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Abstract
This study aimed to compare the serum levels of 34 cytokines of children with hemophagocytic lymphohistiocytosis (HLH) 
and explored the specific cytokine pattern of HLH subtypes and the relationship between cytokine levels and prognosis. This 
retrospective study assessed the clinical data and cytokine levels of newly diagnosed children with HLH in Beijing Children’s 
Hospital, Capital Medical University, from January 2017 to December 2021. A total of 101 children were enrolled in the 
study. The levels of IFN-γ and IL-18 increased in more than 90% of patients, and MIP-1α, SDF-1α, IP-10, IL-6, IL-8, IL-10, 
IL-1 RA, and TNF-α increased at different levels in more than 50% of patients. The levels of IL-10 in EBV-HLH increased 
significantly, followed by IFN-γ and IL-18, while IL-10 and IFN-γ in CAEBV-HLH had a slight increase. Except for IL-10, 
the levels of IL-6, Eotaxin, IL-13, IL-18, IFN-γ, and MIP-1β in Rh-HLH increased significantly. F-HLH had significantly 
high IL-10 levels and a slight increase in IL-13. We showed that various cytokines could assist in differentiating HLH sub-
types with ROC curve analysis. When IL-10/IL-6 was 1.37, the sensitivity and specificity of diagnosing EBV-HLH were 
higher than 80% (AUC = 0.837, p < 0.001). The effect of cytokine ratio on classifying HLH subtypes (17/22, 77.3%) was 
more significant than the single cytokine (5/22, 22.7%). The 3-year overall survival (OS) rate of children with F-HLH was 
the lowest during the follow-up. The 3-year OS of patients with EBV-HLH and CAEBV-HLH was significantly higher than 
that with F-HLH (88.1% ± 5.0% vs. 94.1% ± 5.7% vs. 57.1% ± 14.6%, p = 0.017). Cox proportional hazards model revealed 
that elevated GM-CSF and MCP-1, as well as CNS involvement, were independent risk factors for poor outcomes for patients 
with HLH. Various cytokines play important roles in HLH. Different subtypes of HLH have their specific cytokines pattern, 
and the ratio of cytokines may be more significant in differentiating HLH subtypes than the single one. Elevated GM-CSF 
and MCP-1 could be useful biomarkers for a poor prognosis for patients with HLH.
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Th  T helper
CBA  Cytometric bead array

Introduction

Hemophagocytic lymphohistiocytosis (HLH) is a rare, life-
threatening inflammatory state characterized by cytokine 
storms caused by the uncontrolled activation of cytotoxic 
T lymphocytes and macrophages, resulting in tissue injury 
and multiorgan dysfunction. Various cytotoxic dysfunction 
of HLH subtypes lead to the cytotoxic function impairment 
of natural killer (NK) cells and cytotoxic T lymphocytes, 
but these cells can still release cytokines. Overstimulated 
cytotoxic cells activate the immune response, resulting in a 
vicious cycle and cytokine storms.

Serum cytokine storm in patients with HLH has become 
a research hotspot involving immune mechanism and tar-
geted therapy of HLH. Serum soluble CD25 (sCD25) is an 
early-phase biomarker of T lymphocyte activation, which 
can competitively bind interleukin (IL)-2, inhibit lympho-
cytes proliferation, and interfere with immune function. The 
level of sCD25 is one of the diagnostic criteria of HLH. 
The significantly increased interferon (IFN)-γ, IL-1 β, IL-6, 
IL-10, and IL-18 levels in HLH also indicate important roles 
for these cytokines in the pathogenesis of HLH [1]. Tar-
geted blockades of cytokines (IFN-γ, IL-1 inhibitors, IL-18, 
etc.) with low toxicity have achieved significant efficacy in a 
small number of HLH patients [2]. They have broad thera-
peutic prospects, and clinical trials were ongoing. Cytokines 
are the mediators of immune activation. Analysis of serum 
cytokine patterns in HLH may explore the development of 
various HLH subtypes from the pathogenic mechanism, 
which is helpful to differentiate the subtypes of HLH and 
promote broader targeted therapies. Herein, for the first 
time, we performed a study on the relationship between 34 
cytokines and different HLH subtypes.

Patients and methods

Patients

A retrospective study was conducted to enroll newly diag-
nosed children with active HLH from January 2017 to 
December 2021 in Beijing Children’s Hospital, Capital Med-
ical University. The following characteristics were collected 
and analyzed for each patient in this study: demographic 
characteristics, clinical features, laboratory data, diagnosis, 

treatment, and prognosis. Patient follow-up was carried out 
by either outpatient visits and/or telephones.

Diagnostic criteria

The diagnosis of HLH was based on the criteria (HLH-
2004) of the International Histiocyte Society [3]. The clas-
sification of HLH was based on the recommendations from 
the North American Consortium for Histiocytosis in 2019 
[4]. Children with HLH in our study were divided into the 
following five subtypes: (1) Epstein-Barr virus-associated 
HLH (EBV-HLH); (2) Chronic active EBV-associated HLH 
(CAEBV-HLH); (3) Malignant-associated HLH (M-HLH); 
(4) Rheumatological HLH (Rh-HLH); and (5) Familial 
HLH (F-HLH). Patients were divided into the primary HLH 
(pHLH) group and the secondary HLH (sHLH) group based 
on gene mutation. They were divided into the CNS and the 
non-CNS groups based on the level of central nervous sys-
tem (CNS) involvement.

Determination of cytokines

Sample of every patient was collected within 72 h after 
admission. Cytokines levels in patients before chemother-
apy were detected using the Liquid Phase Chip Technol-
ogy-Luminex analytical platform system from Millipore. 
Thirty-four cytokines were included in the analysis, includ-
ing macrophage inflammatory protein (MIP)-1α, stromal 
cell-derived factor (SDF)-1α, IL-27, IL-1β, IL-2, IL-4, IL-5, 
interferon-induced protein (IP)-10, IL-6, IL-7, IL-8, IL-10, 
Eotaxin, IL-12p70, IL-13, IL-17A, IL-31, IL-1 receptor A 
(IL-1RA), regulation upon activation normal T cell expressed 
and secreted (RANTES), IFN-γ, granulocyte-macrophage 
colony-stimulating factor (GM-CSF), tumor necrosis fac-
tor (TNF)-α, MIP-1β, IFN-α, monocyte chemotactic protein 
(MCP)-1, IL-9, TNF-β, growth-related oncogene (GRO)-α, 
IL-1α, IL-23, IL-15, IL-18, IL-21, and IL-22.

Treatment methods

All patients were treated according to the modified HLH-94 
protocol immediately after solidified  diagnosis3.

Statistical analysis

The number of samples is expressed by n. Continuous vari-
ables are presented as mean±standard deviation for normal 
distribution or median (range) for abnormal distribution. T 
test is used to compare the measurement data of normal dis-
tribution, and rank sum test is used to compare the measure-
ment data of abnormal distribution. Chi-square (χ2) test was 
used to compare the enumeration data. Diagnostic perfor-
mance was estimated with receiver operating characteristic 
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(ROC) curve analysis. Bayesian formula was used to ana-
lyze the sensitivity and specificity of cut-off value. Survival 
analysis was performed by the Kaplan–Meier method, and 
survival curves were compared using the Log-rank test. Cox 
proportional hazards model was applied to multivariate anal-
ysis to investigate the independent risk factors for prognosis. 
All statistical analysis was performed using the Statistical 
Package for Social Sciences software, version 26.0 (IBM 
Corp, Armonk, NY, USA). Spearman correlation analysis 
was adopted to analyze cytokines and HLH index. In our 
study, p < 0.05 was considered significant.

Results

General and clinical data

A total of 101 children (55 males and 46 females) were 
enrolled, with a median age of 3.24 (0.46–16.78) years. All 
patients were divided into five groups based on the diag-
nostic criteria, including 42 EBV-HLH, 17 CAEBV-HLH, 
8 M-HLH (all of them with non-Hodgkin’s lymphoma), 22 
Rh-HLH (3 with juvenile idiopathic arthritis and 19 with 
autoinflammatory diseases) and 12 F-HLH (7 with PRF1 
mutation and 5 with UNC13D mutation). The general data 
and clinical features of patients are shown in Table 1.

Characteristics of cytokines in HLH.

Comparison of cytokines among different subtypes of HLH

Thirty-four cytokines among different subtypes of HLH were 
compared and analyzed in this study. The levels of IFN-γ and 
IL-18 increased in more than 90% of patients, while MIP-1α, 
SDF-1α, IP-10, IL-6, IL-8, IL-10, IL-1 RA, and TNF-α 
increased at different levels in more than 50% of patients. 
We compared cytokines among different HLH subtypes and 
found significant differences in IL-6, IL-10, Eotaxin, IL-13, 
IFN-γ, MIP-1β, and IL-18 (Table 2). By grouping and com-
paring those seven cytokines, we preliminarily observed 
that different HLH subtypes had specific cytokines patterns 
(Fig. 1 and Supplemental Figure 1). For patients with infec-
tion-related HLH, the cytokine pattern of EBV-HLH and 
CAEBV-HLH may be different. EBV-HLH had significantly 
increased IL-10 levels, followed by IFN-γ and IL-18, while 
IL-10 and IFN-γ were slightly higher in CAEBV-HLH than 
in other subtypes. Except for IL-10, IL-6, Eotaxin, IL-13, 
IL-18, IFN-γ and MIP-1 β in Rh-HLH increased significantly. 
F-HLH had significantly increased IL-10 levels and slightly 
increased IL-13 levels. In M-HLH, the median of IL-10, IFN-
γ, and MIP-1β was all higher than normal, but there was no 
specific finding compared with other subtypes.

There was a significant difference in IL-6 levels between 
the non-CNS group (n = 74) and the CNS group (n = 27) 
(11.2 (0.0–733.7)pg/ml vs. 5.8 (3.5–177.9)pg/ml, p = 0.047) 
and IL-13 levels between the sHLH group (n = 89) and 
the pHLH group (n = 12) (2.25 (0.4–32.2)pg/ml vs. 1.35 
(0.6–14.8) pg/ml, p = 0.034).

The diagnostic significance of cytokine

We further explored the significance of IL-6, IL10, 
IL-13, IFN-γ, IL-18, and their ratios in the differential 
diagnosis of HLH subtypes through ROC curve analy-
sis (Fig.  2). Various cytokines and their ratios could 
help diagnose EBV-HLH, CAEBV-HLH, Rh-HLH, and 
F-HLH. After summarizing the parameters of cytokines 
which assisted in differential diagnosis, we found the 
effect of cytokine ratios on classifying HLH subtypes 
(17/22, 77.3%) was more significant than the single 
cytokine (5/22, 22.7%). When IL-10/IL-6 was 1.37, the 
sensitivity and specificity for EBV-HLH were higher than 
80% (AUC = 0.837, p < 0.001) (Supplemental Table 1).

The prognostic significance of cytokines

Eighteen patients died with a median follow-up time of 
3.06 (2.85–3.26) years, including 13 with multiple organ 
failure caused by disease activity, 2 with septic shock 
caused by infection, and 3 giving up because of critical 
condition. The 3-year overall survival (OS) rate in chil-
dren with F-HLH was the lowest. The 3-year OS in EBV-
HLH and CAEBV-HLH was significantly higher than 
in patients F-HLH (88.1% ± 5.0% vs. 94.1% ± 5.7% vs. 
57.1% ± 14.6%, p = 0.017). CNS involvement and pHLH 
also suggested a poor outcome (Fig. 3). By comparing the 
effects of increased 34 cytokines levels on prognosis, we 
found that the patients with increased GM-CSF (n = 4) and 
MCP-1 (n = 43) levels had lower 3-year OS rates, respec-
tively (84.3% ± 3.7% vs. 25.0% ± 21.7%, p = 0.001; 89.1% 
± 4.2% vs. 71.8% ± 6.9%, p = 0.018). Compared with 
patients with elevated IP-10, IFN-γ, and IL-18, patients 
with normal levels of these three cytokines all survived (p 
= 0.071, 0.196, and 0.260, respectively). In addition, Cox 
proportional hazards model showed that elevated GM-CSF 
and MCP-1 levels and CNS involvement were independent 
risk factors for poor prognosis in patients with HLH (Sup-
plemental Table 2).

Associations between cytokines levels and HLH 
index

The correlation between cytokines (IL-6, IL-10, Eotaxin, 
IL-13, IFN-γ, MIP-1β, IL-18) and HLH index was ana-
lyzed. We demonstrated that IL-6 and IL-10 levels were 
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negatively correlated with the NK cells activity (r = 
−0.305, p = 0.002; r = −0.242, p = 0.017), and IL-10 
levels were positively correlated with triglycerides and 
serum sCD25 levels (r = 0.306, p = 0.002; r = 0.433, p 
< 0.001). IFN-γ levels were negatively correlated with 
fibrinogen levels and positively correlated with ferritin 
levels (r = −0.259, p = 0.009; r = 0.428, p < 0.001). A 
negative correlation was observed between Eotaxin and 
sCD25 (r = −0.325, p = 0.003), and a positive correla-
tion was noticed between MIP-1 beta levels and fibrino-
gen levels (r = 0.251 and p = 0.012).

Discussion

An impaired host immune system in HLH provides an inef-
fective but overactive response to pathogen stimulation. The 
immune system cannot adequately eliminate the stimulation 
and does not undergo physiologic downregulation, which 
instead initiates a persistent cytokine secretion and inten-
sified immune activation. Cytokines, typically released by 
antigen-presenting cells (APC) such as macrophages, T 
helper (Th) cells, and cytotoxic cells, induce immune acti-
vation [5]. Th1 type cytokines mainly contain IFN-γ, and 

Table 2  Comparison of cytokines in HLH subtypes

*a significant difference

Subtype Reference 
range 
(pg/ml)

IM-HLH CAEBV-HLH M-HLH Rh-HLH F-HLH p value

n 42 17 8 22 12 –
MIP-1α ≤ 8 25.75 (1.3–277.0) 28.6 (1.1–120.2) 21.3 (1.1–85.9) 40.8 (1.1–191.6) 29.8 (1.1–104.9) 0.099
SDF-1α ≤ 620 564.75 (32.8–3060.0) 752.1 (182.0–2612.0) 745.1 (376.6–1590.0) 719.4 (227.4–1912.0) 531.9 (194.2–1027.0) 0.165
IL-27 ≤ 45 8.3 (0.0–167.8) 8.6 (0.0–443.1) 8.65 (0.0–60.6) 7.9 (0.0–69.2) 6.7 (0.0–13.6) 0.507
IL-1β ≤ 2 1.2 (0.3–48.8) 0.8 (0.3–26.5) 0.8 (0.4–14.0) 2.0 (0.6–16.3) 1.3 (0.3–54.2) 0.074
IL-2 ≤ 21 4.55 (1.6–71.4) 4.1 (1.2–67.0) 3.4 (1.4–17.5) 4.4 (1.2–34.3) 4.9 (2.2–13.6) 0.926
IL-4 ≤ 11 6.45 (2.2–82.4) 5.8 (2.2–67.9) 5.3 (0.0–61.5) 10.0 (0.0–94.6) 6.8 (2.8–276.2) 0.274
IL-5 ≤ 6 3.65 (0.0–34.9) 4.0 (0.0–12.4) 4.15 (3.3–6.4) 4.7 (0.0–30.0) 3.3 (0.0–71.4) 0.471
IP-10 ≤ 102 383.8 (31.6–1193.0) 409.4 (61.1–5113.0) 500.85 (38.1–1816.0) 575.4 (50.1–6564.0) 315.0 (85.5–2834.0) 0.198
IL-6 ≤ 8 6.45 (3.4–218.7) 7.4 (4.1–224.6) 7.9 (4.4–733.7) 48.8 (0.0–376.2) 6.1 (4.1–190.0) 0.031*
IL-7 ≤ 3 0.7 (0.2–5.7) 0.8 (0.2–4.6) 0.55 (0.3–2.9) 0.5 (0.2–10.5) 1.0 (0.2–6.6) 0.843
IL-8 ≤ 20 29.7 (0.7–1180.0) 38.4 (0.7–376.1) 52.65 (20.8–277.0) 64.0 (3.9–1105.0) 47.6 (1.8–886.4) 0.296
IL-10 ≤ 2 44.6 (0.3–1834.0) 3.6 (0.4–78.6) 6.5 (1.0–51.70 5.8 (0.5–555.6) 44.3 (2.3–464.4) <0.001*
Eotaxin ≤ 113 28.9 (0.9–160.2) 62.1 (3.1–209.9) 43.1 (16.6–484.4) 61.3 (6.1–190.6) 34.3 (6.4–417.7) 0.009*
IL-12p70 ≤ 6 3.15 (1.3–10.3) 3.2 (1.7–13.7) 2.4 (1.2–13.2) 5.2 (1.4–12.2) 3.3 (1.0–33.4) 0.233
IL-13 ≤ 3 2.8 (0.4–32.2) 2.1 (0.6–17.6) 2.1 (0.7–14.7) 3.9 (1.2–26.4) 1.3 (0.6–14.8) 0.028*
IL-17A ≤ 2 1.1 (0.4–84.3) 1.2 (0.4–76.9) 1.05 (0.6–14.7) 1.1 (0.0–5.6) 1.0 (0.8–76.9) 0.974
IL-31 ≤ 13 3.8 (0.0–8.4) 3.3 (1.8–8.4) 5.1 (3.1–6.7) 3.8 (0.0–8.6) 5.4 (2.9–62.3) 0.132
IL-1 RA ≤ 206 4293.5 (0.0–102329.0) 2337.0 (14.4–15917.0) 2534.05 (0.0–13509.0) 6531.0 (46.6–21819.0) 3283.0 (192.7–19078.0) 0.409
RANTES ≤ 257 91.0 (10.4–411.0) 94.6 (8.6–567.3) 106.6 (38.3–1304.0) 142.3 (27.3–979.1) 85.4 (29.4–1168.0) 0.115
IFN-γ ≤ 7 128.05 (0.0–1237.0) 83.7 (12.8–1054.0) 224.5 (0.0–451.3) 322.4 (0.0–2465.0) 74.4 (14.7–593.0) 0.015*
GM-CSF ≤ 13 6.25 (2.8–29.4) 5.3 (2.8–12.1) 7.55 (3.3–28.7) 5.6 (2.8–13.4) 5.6 (3.7–29.9) 0.572
TNF-α ≤ 8 13.05 (3.1–116.6) 9.6 (1.7–76.7) 6.1 (4.4–61.8) 27.7 (3.4–99.3) 5.8 (3.4–105.3) 0.103
MIP-1β ≤ 218 118.75 (2.5–991.5) 196.6 (16.8–613.5) 184.9 (30.7–296.8) 285.5 (48.9–923.9) 150.7 (2.5–337.6) 0.009*
IFN-α ≤ 1 0.2 (0.0–9.5) 0.2 (0.0–10.3) 0.3 (0.2–0.5) 0.3 (0.0–4.0) 0.2 (0.0–3.6) 0.082
MCP-1 ≤ 108 61.15 (8.9–760.1) 59.0 (8.9–223.5) 117.1 (1.4–310.8) 141.2 (1.6–513.0) 96.2 (7.9–1109.0) 0.240
IL-9 ≤ 8 2.35 (1.0–30.0) 2.8 (1.2–17.6) 4.3 (1.2–19.4) 3.1 (0.0–6.2) 3.4 (1.2–5.0) 0.109
TNF-β ≤ 30 3.5 (0.0–45.1) 4.5 (1.7–19.4) 2.75 (0.0–5.5) 3.3 (0.0–13.8) 4.9 (2.3–8.3) 0.734
GRO-α ≤ 25 14.6 (1.2–70.9) 29.7 (2.0–121.4) 34.6 (4.9–82.0) 36.4 (2.1–273.1) 16.8 (1.2–65.4) 0.124
IL-1α ≤ 5 0.4 (0.2–55.7) 0.4 (0.3–18.6) 0.45 (0.2–5.3) 0.4 (0.3–3.3) 0.4 (0.3–10.5) 0.943
IL-23 ≤ 14 5.1 (0.0–25.1) 5.5 (3.3–21.3) 7.65 (2.9–97.4) 5.5 (0.0–88.0) 4.4 (0.0–243.9) 0.655
IL-15 ≤ 11 1.4 (0.0–29.7) 1.6 (0.9–52.4) 1.9 (1.4–3.3) 1.4 (0.0–32.5) 1.6 (1.0–151.9) 0.091
IL-18 ≤ 50 280.2 (46.6–889.3) 267.2 (9.0–1094.0) 284.4 (88.1–759.8) 545.7 (47.2–3248.0) 365.8 (108.4–996.3) 0.043*
IL-21 ≤ 205 4.1 (1.4–277.3) 4.6 (1.7–95.3) 4.35 (1.8–69.9) 4.2 (1.9–22.4) 4.6 (1.7–183.2) 0.513
IL-22 ≤ 59 9.3 (3.1–1353.0) 8.8 (4.5–841.5) 9.8 (4.5–608.1) 9.9 (1.8–107.5) 9.8 (4.5–226.1) 0.992
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Th2 type cytokines mainly contain IL-4, IL-12, and IL-18. 
Serum cytokine patterns may unravel the features of immune 
activation in the inflammatory response. In 2004, Jordan 
et al. [6] reported on mice deficient in perforin that devel-
oped HLH when infected with lymphocytic choriomeningitis 
virus. In this model, CD8+T cells and IFN were essential 
for disease expression. Sustained activation of CD8+T cells 
results in the release of high IFN, a potent activator of mac-
rophages. In response, macrophages produce large amounts 
of IL-1β, IL-6, IL-18, and TNF [7]. TNF induces further 
macrophage activation in an autocrine and paracrine man-
ner [8]. Cytokine storm is the key to the development of 
HLH. Therefore, we performed a study on serum levels of 
34 cytokines in children with HLH and aimed to contribute 
to early diagnosis and differentiation of HLH by exploring 
serum cytokine patterns of different subtypes of HLH.

Serum cytokines in patients with HLH have significant 
clinical characteristics. Yang et al. [9] retrospectively ana-
lyzed the cytokines levels in 105 patients newly diagnosed 
with HLH and found that IL-6, IL-10, and IFN-γ moder-
ately or significantly elevated in most patients. Xu et al. 
[10] determined serum levels of Th1/Th2 cytokines in 756 
children with fever admitted to their hematology-oncology 
unit. The results suggested that children with HLH had a 
cytokine pattern of a significant increase of IFN-γ and IL-10 
combined with a slightly increased level of IL-6. Our study 
showed that IFN-γ and IL-18 increased in more than 90% of 
patients, while MIP-1α, SDF-1α, IP-10, IL-6, IL-8, IL-10, 
IL-1 RA, and TNF-α increased at different levels in more 
than 50% of patients. IFN-γ can upregulate the expression of 
major histocompatibility complex I protein on infected cells, 

further promoting the inflammatory cytokines storm. The 
significant elevated IFN-γ and its induced chemokine IP-10 
(CXCL10), inflammatory cytokines IL-6, IL-10, and IL-18 
produced by T lymphocytes and chemokine IL-8, MIP-1α, 
and SDF-1α in HLH suggest that the activation of T cell and 
the monocyte-macrophage system could play a role in HLH. 
IFN-γ appears to be a critical pathogenic molecule in many 
forms of HLH. However, because of its very short half-life 
in vivo, it is not easily detected in serum [11].

Our results suggest a correlation between the serum 
cytokines levels and some HLH indexes. Although the cor-
relation was not strong, it could still enlighten us. Excess 
cytokines such as IL-6 and IL-10 may induce the persistent 
inflammatory response in MAS by mediating the exhaus-
tion of NK cells [12, 13]. We observed that IL-6 and IL-10 
levels were negatively correlated with NK-cell activity (r 
= −0.305, p = 0.002; r = −0.242, p = 0.017), while IL-10 
levels were positively correlated with triglyceride and 
serum sCD25 levels (r = 0.306, p = 0.002; r = 0.433, p < 
0.001). As one of the key molecules in the pathogenesis of 
HLH, IFN-γ is also related to the severity of the disease. 
Although specific mechanisms of the correlation between 
cytokines and HLH-related indexes remain unclear, high 
cytokines levels such as IL-6 and IFN-γ indeed contribute 
to persistent fever, hyperlipidemia, vascular endothelial 
activation, and coagulopathy, as well as some complica-
tions such as hepatitis, CNS vasculitis, and demyelina-
tion in HLH [13]. Additionally, we also found correlations 
between several chemokines and HLH indexes. Eotaxin 
levels were negatively correlated with the sCD25 levels (r 
= −0.325, p = 0.003), and MIP-1β levels were positively 

Fig. 1  Different levels of IL-6, IL-10, Eotaxin, IL-13, IFN-γ, MIP-1β, and IL-18 in HLH subtypes
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correlated with the level of fibrinogen (r = 0.251, p = 
0.012). Eotaxin/CCL11 belongs to the family of inflam-
matory cytokines, which is mainly involved in recruiting 
eosinophils to inflammatory sites and has been widely 
studied in inflammatory diseases such as allergic diseases 
and atherosclerosis [14]. MIP-1β is a chemokine and acti-
vator of monocytes. The role of Eotaxin and MIP-1β in 
HLH needs to be further studied.

Our study suggested that different HLH subtypes pre-
sent distinct cytokine patterns. In EBV-HLH, the level of 
IL-10 increased significantly, followed by IL-18 and IFN-γ. 
This is similar with previous studies, as IL-10 levels were 
much higher in patients with EBV-HLH than in sepsis [15]. 
Xu et al. [16] suggested the specific cytokine pattern of 
markedly elevated levels of IFN-γ and modestly elevated 
IL-10 levels in EBV-HLH. In EBV-HLH, EBV-infected 
cells secrete viral IL-10, a product of the EBV replication 

gene BCRF1, which shares structural and functional simi-
larities with human IL-10 [17]. Thus, the high IL-10 levels 
detected in EBV-HLH may be the amount of the human and 
viral IL-10. Meanwhile, different factors may regulate the 
expression of IL-10 through different pathways [18–20]. 
Thus, the high expression of IL-10 in EBV-HLH may also 
be a compensatory increase. IL-10 is an important nega-
tive immunoregulatory factor in vivo, produced mainly by 
activated monocytes/macrophages, Treg cells, and Th cells. 
It plays an anti-inflammatory role by inhibiting the release 
of pro-inflammatory mediators, antigen presentation, and 
phagocytosis [21]. However, some studies have shown that 
the high level of IL-10 was an independent risk factor for 
poor prognosis in HLH [22]. IL-10 may act as an “alarm 
factor,” reflecting immune activation and disease severity. 
In our study, IL-10 and IFN-γ in patients with CAEBV-
HLH were not significantly higher than in other subtypes. 

Fig. 2  ROC curve analysis showed that the cytokine and their ratios could be biomarkers for diagnosing HLH
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The different cytokine patterns of CAEBV-HLH and EBV-
HLH may be related to their different pathogenic mecha-
nisms. Kasahara et al. [23] revealed that EBV predominantly 
infected B cells and/or CD8+T cells in EBV-HLH, while the 
predominant EBV-infected cell populations were CD4+T 
cells or NK cells in CAEBV. Since the transition from 
EBV-HLH to CAEBV has been found, the T cells subset 
dominance might be a dynamic phenomenon, and the dif-
ference in cytokine patterns may also arise from the time 
of analysis. But it remains unclear at present. In addition, 
cytokine gene polymorphism could induce producing differ-
ent levels of cytokine in patients with EBV-related diseases 

(IM, EBV-HLH, and CAEBV), affecting the development 
of EBV-related diseases [24]. This may also explain why 
there were different cytokine patterns between CAEBV-
HLH and EBV-HLH. Shimizu et al. [25] investigated the 
clinical significance of serum IL-6 and IL-18 levels for 
predicting MAS development in 76 patients with JIA. The 
results showed that the serum IL-18 levels during the active 
phase in patients with MAS were significantly higher than 
in those without MAS. This is consistent with our results. In 
addition, IL-13, Eotaxin, IFN-γ, and MIP-1β also increased 
significantly in Rh-HLH. The high levels of cytokines in 
Rh-HLH might have critical roles in the pathogenesis of 
autoimmune diseases. Ruscitti et al. [26] also observed that 
MAS patients showed significantly elevated levels of the 
above cytokines. Macrophages play a pivotal role in the 
development of MAS, and IFN-γ is a potent activator of 
macrophages, primarily secreted by activated T cells and 
NK cells. A study in vitro undertaken by Cifaldi et al. [27] 
revealed that excess IL-6 might mediate the impairment in 
NK-cell function by lowering perforin and granzyme B pro-
duction. MIP is produced by T lymphocytes, especially Th1 
cells, which IL-18 can induce. Our study also found that 
the levels of IL-10, IFN-γ, and IL-13 increased in F-HLH, 
especially for IL-10. The development of F-HLH involves 
gene mutations of perforin and its related proteins, which 
are required to maintain normal functions in cytotoxic T 
cells and NK cells. In the mice model of perforin deficiency, 
ELISA detected that the F-HLH development depended on 
the production of IFN-γ [6]. We demonstrated a primarily 
increase of IL-10 in F-HLH and EBV-HLH. The difference 
may be attributed to the detection methods. M-HLH may 
occur before or during tumor therapy and can be induced by 
infections and immunotherapy [28]. However, no specific 
cytokines of M-HLH were found in this study.

We then investigated that various serum cytokines could 
differentiate different HLH subtypes. The IL-6, IL-10, IL-13, 
IFN-γ, and IL-18 levels in each HLH subtype were signifi-
cantly different and were helpful for diagnosis. Because the 
individual cytokine levels can be easily affected by the drugs 
applied before sampling and by storage and shipping, we 
also analyzed the significance of the ratio of those cytokines. 
Han et al. [29] compared the Th1/Th2 cytokines (IL-2, IL-4, 
IL-6, IL-10, TNF-α, and IFN-γ) in patients with EBV-HLH 
or sepsis before and after treatment. Their study showed that 
IFN-γ/IL-6 and IL-10/IL-6 were novel specific indicators for 
differential diagnosis of EBV-HLH and IL-6, IL-10, TNF-α, 
and IFN-γ were useful indices for monitoring the therapeutic 
effect of EBV-HLH. We also confirmed that IFN-γ/IL-6 and 
IL-10/IL-6 were helpful in differentiating EBV-HLH, with 
a sensitivity and specificity of more than 80%. Meanwhile, 
IL-10, IL10/IL-13, IL-10/IL-18, and IL-10/IFN-γ also have 
differential significance. Additionally, various cytokines and 
their ratios can help diagnose CAEBV-HLH, Rh-HLH, and 

Fig. 3  The 3-year OS rates of different groups. A The 3-year OS rates 
of EBV-HLH, CAEBV-HLH, M-HLH, Rh-HLH, and F-HLH were 
88.1% ± 5.0%, 94.1% ± 5.7%, 62.5% ± 17.1%, 82.6% ± 7.9%, and 
57.1% ± 14.6%, respectively. The 3-year OS rates were higher in 
EBV-HLH and CAEBV-HLH than in F-HLH (p = 0.017). The 3-year 
OS rates were higher in CAEBV-HLH than in M-HLH (p = 0.040). 
B The 3-year OS rates were higher in the non-CNS group than in 
the CNS group (87.9% ± 3.8% vs. 66.3% ± 9.2%, p = 0.018). C The 
3-year OS rates were higher in the sHLH group than in the pHLH 
group (85.3% ± 3.8% vs. 57.1% ± 14.6%, p = 0.016)
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F-HLH to a certain extent. And the effect of cytokine ratio 
on classifying HLH subtypes (17/22, 77.3%) was more sig-
nificant than the single cytokine (7/22, 22.7%). Our study 
also revealed that Th2 type cytokines IL-6 and IL-13 might 
be novel diagnostic markers of the CNS group (n = 27) and 
the non-CNS group (n = 74), the sHLH group (n = 89), 
and the pHLH group (n = 12), respectively. The non-CNS 
group had higher IL-6 levels, while IL-13 levels were higher 
in the sHLH group than in the pHLH group. IL-6 down-
modulated the cytotoxic activity of NK cells by reducing 
perforin expression levels [27]. IL-13 is one of the potent 
inducers of macrophage polarization into the M2 pheno-
type with an anti-inflammatory effect [30]. However, the 
relationship between those two cytokines and HLH has not 
been reported, so further study is required. In addition, due 
to the small sample size, future large-scale studies may help 
to confirm the significance of cytokines.

The prognosis of HLH was affected by various factors. 
Our study showed that among the subtypes of HLH, the 
3-year OS of patients with F-HLH was the lowest. GM-CSF 
and MCP-1 were independent risk factors of poor outcomes 
for HLH patients. They are equivalent to the “switch” pro-
teins in the inflammatory response, promoting the prolifera-
tion of monocytes/macrophages as well as recruitment at the 
site of inflammation [31, 32]. Meanwhile, GM-CSF has been 
proven to be involved in developing various inflammatory 
and autoimmune diseases and could be used as a therapeutic 
target [33]. Gowri et al. [34] reported that GM-CSF could 
be a potential biomarker for disease severity and progno-
sis in their study about serum cytokines in patients with 
severe dengue virus infection. MCP-1 act as a regulator in 
the polarization of a Th1 phenotype to a Th2 phenotype. A 
study focused on serum cytokines in critically ill COVID-
19 patients by Chen et al. [35] showed that the remarkable 
increase of MCP-1 indicated a poor prognosis in patients 
with severe inflammatory diseases. Patients with normal lev-
els of IL-18, IFN-γ, and IP-10 in our study all survived dur-
ing follow-up. The significance of IL-18 and IFN-γ in HLH 
has been widely explored. IP-10 is a kind of IFN-induced 
protein. These three cytokines may be potential indicators 
for predicting the prognosis in HLH patients, though there 
was no significant difference in our analysis.

It should be explained that cytokines were analyzed by 
the Luminex technology here, which was different from 
the cytometric bead array (CBA) used in previous studies 
[16, 36]. Although both are antibody-based immunoassays, 
researchers reported some differences in the results [37]. In 
addition, Valaperti et al. [38] demonstrated that correlation 
between different techniques was almost absent, and almost 
all the CBA and half of the Luminex showed low reproduc-
ibility. The levels of the same cytokine vary greatly depend-
ing on the technique employed in making the measurement, 
such as the IL-18 levels obtained for one patient’s sample 

ranging from 288 to 914 pg/ml [39]. In addition, studies 
comparing CBA from BD with Luminex kits from Millipore 
demonstrated a lack of standardization between them [40]. 
Such various measurements may be related to the different 
antibodies used by different techniques [41]. Therefore, the 
difference between cytokine levels in our analysis and pre-
vious studies may be due partly to detection technologies.

Although this is a large-scale study of serum cytokine pat-
terns in patients with newly diagnosed HLH, there were still 
some limitations. At first, we did not monitor the dynamic 
changes of serum cytokines during disease. Secondly, many 
factors affect the cytokine levels, and the interaction of vari-
ous cytokines and their functions in the development of dis-
eases are unclear. Thirdly, this is a retrospective study in a 
single center, lacking the universality of prospective multi-
center studies. Thus, more studies are required to explore the 
serum cytokine pattern of children with HLH.

Conclusion

Various cytokines play important roles in HLH and are cor-
related with some HLH indexes. Different subtypes of HLH 
present with specific cytokine patterns. EBV-HLH signifi-
cantly increased IL-10, followed by IFN-γ and IL-18, while 
IL-10 and IFN-γ in CAEBV-HLH increased slightly. Except 
for IL-10, levels of IL-6, Eotaxin, IL-13, IL-18, IFN-γ, and 
MIP-1β were significantly increased in patients with Rh-
HLH. F-HLH had a cytokine pattern with significantly high 
IL-10 levels and slightly increased IL-13 levels. In addition, 
the effect of cytokine ratio on differentiating HLH subtypes 
may be more significant than the single cytokine. Elevated 
GM-CSF and MCP-1 indicate a poor prognosis in patients 
with HLH. Further studies are needed to determine the clini-
cal significance of some elevated cytokine levels in HLH.
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