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Abstract
COVID-19 is a global pandemic triggered by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). The 
SARS-CoV-2 entry point involves the interaction with angiotensin-converting enzyme 2 (ACE2) receptor, CD147, and 
erythrocyte Band3 protein. Hemolytic anemia has been linked to COVID-19 through induction of autoimmune hemolytic 
anemia (AIHA) caused by the formation of autoantibodies (auto-Abs) or directly through CD147 or erythrocyte Band3 
protein-mediated erythrocyte injury. Here, we aim to provide a comprehensive view of the potential mechanisms contribut-
ing to hemolytic anemia during the SARS-CoV-2 infection. Taken together, data discussed here highlight that SARS-CoV-2 
infection may lead to hemolytic anemia directly through cytopathic injury or indirectly through induction of auto-Abs. Thus, 
as SARS-CoV-2-induced hemolytic anemia is increasingly associated with COVID-19, early detection and management of 
this condition may prevent the poor prognostic outcomes in COVID-19 patients. Moreover, since hemolytic exacerbations 
may occur upon medicines for COVID-19 treatment and anti-SARS-CoV-2 vaccination, continued monitoring for complica-
tions is also required. Given that, intelligent nanosystems offer tools for broad-spectrum testing and early diagnosis of the 
infection, even at point-of-care sites.
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Introduction

The normal lifespan of red blood cells (RBCs) is 120 days. 
In hemolytic anemia, the period is shortened to a few days 
due to their destruction. The hemolysis may occur when 
RBCs are targeted by anti-RBC membrane autoantibodies 
(auto-Abs) leading to induction of autoimmune hemolytic 
anemia (AIHA) [1]. Depending on the temperature at which 
auto-Abs bind optimally to RBCs, AIHA is classified as 
warm type mediated by IgG and C3d or cold type mediated 
by IgM, with their maximal reactivity at 37 °C and 4 °C, 
relatively. However, as even warm IgM RBC auto-Abs do 
exist, and secondary cold agglutinin syndrome (CAS) in 
some cases can be mediated by cold-reactive IgG [1, 2]. The 
warm and cold types of AIHA lead to hemolysis through 
activation of phagocytic cells and the classical comple-
ment pathway. However, extra- and intravascular hemoly-
sis may concurrently contribute to warm or cold AIHA in 
some cases. The complement-mediated hemolysis in cold 
agglutinin diseases (CAD) or CAS is mainly extravascular 
(phagocytosis of C3b-opsonized RBCs), although intravas-
cular hemolysis also occurs [1, 2].
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Moreover, a lack of standard diagnostic criteria makes 
the classification of AIHA and its subclasses is difficult [1, 
3]. Depending on the presence or absence of underlying dis-
ease, AIHA is classified as primary or secondary. Primary 
or idiopathic type is in around 50% of cases, while the sec-
ondary type is caused by infections (mycoplasma and viral 
infections), lymphoproliferative disorders (lymphoma and 
chronic lymphocytic leukemia), and autoimmune diseases 
(systemic lupus erythematosus). Moreover, AIHA can also 
be triggered by drugs (methyldopa, antibiotics) and toxins 
(Fig. 1a) [2, 4, 5]. A significant risk factor for morbidity 
and mortality in AIHA patients is infection. Due to concur-
rent diseases harboring an inherent infectious risk, including 
immunodeficiency, autoimmune, and lymphoproliferative 
disorders, as well as immunosuppressive treatments, these 
patients are vulnerable to infectious agents (viruses, bacte-
ria, fungi) which trigger onset or relapse of AIHA (Fig. 1b).

This risk is significant during the Coronavirus 2019 
(COVID-19) pandemic [6]. COVID-19 is an infectious 
disease caused by severe acute respiratory syndrome-
coronavirus 2 (SARS-CoV-2) and is considered a global 
issue pandemic by the World Health Organization. SARS-
CoV-2 is a positive-sense single-strand RNA that shares 
a genetic similarity with other beta coronaviruses, like 
the Middle East respiratory syndrome-related coronavi-
rus 1 (MERS-CoV-1) and SARS-CoV-1 [7]. The primary 
mechanism of SARS-CoV-2 entry into host cells is binding 
the viral spike protein to its receptor angiotensin-convert-
ing enzyme 2 (ACE2), which is highly expressed in the 
lung epithelial cells, proximal renal tubules, heart, and 
brain. The SARS-CoV-2 infection triggers an acute host 
immune response, inflammatory reactions, and cytokine 
storm leading to acute lung injury (ALI) and acute respira-
tory distress syndrome (ARDS) [8]. The virus can cause 

extra-pulmonary manifestations, like acute cardiac injury, 
arrhythmias, acute kidney injury, acute brain injury, endo-
crine failure, and multiple organ failure with fatal conse-
quences [9]. Although AIHA is a relatively rare condition 
with an estimated incidence of 13/100,000 persons per 
year [10], there is a growing number of reported hemo-
lytic anemia cases, mainly attributed to the development 
of auto-Abs, in the setting of COVID-19 [11]. Given the 
known risk of thrombosis in patients with cold agglutinin 
hemolytic anemia, Maslov et al. (2020) speculated that 
this might contribute to thrombosis and the unfavorable 
outcomes in COVID-19 patients [12]. The hemolysis of 
RBCs may also be caused by impairment of their mor-
phology and functionality due to the virus infection [13], 
which is critical in cases of hemoglobinopathies or inher-
ited anemias [14]. Severance et al. revealed that induction 
of hemolytic anemia in children with hereditary spherocy-
tosis is due to provoking oxidative stress by SARS-CoV-2 
infection [15]. On the other hand, sickle cell disease 
has been suggested to protect against fatal outcomes in 
COVID-19 because of reduced T cell-mediated immunity 
and related weakened immune response without cytokine 
storm [16]. Finally, anemia in AIHA patients represents a 
significant risk factor for a worse prognosis in COVID-19 
patients [17]. Accordingly, the National Haemoglobinopa-
thy Panel (NHP) has issued guidance on caring for patients 
with anemias regarding programmed blood transfusion and 
outpatients visits to reduce risk exposure to SARS-CoV-2 
and related COVID-19 severity in the vulnerable group of 
patients [14].

Given the multifaceted nature of hemolytic exacerba-
tions associated with COVID-19 infection, the review aims 
to highlight challenges tackling the complexity of these 
conditions, diagnosis, and management.

Fig. 1   Secondary forms of 
AIHA [5] (a). Infectious com-
plications in secondary AIHA 
[6] (b)
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The interplay between SARS‑CoV‑2 infection 
and AIHA

AIHA is a common hematologic autoimmune sequel in the 
COVID-19 patients, according to an analysis by Taherifard 
et al. (2021) conducted on a total reported 94 cases [18]. 
A cross-sectional study by Algassim et al. (2021) have 
revealed that COVID-19 patients with AIHA are linked 
with poor prognosis and prolonged hospital stay, mainly 
when the hemoglobin (Hb) level is below 12 g/L. The 
authors reported that 14.7% of patients admitted to the 
intensive care unit (ICU) and 9% of non-ICU patients had 
AIHA, with a mortality rate of 32% among the direct anti-
globulin test-positive patients [17]. Lazarian et al. (2020) 
have reported seven cases of AIHA comprising both warm 
and cold types during the early COVID-19 course. Four 
patients had lymphoid disorders, and this per se might 
explain the triggering effect of SARS-CoV-2 infection in 
auto-immunity induction [19]. Significantly, SARS-CoV-2 
infection can cause hematologic autoimmune disorders in 
predisposed subjects both in the elderly and children, and 
several cases of AIHA have been described in a pediatric 
setting of COVID-19 [20, 21].

AIHA and related anemia lead to reduce oxygen satura-
tion, critical organs ischemia, and hemodynamic disorders 
[17]. When it coincides with the COVID-19 associated 
cytokine storm, SARS-CoV-2-mediated immune hemoly-
sis became high. AbouYabis and Bell (2021) have summa-
rized a growing number of reported cold and warm AIHA 
cases in the setting of COVID-19 infection presented dur-
ing the SARS-CoV-2-induced cytokine storm. Although 
the exact mechanism of AIHA contributing to COVID-
19 remains unknown, the alteration in antigen presenta-
tion creating cryptic antigens caused by SARS-CoV-2 
cytokine-rich inflammatory response is suggested [22]. 
Moreover, as the intense acute-phase response in COVID-
19 causes, the dysregulation of the complement system 
[23], immune complexes, and complement products found 
on the RBC cell surface have been suggested to affect their 
rheology promoting intravascular thrombosis [24]. This is 
consistent with observed disseminated intravascular coag-
ulopathy with subsequent multi-organ failure from warm 
AIHA in a COVID-19 patient [25]. The hypercoagulability 
and exacerbated inflammatory response may affect RBCs, 
making membranes fragile with lower elasticity, leading to 
embolisms and clots in COVID-19 patients [26]. Finally, 
iron and serum ferritin resulting from hemolysis may 
drive oxidative stress. Hyperferritinemia and impaired 
iron homeostasis have been demonstrated to contribute to 
endothelial damage and cause ultrastructural changes in 
RBCs of COVID-19 patients. Moreover, AIHA may lead 
to pulmonary thrombosis [27]. Interestingly, thrombosis 

associated with cold-agglutinin AIHA could be the pre-
senting symptoms in COVID-19 patients [28]. As well, 
warm type AIHA may cause a pulmonary embolism. 
Abnormal exposure to phosphatidylserine (PS), RBCs 
derived microparticles (MP), and nitric oxide scavenging 
could be the potential mechanism of thrombosis in warm 
type AIHA. The destruction of RBCs leads to increased 
exposure of PS on the RBCs outer surface. PS acts as a 
docking site for enzymatic complexes involved in coagula-
tion pathways; it makes RBCs more adhesive and leads to 
antiphospholipid antibody formation. RBC-derived MPs 
are released during hemolysis, acting as tissue factors 
triggering thrombosis. MPs correlate with D-Dimer and 
thrombin-antithrombin complex formation as well. Nitric 
oxide is sequestrated by the released hemoglobin from 
hemolyzed RBCs leading to uninhibited platelet aggre-
gation and vasoconstriction leading to thrombosis [29]. 
These findings suggest the causality between erythrocyte 
pathology and thrombosis in these patients [30].

SARS‑CoV‑2 and direct erythrocytes injury

Methemoglobinemia is a hemoglobin disorder caused by 
the oxidation of iron Hb from ferrous to ferric status with 
oxygen-carrying capacity failure, leading to hypoxia, cyano-
sis, and respiratory failure [28]. Methemoglobinemia can be 
induced by drugs such as dapsone, sulfonamide, local anes-
thetics, and ascorbic acid [31] or viral infections, such as 
influenza, due to induction of oxidative stress and oxidation 
of Hb iron as a result [32]. Lopes et al. (2021) have reported 
a case study of SARS-CoV-2 induced-methemoglobinemia 
and non-hemolytic anemia due to oxidative stress aggravated 
by glucose-6-phosphate dehydrogenase (G6PD) deficiency 
[33]. In a docking study, Liu and Li (2021) have identi-
fied two SARS-CoV-2 proteins, S and ORF3a, able to bind 
with the 1-beta chains of hemoglobin, therefore causing Hb 
denaturation and immunological agglutination [34]. Inter-
estingly, in a cohort study, DeMartino et al. (2020) have 
demonstrated no direct RBCs and Hb damage during SARS-
CoV-2 infection [35]. Regardless of the established find-
ings, various possible pathophysiologic mechanisms have 
been highlighted. Cavezzi et al. (2020), in their narrative 
review, pointed out that SARS-CoV-2 infection is associated 
with direct cytopathic injury of circulating RBCs and their 
precursors in bone marrow or indirect RBCs by intravas-
cular coagulopathy and cytokine storm. These pathological 
changes are supported by the presence of anisocytosis gen-
erated by conformational changes in both RBCs membrane 
proteins and lipids [36]. These conformational changes in 
RBC surface ankyrin-1 protein appear to be due to molecular 
similarity with the SARS-CoV-2 spike protein [37].
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Besides ACE2, the virus tropism for erythrocytes is asso-
ciated with the cluster of differentiation 147 (CD147), also 
known as basigin or extracellular matrix metalloproteinase 
inducer (EMMPRIN), a transmembrane glycoprotein highly 
expressed in RBCs [38]. CD147 mediates SARS-CoV-2 
entering RBCs by endocytosis [39], leading to dysregula-
tion of RBCs CD147-cyclophilin A signaling pathway with 
subsequent hemolysis [40]. So, antibodies against CD147 
like mepolizumab may attenuate SARS-CoV-2 invasion 
and hemolysis [41]. Similarly, azithromycin and other mac-
rolides can also inhibit the interaction between SARS-CoV-2 
and CD147 on RBC membranes and other host cells. There-
fore, these antibiotics can also be considered a potential 
therapeutic drug in COVID-19 management and associated 
hemolytic anemia [42]. However, Shilts et al. (2021) have 
demonstrated no interactions between SARS-CoV-2 and 
CD147. In their experiment, no changes in susceptibility 
to this virus were observed in human lung epithelial cells 
after removing by CRISPR/Cas9 basigin from their surface 
[43]. As a matter of fact, the CD147 expression is stimu-
lated by hyperinflammation status [44]. Raony and Figue-
iredo (2020) have confirmed that in a COVID-19-induced 
cytokine storm, there is an overexpression of CD147 facili-
tating the SARS-CoV-2 spike protein binding to retinal cells 
[45]. Therefore, the higher expression of RBCs CD147 may 
mediate the interaction between RBCs and SARS-CoV-2 
even in the absence of ACE2. Indeed, it has been reported 
that ACE2-deficient T cells can be infected with SARS-
CoV-2 via CD147 [46].

Moreover, inducing intra-erythrocytic oxidative stress by 
viral load has been demonstrated to be detrimental to pro-
teins in erythrocytes, including those involved in membrane 
function, antioxidant defense, and transport and delivery of 
oxygen [47]. The RBCs’ susceptibility is increased to being 
damaged by the associated micro-angiopathic inflammations 
[48]. In a case study, Lancman et al. (2021) have reported 
intravascular hemolysis with Coombs-negative hemolytic 
anemia in COVID-19 patients, suggesting direct RBCs 
injury due to SARS-CoV-2/CD147 interaction [49]. The 
latter, along with associated inflammatory reactions, is sug-
gested to induce erythrocyte structural membrane changes 
and complement activations that together provoke intravas-
cular and extravascular hemolysis [47, 50].

As regards the virus tropism to erythrocyte, Cosic et al. 
(2020), using the resonant recognition model, have proposed 
that SARS-CoV-2 might also infect RBCs via binding to the 
RBC Band3 protein [51]. Band3, the anion exchanger 1 pro-
tein, is most abundant in mature RBCs and controls, among 
others, bicarbonate/chloride homeostasis. This protein is 
regarded as a docking site for structural proteins necessary for 
membrane integrity [52] and is mandatory for oxygen release 
and metabolic processes [51]. Thus, SARS-CoV-2 spike pro-
tein binding to RBC Band3 protein disturbs oxygen transport 

function causing severe hypoxia and metabolic alterations 
that increase the risk of RBC injury and hemolytic effect [13, 
51]. Band3 protein inhibits glycolytic enzyme function during 
normal oxygen saturation. However, during hypoxia, oxy-Hb 
competes with Band3 protein to favor the glycolytic pathway 
that increases RBCs ATP to promote oxygen release and pre-
vent tissue hypoxia [53]. Moreover, Thomas et al. (2020), in 
an observational study involving 29 COVID-19 patients and 
23 healthy controls, have revealed that RBCs from COVID-
19 patients had a high glycolytic pathway with oxidation and 
fragmentation of membrane protein, including Band3 protein, 
spectrin beta, and ankyrin [47]. This alteration in membrane 
protein is associated with RBC lipid metabolism changes, par-
ticularly sphingolipids, acyl-carnitine, and fatty acids. High 
RBC glycolytic metabolite is regarded as a compensatory 
pathway against SARS-CoV-2 induced hypoxia to improve 
Hb oxygen load [54]. Because Band3 protein stabilizes deoxy-
Hb and control oxygen loading, so it is shifting RBC metabo-
lism toward hexose-monophosphate shunt and prevents the 
susceptibility of RBC to the effects of oxidative stress during 
COVID-19-induced hypoxia [55]. These findings suggest a 
potential impact of SARS-CoV-2 infection on the RBCs’ struc-
tural proteins and lipid metabolism. Thus, COVID-19-induced 
hypoxia or SARS-CoV-2 may inhibit Band3 protein, disrupt-
ing RBC metabolism, structural integrity, oxygen transport, 
and circulation in the bloodstream [56].

Moreover, SARS-CoV-2 reduces RBC antioxidant capac-
ity, including G6PD activity, and causes deformability of 
RBCs associated with a high risk of hemolysis [47]. The 
reduced G6PD activity contributes to the oxidation of struc-
tural proteins resulting in RBCs deformability and their sus-
ceptibility to coagulation and thromboembolic disorders in 
patients with severe COVID-19 [57].

Likewise, sphingosine-1-phosphate (S1P), also known 
as lysosphingolipid, is a bioactive lipid mediator mainly 
released from RBCs and to a lesser extent from platelets 
and endothelial cells. S1P has immune-modulating effects 
in mitigation of SARS-CoV-2 and viral infection-induced 
inflammatory disorders. The reduction of S1P serum level 
correlates with COVID-19 severity and reduces RBCs pro-
duction or SARS-CoV-2-induced injury [58, 59].

Overall, the net effect of SARS-CoV-2 infection-induced 
hemolytic anemia is either direct RBC injury or indirectly 
through induction of auto-Abs against the RBC membrane 
(Fig. 2).

COVID‑19 management in the scenario 
of AIHA

The rapid spread and high fatality of SARS-CoV-2 requires 
a rapid discovery of effective antiviral agents to control this 
pandemic. The lack of treatment options caused clinical 
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trials to test existing pharmacological drugs such as remde-
sivir, chloroquine, hydroxychloroquine, ivermectin, lopina-
vir-ritonavir, azithromycin, doxycycline, rivaroxaban, and 
protease inhibitors to repurpose them for the treatment of 
COVID-19. Since some of these agents may be implicated 
in the pathogenesis of AIHA, the risk should be considered 
in evaluating the efficacy and safety of prospective repurpos-
ing drugs in the treatment of COVID-19 infections [60, 61].

It has been shown that both chloroquine and hydroxy-
chloroquine inhibit SARS-CoV-2 in Ver E6 at a micromolar 
concentration range through blocking of cathepsin L and 
PH-dependent interference with viral endocytosis. Both 
chloroquine and hydroxychloroquine were used to manage 
COVID-19 based on the preliminary data suggesting their 
abilities to limit viral replications [62, 63]. Doyno et al. 
(2020), however, have revealed that hydroxychloroquine 
might increase the risk of hemolysis in COVID-19 patients 
with G6PD deficiency. Thus, a measurement of this enzyme 
activity should be done before initiation of therapy [62]. 
Surprisingly, a large-scale study did not support these find-
ings [63].

Despite the fact that controversy about the potential benefit 
of ribavirin in the management of COVID-19 [64], Eslami 
et al. (2020) have revealed the effectiveness of ribavirin in the 
inhibition of the replication of SARS-CoV-2 [65]. However, its 
prolonged intake can increase the risk of hemolytic anemia due 
to accumulation within the RBCs and induction of oxidative 
membrane damage [66]. Moreover, Nabil et al.’s (2020) study 
has disclosed that repurposing antiviral drugs such as arbidol, 

remdesivir, ritonavir, and lopinavir may cause hemolytic ane-
mia by unknown mechanisms in patients with COVID-19 [67]. 
Finally, the World Health Organization recommended against 
the use of chloroquine, hydroxychloroquine, remdesivir, and 
lopinavir/ritonavir in the treatment of SARS-CoV-2 infec-
tion [60]. Therefore, an extensive review of used drugs in the 
management of COVID-19 for the potential hemolytic effect 
is necessary and warranted since anemia is correlated with 
COVID-19 severity [68].

Recently, discussion of the hematologic complications 
after SARS-CoV-2 vaccination has been starting. Besides 
developing vaccine-associated immune thrombosis with 
thrombocytopenia, as Fattizzo et al. (2021) reviewed, hemo-
lytic flares occurred in patients with cold and warm AIHA 
who received either Moderna or Pfizer-BioNTech vaccines 
[69]. Fatima et al. (2022) also have reported a case of a 
patient who developed IgG-mediated AIHA after vaccina-
tion with the Moderna COVID-19 vaccine [70]. Overall, 
hemolytic exacerbations occurring during COVID-19 are 
more severe than those appearing after the SARS-CoV-2 
vaccine [69, 70].

AIHA diagnosis in the setting of COVID‑19 
infection

The AIHA diagnosis is based on the detection of hemolytic 
anemia by Hb level and biochemical markers of hemolysis 
(often supported by blood smear and absolute reticulocyte 

Fig. 2   Mechanism of SARS-
CoV-2-induced hemolytic 
anemia
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count), followed by a demonstration of autoimmune patho-
genesis by DAT. The further classification depends primarily 
on the pattern by monospecific DAT (Ig class and/or com-
plement protein on the RBC surface) and only occasionally 
on autoantibodies in RBC eluate and serum, while anemia 
and hemolysis are identified based on complete blood count 
(CBC), reticulocyte count, peripheral blood smear, serum 
biomarkers including bilirubin, lactate dehydrogenase 
(LDH), haptoglobin, and urine hemoglobin level [10].

According to Lazarian et al. (2020), the time between 
the COVID-19 symptoms and AIHA onset with marked 
signs of hemolysis ranged from 4 to 13 days [19]. Positive 
direct DAT or Coombs tests for IgG and C3 were reported 
in several COVID-19 cases [71–74] and warm antibodies 
in four of the seven cases reported by Lazarian et al. [19]. 
Hemolysis markers, including anemia, defects in the red cell 
membrane–spherocytosis (Fig. 3a and b) [74], reticulocy-
tosis (Fig. 3c) [75], unconjugated bilirubinemia, increased 
serum LDH activity, ferritin, and low haptoglobin were also 
observed [10, 73, 74, 76]. Moreover, increased D-dimer and 
C-reactive levels were reported due to hypercoagulability 
and hyperinflammatory response in most SARS-CoV-2-as-
sociated AIHA cases [19, 72–74, 76]. Extended examina-
tions, including chest X-rays, showed bilateral opacities 
(Fig. 3d) [73, 76], while chest computed tomography showed 
typical COVID-19 infection changes in the lung (Fig. 3c) 
[74, 75].

Challenges and future perspectives

Challenges remain, including hemolysis diagnosis in 
COVID-19 patients, which may be masked by the infection-
related elevated acute phase haptoglobin [74]. Given that 
the complexity of the pathophysiologic interplay between 

SARS-CoV-2 infection and hemolytic events still requires 
further studies, more research on developing comprehensive 
diagnostic approaches tailored to the individual pathophysi-
ological features of each disease is necessary. The improved 
understanding of the interconnected pathogeneses will ena-
ble the development of specific biomarkers alongside exact 
therapy. Since hemolytic anemias are increasingly associ-
ated with COVID-19, early detection and management of 
these conditions may prevent poor prognostic outcomes in 
these patients. In this context, the emerging sensitive, rapid, 
selective, and at the point-of-care (POC) diagnostic systems 
for the virus detection are a response [77, 78]. Moreover, 
biomonitoring related to coagulopathy and other patholo-
gies may be the subject of POC analyses assisting clinicians 
in planning clinical interventions relating to individualized 
management [30]. This is even more important, considering 
that the NHP recommended minimalization outpatient visits 
to limit exposure of anemia patients to SARS-CoV-2 infec-
tions. In fact, these patients are at risk of non-efficient diag-
nostics and withdrawal of effective trial therapy [14]. This 
problem is the more serious as the COVID-19 pandemic 
is constantly surprising healthcare systems, and continu-
ous variations in the structures of SARS-CoV-2 contribute 
to newly emerged variants making the viral infection more 
transmissible, contagious, and severe [79]. In this context, 
a broader application of current knowledge on technologies 
that use high-performance antibacterial and antiviral nano-
systems can also mitigate the SARS-CoV-2 transmission 
[80].

Fig. 3   Diagnosis of hemolysis: 
polychromasia (a), nucle-
ated red blood cells (b) [74], 
and reticulocytosis (c) [75]. 
COVID-19 infection-induced 
changes in the lung: Com-
puted tomography scan shows 
bilateral lung infiltration (d) 
[81]; chest X-ray shows diffuse 
bilateral opacities (e) [81]
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Conclusions

Taken together, the data discussed here highlight that SARS-
CoV-2 infection may lead to hemolytic anemia directly 
through cytopathic injury or indirectly through induction 
of auto-Abs. Therefore, extensive research on the potential 
mechanisms of SARS-CoV-2-induced hemolytic anemia and 
related specific diagnostics covering the complex etiology is 
required. Diagnostics tailored to the individual pathophysi-
ological features of each disease demand comprehensive 
and continuous examination. Challenges remain, however, 
including the recommendation of limited outpatient visits. A 
more comprehensive application of intelligent nanosystems 
may contribute to broad-spectrum testing and early diagno-
sis of the SARS-CoV-2 infection even as well as can mitigate 
the SARS-CoV-2 transmission thus be part of protecting 
strategy of these vulnerable group of patients.
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