/58 patients), ASXL1 (14%, 8/58 patients), and TET2 
(14%, 8/58 patients). Figure 1 shows the distribution of 
mutations.

In lower risk R-IPSS, 33 out of 53 patients (62%) pre-
sented at least 1 mutation, while in R-IPSS higher-risk sub-
groups all 4 patients were mutation carriers (100%; p=ns). 
As previously described [9], the detection of a high number 
of mutations (≥2) correlated with shorter OS (p=0.009) and 
EFS (p=0.056) (suppl. Fig. 5).

We then analyzed the subgroups of patients with muta-
tion in splicing (SF3B1, SRSF2, U2AF1, and ZRSR2; 21/58 
patients, 36%) and epigenetics modifying genes (DNMT3A, 
IDH1, IDH2, and TET2; 16/58 patients, 27.5%). The for-
mer presented significantly lower OS (p=0.004) and EFS 
(p=0.005).

Supplementary table 4 shows the genomic groups accord-
ing to the classification proposed by Bersanelli et al. [12]. 
The most frequently represented was group 0 (MDS without 
specific genomic profiles; 48%) in agreement with the high 
prevalence of low-risk-MDS. Group 4 (MDS with U2AF1 
mutations associated with deletion of chromosome 20q and/
or abnormalities of chromosome 7) presented shorter OS 
(p<0.001) and EFS (p<0.001), as previously reported [12].

Correlation between flow cytometry and mutational 
screening

The detection of >2 mutations correlated with Ogata score 
≥2 (p=0.001, OR 6.750; 95% CI: 2.048–22.250) (Supple-
mentary fig. 6), but not with BM blast counts assessed by 
CM. Number of FC aberrancies did not correlate with num-
ber of mutations. However, there were significant associa-
tions between FC and genomic data (gene mutations and 
molecular/prognostic subgroups defined according to Ber-
sanelli et al. [12]).

Ogata score ≥2 was found to be significantly associ-
ated with the presence of epigenetic modifier genes as 
well as SRSF2 and TET2 mutations (p=0.003, p=0.035, 
and p=0.001, respectively), whereas Ogata score <2 was 
found to be significantly associated with EuroMDS group 
0 (MDS without specific genomic profiles, p=0.009). In 
terms of FC aberrancies, CD56 expression was associated 
with DNMT3A mutation and EuroMDS group 7 (p=0.042 
and p=0.023, respectively), CD15 expression was associ-
ated with U2AF1 mutation and EuroMDS group 4 (p=0.032 
for both), lower CD117 expression was associated with 
EuroMDS group 2 (p=0.052), and CD38 aberrancy was 
associated with TP53 mutation (p=0.026) (Table 2). A high 
CM blast count correlated with TP53 mutation (p=0.053, 
R=0.439) and group 2 (MDS with TP53 mutations and/or 
complex karyotype; p<0.001, R=0.561) whereas a high FC 
blast count correlated with RUNX1 mutation (p=0.024, 
R=0.266) and TP53 mutations (p=0.041, R=0.315).

Finally, in multivariate analysis (taking into account 
age, Ogata score≥2, detection of >2 mutations, CM and 
FC blast count, mutational subgroup 4 and splicing genes 
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mutations), EuroMDS score group 4 resulted significantly 
associated with shorter OS (p=0.019). Multivariate analy-
sis of EFS (taking into account age, Ogata score≥2, CM 
and FC blast count, mutational subgroup 4, and splicing 
genes mutations) showed a correlation between group 4 
and Ogata score ≥2 (p=0.023 and p=0.041 respectively) 
(Fig. 2).

Discussion

The Ogata score provides high specificity when combined 
with morphology and cytogenetics, as evidenced by our 
experience (100% specificity). Since its first formulation in 
2009, attempts have been made to implement the sensitivity 
of Ogata score. In Ogata's own paper, a score extended to 7 
parameters (CD15, CD56, and CD11b expression on CD34+ 
myeloblasts) was proposed, which conferred good diagnostic 
power (sensitivity 72–86%, specificity 90–98%) [7], but it 
was not validated in a subsequent trial [8].
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Fig. 1  Mutational profiles of 58 patients, grouped according to Ogata score, with information on R-IPSS and IPSS-M

Table 2  Significant correlations of mutations/EuroMDS score and FC 
parameters

Correlations between genomic and FC data

n (%) EuroMDS score FC

28 (48%) Group 0 Ogata score <2 p= 0.009, OR: 0.222
95% CI: 0.072–0.684

1 (2%) Group 2 CD117 p= 0.052
5 (9%) Group 4 CD15 p= 0.032, OR: 9.857

95% CI: 1.391–69.835
5 (9%) Group 7 CD56 p= 0.023, OR: 11.750

95% CI: 1.621–85.162
Mutated gene

8 (14%) TET2 Ogata score ≥2 p= 0.001
7 (12%) SRSF2 Ogata score ≥2 p= 0.035, OR: 10.105

95% CI: 1.129–90.454
6 (10%) DNMT3A CD56 p=0.042, OR: 7.667

95% CI: 1.252–46.958
5 (9%) U2AF1 CD15 p=0.032, OR: 9.857

95% CI: 1.391–69.835
3 (5%) TP53 CD38 p= 0.026, OR: 25.500

95% CI: 1.880–345.832
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Other authors proposed the implementation of specific 
PAs [21, 22] or more complex indices, such as Ki-67 [23], 
or the study of erythroid precursors [24, 25] or mast-cells 
[26], with variable results.

Recently, ELN recommended a second-level panel to 
investigate myeloid progenitor in MDS. Our panel, which 
differed slightly from the one recommended by ELN [27] 
due to the inclusion of CD2 and the exclusion of CD11b (see 
supplementary table 2), confirmed in a real-world setting the 
value of adding FC parameters to the Ogata score, providing 
an improvement in sensitivity (83%).

In this regard, specific PAs have been investigated as 
prognostic factors. Ogata et al., since the early 2000s, iden-
tified in several papers CD117, expressed by myeloid pro-
genitors, and CD56 and CD7, usually expressed in other-
than myeloid lineages, as markers of higher blast count, 
evolution to AML and poor prognosis. On the other hand, 
CD15, whose expression begin to appear in promyelocytes 
and myelocytes, correlated with a lower blast count and bet-
ter outcome. In this line, the authors suggested that a more 
immature immunophenotype could predict an adverse out-
come [28–30].

Their interpretation has been questioned in subsequent 
years, since conflicting evidence about the prognostic role of 

CD7 emerged: Satoh et al. and Veltroni et al. confirmed the 
poor prognosis linked to CD7 expression [30, 31], whereas 
Font et al., analyzing CD34 myeloid cells from 55 bone mar-
rows of patients with MDS, did not detect nor its prevalent 
expression in higher-risk MDS, neither an association with 
IPSS or clinical outcome [32, 33].

In our experience, we found a correlation between Ogata 
Score <2 and Euroscore group 0, that is patients without a 
specific genetic profile, suggesting that these patients are 
neither molecularly nor phenotypically well defined, and 
therefore their characterization remains an unmet medical 
need. This also questions the diagnosis of MDS in at least 
some of these patients. In this line, the importance of careful 
differential diagnosis between MDS, in particular low-risk 
subtypes, and vitamin deficiencies or cytopenia related to 
other conditions emerges even more.

The study of potential aberrancies beyond Ogata Score 
in this setting could be of great help in clarifying the diag-
nosis and guiding therapeutic. Actually, in our cohort, 
the detection of 2 phenotypic aberrancies, any of those 
included in the panel used, resulted highly informative and 
improved sensitivity in Ogata score-negative patients. In 
parallel, a broader and more comprehensive phenotypic 
examination may have a central role in characterize and 

Fig. 2  Kaplan-Meier plot of event-free survival (EFS) grouping 
patients for EuroMDS group 4 (A; p=0.023 in multivariate analysis) 
and Ogata score (B; p=0.041 in multivariate analysis). Kaplan-Meier 

plot of overall survival (OS) grouping patients for EuroMDS group 4 
(C; p=0.019 in multivariate analysis)
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distinguish pre-malignant conditions, such as idiopathic 
cytopenia of undetermined significance (ICUS) and clonal 
cytopenia of undetermined significance (CCUS), in which, 
again, Ogata Score may not be informative [34]. Further 
studies are needed to clarify this aspect.

Furthermore, we confirmed the prognostic impact of 
CD56, as a marker associated with higher blast counts 
(by both CM and FC analysis) and AML-like mutations 
patterns (Group 7 and DNMT3A mutations), and the cor-
relation between lower CD117 expression and Bersanelli 
group 2, characterized by dismal outcome [12], while we 
did not find any correlations between CD7 and adverse 
outcome, according to Font et al.

Of note, CD15 expression on CD34+ cells not only did 
not predict a better outcome in our study cohort, but cor-
related to higher CM blast counts and to a poor prognosis 
mutational pattern (U2AF1 mutation and group 4) [12].

Our data confirmed the prognostic value of Ogata Score 
which, in multivariate analysis, resulted an independent 
factor significantly associated to EFS.

The comparison between CM examination and FC in blast 
enumeration is at center of a long-lasting debate. Both tech-
niques are affected by operator dependence and by variables 
related to blood collection and sample processing. Neverthe-
less, the strong correlation between the two techniques with 
a concordance index of 81.5% in blast enumeration found 
in our study is consistent with previous studies [4]. On the 
other hand, data in literature about the comparison between 
FC and CM examination, which, in our experience, tended 
to identify a higher blast number, are conflicting [4, 35].

Possible explanations could lie in the heterogenicity of 
the study cohorts and interoperator variability.

The NGS analysis confirmed the negative prognostic role 
of a high number of mutations, the presence of mutations 
belonging to splicing-machinery pathway and group 4 identi-
fied by Bersanelli et al. [12], whose independent association 
with OS and EFS is retained, despite taking into account mor-
phological and cytofluorimetric parameters in multivariate 
analysis. Besides its prognostic value, NGS has been shown 
to play a role in predicting post hematopoietic cell transplanta-
tion outcomes [36] and response to treatments [37, 38].

Thus, in recent years, the use of NGS has increased in 
clinical laboratories, even outside the field of scientific 
research [39], although unsolved needs remains, such as 
the establishment of common quality standards and clinical 
interpretation of the results. In fact, even if position papers 
have been published [11, 40], wide variations among labora-
tories still persist [41]. Furthermore, NGS is still a high-cost 
technique and low-income countries are struggling to adapt 
[42]. Moreover, its scarce and uneven availability makes its 
use complicated even in countries with greater resources.

Therefore, it is necessary to identify the correct subset of 
patients who could benefit the most from NGS test and the 

proper panel of genes to analyze to reduce costs and turn 
around times. According to our findings, specific FC char-
acteristics such as Ogata score and specific PAs correlate 
with mutational patterns, which can predict outcome and 
treatment response in the majority of patients. As a result, 
these low-cost first-line tools could help guide the selec-
tion of patients for mutational screening for optimal risk 
stratification.
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