Skip to main content

Advertisement

Log in

Aberrant myelomonocytic CD56 expression in Down syndrome is frequent and not associated with leukemogenesis

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Children with Down syndrome (DS) are at an increased risk of developing transient abnormal myelopoiesis (TAM) and acute leukemia. Aberrant expression of CD56 has been observed on myeloid leukemic blasts in DS patients. In general, CD56 expression in acute myeloid leukemia (AML) is considered a promoter of leukemogenesis. We did a retrospective flow cytometric study to investigate mature myelomonocytic cell CD56 expression patterns in TAM, non-TAM, and leukemia cases with DS. Flow cytometric analysis showed that granulocyte and monocyte aberrant/dysplastic CD56 expression is an inherent characteristic of most DS patients irrespective of the presence of TAM or leukemia. Increased CD56 expression in monocyte and granulocyte populations in DS could be multifactorial; greater expression of RUNX1 secondary to the gene dose effect of trisomy 21 along with the maturational state of the cells are the potential contributors. Unlike AML seen in non-DS patients, CD56 overexpression in DS AML cases does not appear to play a role in leukemogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mai CT, Isenburg JL, Canfield MA, Meyer RE, Correa A, Alverson CJ, Lupo PJ, Riehle-Colarusso T, Cho SJ, Aggarwal D, Kirby RS, National Birth Defects Prevention Network (2019) National population-based estimates for major birth defects, 2010-2014. Birth Defects Res 111(18):1420–1435

    Article  CAS  Google Scholar 

  2. Maloney KW, Taub JW, Ravindranath Y, Roberts I, Vyas P (2015) Down syndrome preleukemia and leukemia. Pediatr Clin N Am 62(1):121–137

    Article  Google Scholar 

  3. Zipursky A, Brown E, Christensen H, Sutherland R, Doyle J (1997) Leukemia and/or myeloproliferative syndrome in neonates with Down syndrome. Semin Perinatol 21(1):97–101

    Article  CAS  Google Scholar 

  4. Choi JK (2008) Hematopoietic disorders in Down syndrome. Int J Clin Exp Pathol 1(5):387–395

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hasle H (2001) Pattern of malignant disorders in individuals with Down’s syndrome. Lancet Oncol 2(7):429–436

    Article  CAS  Google Scholar 

  6. Xavier AC, Ge Y, Taub JW (2009) Down syndrome and malignancies: a unique clinical relationship: a paper from the 2008 william beaumont hospital symposium on molecular pathology. J Mol Diagn 11(5):371–380

    Article  CAS  Google Scholar 

  7. Zipursky A, Thorner P, De Harven E, Christensen H, Doyle J (1994) Myelodysplasia and acute megakaryoblastic leukemia in Down’s syndrome. Leuk Res 18(3):163–171

    Article  CAS  Google Scholar 

  8. Sasca D, Szybinski J, Schüler A, Shah V, Heidelberger J, Haehnel PS, Dolnik A, Kriege O, Fehr EM, Gebhardt WH, Reid G, Scholl C, Theobald M, Bullinger L, Beli P, Kindler T (2019) NCAM1 (CD56) promotes leukemogenesis and confers drug resistance in AML. Blood. 133(21):2305–2319

    Article  CAS  Google Scholar 

  9. Karandikar NJ, Aquino DB, McKenna RW, Kroft SH (2001) Transient myeloproliferative disorder and acute myeloid leukemia in Down syndrome. An immunophenotypic analysis. Am J Clin Pathol 116(2):204–210

    Article  CAS  Google Scholar 

  10. Ditlevsen DK, Povlsen GK, Berezin V, Bock E (2008) NCAM-induced intracellular signaling revisited. J Neurosci Res 86(4):727–743

    Article  CAS  Google Scholar 

  11. Van Acker HH, Van Acker ZP, Versteven M, Ponsaerts P, Pende D, Berneman ZN, et al. (2019) CD56 homodimerization and participation in anti-tumor immune effector cell functioning: a role for interleukin-15. Cancers (Basel) 11(7)

  12. Gattenlöhner S, Stühmer T, Leich E, Reinhard M, Etschmann B, Völker HU, Rosenwald A, Serfling E, Bargou RC, Ertl G, Einsele H, Müller-Hermelink HK (2009) Specific detection of CD56 (NCAM) isoforms for the identification of aggressive malignant neoplasms with progressive development. Am J Pathol 174(4):1160–1171

    Article  Google Scholar 

  13. Raspadori D, Damiani D, Lenoci M, Rondelli D, Testoni N, Nardi G, Sestigiani C, Mariotti C, Birtolo S, Tozzi M, Lauria F (2001) CD56 antigenic expression in acute myeloid leukemia identifies patients with poor clinical prognosis. Leukemia. 15(8):1161–1164

    Article  CAS  Google Scholar 

  14. Chang H, Brandwein J, Yi QL, Chun K, Patterson B, Brien B (2004) Extramedullary infiltrates of AML are associated with CD56 expression, 11q23 abnormalities and inferior clinical outcome. Leuk Res 28(10):1007–1011

    Article  CAS  Google Scholar 

  15. Ravindranath Y, Abella E, Krischer JP, Wiley J, Inoue S, Harris M, Chauvenet A, Alvarado CS, Dubowy R, Ritchey AK (1992) Acute myeloid leukemia (AML) in Down’s syndrome is highly responsive to chemotherapy: experience on Pediatric Oncology Group AML Study 8498. Blood. 80(9):2210–2214

    Article  CAS  Google Scholar 

  16. Taub JW, Berman JN, Hitzler JK, Sorrell AD, Lacayo NJ, Mast K, Head D, Raimondi S, Hirsch B, Ge Y, Gerbing RB, Wang YC, Alonzo TA, Campana D, Coustan-Smith E, Mathew P, Gamis AS (2017) Improved outcomes for myeloid leukemia of Down syndrome: a report from the Children’s Oncology Group AAML0431 trial. Blood. 129(25):3304–3313

    Article  CAS  Google Scholar 

  17. Langebrake C, Klusmann JH, Wortmann K, Kolar M, Puhlmann U, Reinhardt D (2006) Concomitant aberrant overexpression of RUNX1 and NCAM in regenerating bone marrow of myeloid leukemia of Down’s syndrome. Haematologica. 91(11):1473–1480

    CAS  PubMed  Google Scholar 

  18. Westers TM, Ireland R, Kern W, Alhan C, Balleisen JS, Bettelheim P, Burbury K, Cullen M, Cutler JA, Della Porta MG, Dräger AM, Feuillard J, Font P, Germing U, Haase D, Johansson U, Kordasti S, Loken MR, Malcovati L, te Marvelde JG, Matarraz S, Milne T, Moshaver B, Mufti GJ, Ogata K, Orfao A, Porwit A, Psarra K, Richards SJ, Subirá D, Tindell V, Vallespi T, Valent P, van der Velden VHJ, de Witte TM, Wells DA, Zettl F, Béné MC, van de Loosdrecht AA (2012) Standardization of flow cytometry in myelodysplastic syndromes: a report from an international consortium and the European LeukemiaNet Working Group. Leukemia. 26(7):1730–1741

    Article  CAS  Google Scholar 

  19. Gattenloehner S, Chuvpilo S, Langebrake C, Reinhardt D, Müller-Hermelink HK, Serfling E, Vincent A, Marx A (2007) Novel RUNX1 isoforms determine the fate of acute myeloid leukemia cells by controlling CD56 expression. Blood. 110(6):2027–2033

    Article  CAS  Google Scholar 

  20. Krasselt M, Baerwald C, Wagner U, Rossol M (2013) CD56+ monocytes have a dysregulated cytokine response to lipopolysaccharide and accumulate in rheumatoid arthritis and immunosenescence. Arthritis Res Ther 15(5):R139

    Article  Google Scholar 

  21. Grip O, Bredberg A, Lindgren S, Henriksson G (2007) Increased subpopulations of CD16(+) and CD56(+) blood monocytes in patients with active Crohn’s disease. Inflamm Bowel Dis 13(5):566–572

    Article  Google Scholar 

  22. Pardo LM, Voigt AP, Alonzo TA, Wilson ER, Gerbing RB, Paine DJ, Dai F, Menssen AJ, Raimondi SC, Hirsch BA, Gamis AS, Meshinchi S, Wells DA, Brodersen LE, Loken MR (2020) Deciphering the significance of CD56 expression in pediatric acute myeloid leukemia: a report from the Children’s oncology group. Cytometry B Clin Cytom 98(1):52–56

    Article  CAS  Google Scholar 

  23. Langebrake C, Creutzig U, Dworzak M, Hrusak O, Mejstrikova E, Griesinger F et al (2006) Residual disease monitoring in childhood acute myeloid leukemia by multiparameter flow cytometry: the MRD-AML-BFM Study Group. J Clin Oncol 24(22):3686–3692

    Article  Google Scholar 

  24. Feller N, van der Velden VH, Brooimans RA, Boeckx N, Preijers F, Kelder A et al (2013) Defining consensus leukemia-associated immunophenotypes for detection of minimal residual disease in acute myeloid leukemia in a multicenter setting. Blood Cancer J 3(8):e129

    Article  CAS  Google Scholar 

Download references

Funding

This study is supported partially by funds from Children’s Foundation and Kids Without Cancer Foundation. J.W.T. is supported by Ring Screw Textron Endowed Chair, and Y.R. is supported by Georgie Ginopolis chair award.

Author information

Authors and Affiliations

Authors

Contributions

M.G. performed flow cytometry data acquisition, listmode analysis, and wrote the manuscript; B.A. collected clinical data; S.B. performed flow cytometry data acquisition; J.W.T. edited the manuscript; Y.R. edited the manuscript; S.S. planned the study, analyzed the results, revised the manuscript, and approved the final version.

Corresponding author

Correspondence to Süreyya Savaşan.

Ethics declarations

Ethical approval

This research study was conducted retrospectively using data obtained for clinical purposes. The IRB at Wayne State University has provided approval for this study. Signed informed consent requirement has been waived by the IRB at Wayne State University.

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadgeel, M., AlQanber, B., Buck, S. et al. Aberrant myelomonocytic CD56 expression in Down syndrome is frequent and not associated with leukemogenesis. Ann Hematol 100, 1695–1700 (2021). https://doi.org/10.1007/s00277-021-04531-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-021-04531-x

Keywords

Navigation