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Abstract
Several molecular aberrations affect the prognosis of patients with acute myeloid leukemia (AML) and myelodysplastic syn-
drome (MDS) with excess blasts (EB). This study aimed to determine the incidence and clinical impact of molecular genetic
aberrations in Thai patients with AML and MDS-EB, detected by the next-generation sequencing (NGS) technique. This
prospective, observational study was conducted between 2018 and 2020 on newly diagnosed Thai AML or MDS-EB patients
aged above 15 years. NGS was performed using a custom amplicon-based targeted enrichment assay for 42 genes recurrently
mutated in myeloid neoplasms. The molecular results were correlated with baseline patient and disease characteristics as well as
outcomes. Forty-nine patients were enrolled in this study. The median age was 56 years (interquartile range [IQR], 44–64), with
nearly equal proportions of males and females. The median number of mutations was 3 (IQR, 2–4). The most frequent alterations
were FLT3 internal tandem duplications (ITD) (28.6%), DNMT3A (24.5%), and WT1 (22.4%) mutations. FLT3-ITD was more
frequent in the de novo AML group than in the MDS/secondary AML group, whereas in the MDS/secondary AML group,
ASXL1, ETV6, and SRSF2 mutations were more frequent. Patients aged greater than 65 years and patients with mutated TP53
were more likely to have inferior overall survival from multivariate analysis. FLT3-ITD was the most common mutation among
newly diagnosed Thai AML patients. TP53 mutation and advanced age were independent adverse factors for survival outcome.
The genetic landscapes of AML patients vary between national populations. Thai Clinical Trials Registry identifier:
TCTR20190227003.
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Introduction

Currently, two main standard recommendations for acute my-
eloid leukemia (AML), published by the European
LeukemiaNet (ELN) and the National Comprehensive
Cancer Network, are being used to determine patients’ risk

stratification, and to select the appropriate therapy [1, 2].
Stratification of risk at the time of diagnosis is primarily based
on cytogenetic and molecular genetic findings. Results from
the genetic workup are also essential for determining and
guiding an appropriate, long-term, treatment strategy. For in-
stance, patients with AML harboring NPM1 mutation and
FLT3wildtype or FLT3-ITD with low allelic ratio, AML with
biallelic CEBPA mutation, or with core-binding factor AML
are categorized within the favorable risk group and may re-
quire only induction chemotherapy followed by consolidation
chemotherapy [1, 2]. In contrast, allogeneic stem cell trans-
plantation after induction therapy is generally recommended
for patients with adverse genetic profiles, such as complex
karyotype or mutated RUNX1, ASXL1, or TP53 [1–6].

In addition, personalized treatment is widely integrated
with AML treatment strategies, depending on mutational sta-
tus; for example, the FLT3 inhibitor midostaurin combined
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with intensive induction and consolidation chemotherapy
followed by a 1-year maintenance therapy yielded significant-
ly better survival outcomes of patients with FLT3-mutated
AML [7, 8]. The IDH1 inhibitor ivosidenib and IDH2 inhib-
itor enasidenib show encouraging clinical activity in patients
w i th IDH -mu ta t ed AML [9 , 10 ] . Fu r the rmore ,
myelodysplastic syndrome (MDS) with excess blasts-2
(EB2) shares a similar natural history with AML [11].
Therefore, a comprehensive genetic investigation of MDS-
EB patients is required, just as for patients with AML.

Reverse transcriptase-polymerase chain reaction (RT-
PCR) is a conventional genetic testing method that can be
performed by the majority of institutes. Nevertheless, the main
limitation of this technique is that each mutation has to be
evaluated separately, which is time-consuming. This is in par-
ticular clinically relevant for patients with newly diagnosed
AML and MDS-EB. Over the last years, the next-generation
sequencing (NGS) technique was introduced for myeloid neo-
plasms [12, 13]. The technique can be used to evaluate several
target genes within a few days. Health-care institutes, espe-
cially those in developed countries, are increasingly adopting
the NGS method to investigate the mutational status of newly
diagnosed AML and MDS-EB patients. However, compre-
hensive genetic profiles for the Southeast Asian population,
including Thais, have not been fully studied.

We, therefore, performed this study primarily to determine
the incidence of molecular aberrations in Thai patients with
AML and MDS-EB, as detected by the NGS technique. The
secondary objective was to correlate molecular mutational
status with clinical outcomes and to evaluate the genetic land-
scape differences between Thais and other ethnic groups of
AML and MDS patients.

Methods

This prospective observational study was conducted on newly
diagnosed Thai AML and MDS-EB patients between January
2018 and March 2020. The inclusion criteria were as follows:
(1) patients aged above 15 years; (2) patients with de novo
AML, secondary AML, or MDS-EB; and (3) patients requir-
ing treatment and follow-up at Siriraj Hospital, Thailand.
Every participant signed a consent form before enrollment.
The mononuclear cells from bone marrow specimens were
collected and cryopreserved in a biobank. The genomic de-
oxyribonucleic acid (gDNA) was isolated using the QIAGEN
Genomic DNA extraction kit (Qiagen, Hilden, Germany). The
qualities and concentrations of gDNA were confirmed by gel
electrophoresis and a Qubit 3.0 Fluorometer (life technologies
by Thermo Fisher Scientific, Waltham, MA, USA). All of the
gDNA products were transferred to the University Hospital of
Ulm, Germany, for the performance of the molecular study.
The Siriraj Institutional Review Board approved this research,

which followed the Declaration of Helsinki guidelines and all
subsequent amendments. The study was approved for regis-
tration at the Thai Clinical Trial Registry and the identification
number is TCTR20190227003. Molecular studies were sup-
ported by the Department of Internal Medicine III, University
Hospital of Ulm, Ulm, Germany.

NGS library preparation and data interpretation

The NGS covered entire coding regions of 42 genes recur-
rently mutated in myeloid neoplasms by using a custom
amplicon-based targeted enrichment assay (HaloplexHS
Target Enrichment System, Agilent, Santa Clara, CA,
USA). The library preparation was performed according
to the manufactures’ instructions. The library products
were sequenced on a MiSeq sequencer using the 300-
cycle MiSeq Reagent Kit v2 (Illumina, San Diego, CA,
USA). Following demultiplexing, the paired-end se-
quences were analyzed by an in-house data analysis
workflow. In brief, sequences were aligned to the human
reference genome GRCh37 (hg19) using BWA-MEM (ver-
sion 0.7.10) [14]. Based on the molecular barcodes, dupli-
cates were removed and consensus sequences were gener-
ated (BamDeduplicateByBarcode, ngs-bits). After local re-
alignment by GATK (version 3.4-16) [15], variants were
called using VarScan (v2.3.9) [16] and annotated by
ANNOVAR [17]. Semi-automated filtering was applied
with intronic variants, synonymous variants, variants with
less than one tumor supporting read, and variants with an
entry in the Database of Single Nucleotide Polymorphisms
(dbSNP, build 138) [18], but not in the Catalogue of
Somatic Mutations in Cancer (COSMIC) [19] that were
filtered out. The heterozygous variant allele frequency
(VAF) detection threshold was 3%. The remaining variants
were manually analyzed and curated by the Viewer
Integrative Genomics (IGV, California, USA), the UCSC
Genome Browser, the COSMIC database, and dbSNP [20,
21]. NPM1 and FLT3-ITD were determined by DNA-based
assays, FLT3-ITD as described by Stone et al. [7].

Terminology

This study applied the 2017 ELN risk classification based on
the cytogenetic and molecular findings [1]. Secondary AML
in this cohort was defined as the patient with a previous his-
tory of MDS. CR was defined as < 5% blasts in the bone
marrow, an absolute neutrophil count of ≥ 1.0 × 109/l, and a
platelet count of ≥ 100 × 109/l, without any of the following:
(1) circulating blasts, (2) blasts with Auer rods, and (3)
extramedullary disease. The OS was defined as the duration
from diagnosis to the time of last follow-up or death, whereas
the RFS was defined as the duration from the CR date to the
date of relapse or death from any cause.
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Statistical analysis

Continuous data were reported as median with interquartile
range (IQR) or mean ± standard deviation, as suitable. The
Mann–Whitney U test or Student’s t-test was employed to
compare continuous data. Categorical data were presented as
number and percent, and compared using Fisher’s exact test
or a chi-square test. A log-rank test was used to compare the
factors correlatedwithOS and RFS, and it was presented as a
Kaplan–Meier survival curve. Cox proportional hazards
analysis (enter method) was used to compare the predictors
of survival outcome in the univariate and multivariate anal-
yses. The independent variables that have significance in
univariate analysis entered the multivariate model. The re-
sults were expressed as hazard ratio (HR) and 95% CI.
Statistical significance was determined as a p-value of <
0.05. The program IBM SPSS Statistics for Windows, ver-
sion 20.0 (Armonk, NY: IBMCorp.), was utilized to analyze
the data.

Results

Forty-nine cases were enrolled in this study. The median
age was 56 years (IQR, 44–64), with almost equal pro-
portions of males and females. Forty-six (93.9%) patients
had AML in which 39 patients (79.6%) were de novo and
7 patients (14.3%) were secondary AML. Two acute
promyelocytic leukemia (APL) patients were found in
these AML patients. The others were MDS-EB, account-
ing for 3 (6.1%) patients. The common initial clinical
manifestations included anemia symptoms (87.8%), fever
(40.8%), bleeding (28.6%), and significant weight loss
(24.5%). Table 1 summarizes the baseline patient, disease
characteristics, and cytogenetic risks.

Molecular landscape results

The median number of gene mutations was 3 (IQR, 2–4). The
most common mutations were FLT3-ITD (28.6%, as assessed
by conventional diagnostic assay), DNMT3A (24.5%), WT1
(22.4%), TET2 (20.4%), RUNX1 (18.4%), NPM1 (16.3%),
FLT3-TKD (14.3%), monoallelic CEBPA (10.2%), and
biallelic CEBPA (10.2%). The favorable molecular genotypes
NPM1mutation without FLT3-ITD or with FLT3-ITDlow and
the biallelic CEBPAmutation represented 6.1% and 10.2% of
cases, respectively. The targeted gene sequencing results of
the 49 cases, classified by functional gene, [1] are illustrated in
Fig. 1.

Because the genetic mutations and pathogenesis of MDS
and secondary AML are very similar [11], we divided the
patients into two groups: a de novo AML group (n=39), and
an MDS combined with a secondary AML group (n=10). The

common genetic alterations of the de novo group were FLT3-
ITD (35.9%), monoallelic or biallelic CEBPA (25.6%), WT1
(25.6%), DNMT3A (23.1%), NPM1 (20.5%), TET2 (20.5%),
and FLT3-TKD (15.4%), while the common ones in the latter
group were RUNX1 (40.0%), ASXL1 (30.0%), DNMT3A
(30.0%), ETV6 (30.0%), NRAS (30.0%), STAG2 (30.0%),
SRSF2 (30.0%), BCOR (20.0%), TET2 (20.0%), TP53
(20.0%), and U2AF1 (20.0%). Figure 2 displays the frequen-
cies of the genetic alterations found in the Thai patients cate-
gorized by disease type. As to the baseline patient character-
istics of the two groups, significantly higher white blood cell
counts and higher percentages of peripheral blood blasts and
marrow blasts were detected in the de novo AML group than
in the MDS/secondary AML group. A comparison of the ge-
netic profiles of the two groups revealed that the FLT3-ITD

Table 1 Baseline clinical and disease characteristics of the 49 patients

Number (%)

Age (years), median (IQR) 56 (44-64)

Male sex, n (%) 24 (49)

Disease types, n (%)

- De novo AML 39 (79.6)

- Secondary AML 7 (14.3)

- MDS-EB 3 (6.1)

Laboratory findings

Complete blood count

- Mean Hb level (g/dl) 7.5 ± 2.5

- Median WBC count (×109/l) 28.3 (IQR, 10.7–85.5)

- Median peripheral blood blasts (%) 59 (IQR, 26–82)

- Median platelet count (×109/l) 45 (IQR, 20–67)

Median bone marrow blasts (%) 72.5 (IQR, 47.5–90.0)

AML cytogenetic risk according to 2017 ELN risk classification

- Favorable risk 5 (10.2)

- Intermediate risk 32 (65.3)

- Adverse risk 7 (14.3)

- No result and MDS cases 5 (10.2)

Number of molecular mutations

- No mutations 1 (2.0)

- 1 mutation 5 (10.2)

- 2 mutations 10 (20.4)

- 3 mutations 12 (24.5)

- 4 mutations 10 (20.4)

- 5 mutations 5 (10.2)

- 6 mutations 3 (6.1)

-7 mutations 2 (4.1)

- 8 mutations 1 (2.0)

AML, acute myeloid leukemia; EB, excess blasts; Hb, hemoglobin; IQR,
interquartile range; MDS, myelodysplastic syndrome;WBC, white blood
cell
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mutation was more likely to be present in the de novo AML
group than in the MDS/secondary AML group (p = 0.044). In
contrast, the MDS/secondary AML group more frequently
had mutations in ASXL1, ETV6, and SRSF2 genes (p=0.007,
0.023, and 0.007, respectively: Table S1).

Furthermore, we compared the clinical features and muta-
tional status of two age groups, < 65 years (n=38) and ≥ 65
years (n=11). The elderly group had a significantly greater
proportion of patients with a poor Eastern Cooperative
Oncology Group performance status. The common mutations
in the younger group were DNMT3A (26.3%), monoallelic or
biallelic CEBPA (23.7%), FLT3-ITD (23.7%), WT1 (23.7%),

RUNX1 (15.8%), and TET2 (15.8%). In the elderly group, the
common mutations were FLT3-ITD (45.5%), NPM1 (36.4%),
TET2 (36.4%), and RUNX1 (27.3%). The proportions of all
molecular aberrations found in the two age groups of the Thai
patients are illustrated in Fig. 3. There was no significant dif-
ference in the proportion of all mutations between the two age
groups (Table S2).

Treatment response and clinical outcomes

Sixty-one percent of patients received intensive induction
therapy (7+3 regimen, n = 29; 5+2 regimen, n = 1), 10.2%

Fig. 1 Oncoplot for the 49 patients with molecular mutations
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hypomethylating agents (HMAs), and 4.1% APL induction.
The CR rate of the patients who received intensive induction
therapy reached 60%, while the induction mortality rate was
11.4%. A quarter (24.5%) of the patients received supportive
treatment or low-intensive therapy, comprised of hydroxy-
urea, oral low-dose chemotherapy, and subcutaneous
cytarabine. An allogeneic stem cell transplant after CR using
a matched sibling donor was performed in only one patient
because of the cost-effectiveness-based transplantation policy
in Thailand, under which only matched-sibling donor alloge-
neic stem cell transplants are approved. There was no differ-
ence in the CR rates of the de novo AML and the MDS/
secondary AML groups (63.3% and 66.7%, respectively).

The median OS time of all patients was 274 days (95%
confidence interval [CI]: 199.83–348.17), with a 1-year
OS rate of 33.8%; the median RFS time was 235 days
(95% CI: 173.59–296.41), with a 1-year RFS rate of only
24.9%. The Kaplan–Meier survival curves for the OS and
RFS outcomes of the entire cohort are illustrated in Fig. 4.
A subgroup analysis of several factors impacting on sur-
vival outcome did not identify any difference in the OS
outcomes of the de novo AML group and the MDS/

secondary AML group (the median OS times were 303.6
days and 273.4 days, respectively; hazard ratio [HR]: 1.19;
95% CI: 0.50–2.87; p = 0.687). The patients who were
aged 65 years or less had a significantly better OS than
those aged over 65, with a median OS time of 355.9 days
versus 135.0 days, respectively (HR: 3.51; 95% CI: 1.55–
7.94; p = 0.003). The former group received intensive che-
motherapy accounting for 89.5% compared to only 9.1% in
the latter group. As to the mutational status analysis, the
TP53 was the only mutation that showed a statistically
significant difference in survival outcomes. Patients with
wild-type TP53 had a median OS time of 300.4 days,
whereas those with mutated TP53 had a median OS time
of 105.0 days (HR: 4.45; 95% CI: 1.59–12.46; p = 0.004).
Figure 5 presents the Kaplan–Meier survival curves of the
patients, classified by disease type, age group, and genetic
mutation. A multivariate analysis was performed to assess
all possible factors that were significantly correlated to the
survival time of the patients. Patients aged greater than 65
years and patients with the mutated TP53 were more likely
to have an inferior OS, with the HRs of 3.22 (p = 0.006)
and 4.38 (p = 0.006), respectively (Table 2).

Fig. 2 Frequencies of each
genetic alteration of the Thai
patients, categorized by disease
type: (A) De novo AML group;
(B) MDS/secondary AML
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Discussion

This is the first prospective study to comprehensively investi-
gate the genetic profiles of Thai patients with AML andMDS-
EB using the NGS technique. FLT3-ITD (assessed by

conventional PCR technique) was the most common genetic
mutation in this cohort. Other mutations that were commonly
found in our study were mutations in DNA methylation
(DNMT3A and TET2), the myeloid transcription factor
(CEBPA and RUNX1), and the NPM1 gene, known to be

Fig. 3 Frequencies of each
genetic alteration of the Thai
patients, categorized by age
group: (A) aged ≥ 65 years; (B)
aged < 65 years

Fig. 4 Kaplan–Meier survival
curves for all patients: (a) overall
survival; (b) relapse-free survival
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frequently mutated in AML. However, the high proportion of
WT1 mutation in our results was markedly different from the
frequencies reported by other studies [22–25].

In de novo AML patients, the most common genetic mu-
tations were FLT3-ITD, NPM1, and CEBPA, which is in line
with another report from an Asian cohort [26]. DNMT3Amu-
tation was commonly found in a high percentage especially in
younger AML patients, which compares well with a previous
report [27].

As to the MDS/secondary AML patients, mutations in the
myeloid transcription factor (RUNX1 and ETV6), chromatin-

modifying gene (ASXL1 and BCOR), spliceosome complex
(SRSF2 and U2AF1), cohesion complex gene (STAG2), and
tumor suppressor gene (TP53) were demonstrated in high
proportions compared with the frequencies in the de novo
AML patients; this finding was similar to the results of
previous reports. As previously shown, these mutational
groups appear to be a signature of this patient subgroup
[1, 12, 28, 29].

Notably, just over 10% of the patients aged 65 years or
less had mutated NPM1, whereas the rate in a previous
report was as high as 30% [1]. Besides, high percentages

Fig. 5 Kaplan–Meier survival curves for the patients, classified by disease type, age group, and genetic mutation: (a) disease type; (b) age group; (c)
TP53 mutational status

Table 2 Univariate and
multivariate analyses for overall
survival of the patients (days)

Univariate N Overall survival (days) P-value HR (95 % CI)

Age 0.003

≤ 65 years 38 335.9 1

> 65 years 11 135.0 3.51 (1.55–7.94)

Disease types 0.687

De novo AML 39 303.6 1

MDS combined with AML 10 273.4 1.19 (0.50–2.87)

Cytogenetic risk 0.244

Favorable risk 5 310.0 1

Intermediate and adverse risk 39 260.1 3.40 (0.43-26.63)

TP53 mutational status 0.004

Wild-type TP53 44 300.4 1

Mutated TP53 5 105.0 4.45 (1.59–12.46)

CEBPA mutational status 0.103

Non-biallelic CEBPA gene mutation 44 236.2 1

Biallelic CEBPA gene mutation 5 412.5 1.19 (0.03–1.40)

Multivariate P-value HR (95 % CI)

Age 0.006 3.22 (1.39–7.40)

TP53 mutational status 0.006 4.38 (1.53–12.51)

A p-value of < 0.05 indicates statistical significance

AML, acute myeloid leukemia; CI, confidence interval; HR, hazard ratio; MDS, myelodysplastic syndrome
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of unfavorable mutations were found in elderly patients,
including FLT3-ITD and RUNX1 mutations. These genetic
profiles are possibly important adverse factors for Thai el-
derly patients with AML, and the profiles appear to support
the published results of a study of Thai elderly patients with
AML who had dismal survival outcomes, with a median OS
time of only 4 months [30]. However, the percentages of
mutations in the elderly group need to be interpreted with
caution due to the low number of patients. The frequencies
of the genetic mutations detected by the NGS technique in

the AML patients in the present study and previous research
are tabulated in Table 3 [4, 22–24, 31].

Furthermore, TP53 mutation was an independent adverse
factor for outcome in our study, which is comparable with
other published results [5, 28, 32]. In a previous report,
decitabine has been suggested as an effective treatment for
AML patients with mutated TP53 [5]. However, this observa-
tion is not supported by data from controlled clinical trials [4,
33]. New agents, such as the p53 reactivator APR-246 or the
monoclonal anti-CD47 antibody magrolimab that have shown

Table 3 Proportions of mutations in AML patients in this study and other research

Lin 2017 [22] Hussaini 2018 [23] Cao 2018 [24] Eisfeld 2018 [31] This study

Patients’ country Taiwan USA China USA Thailand

Patient numbers 112 187 179 423 49

Gender (M/F) 67/45 NR 116/63 251/172 24/25

Median age (years, range) 42.6 (11.7–79) NR 53 (18–88) 69 (60–85) 56 (15–89)

FLT3-ITD mutation 21.4 11 10.1 20.9 28.6

FLT3-TKD mutation NR NR 2.8 6.7 14.3

NRAS mutation NR 11.9 11.7 11.6 12.2

PTPN11 mutation NR NR NR 4.9 12.2

KRAS mutation NR 0.5 2.2 2.4 8.2

KIT mutation 4.5 2.1 7.8 NR 8.2

CBL mutation NR 1.1 NR 2.4 6.1

NF1 mutation NR 0.5 NR NR 6.1

DNMT3A mutation 12.5 14.8 8.9 26.9 24.5

WT1 mutation 11.6 NR 5.0 3.8 22.4

TET2 mutation 10.7 15.3 16.8 26.7 20.4

IDH2 mutation 12.5 12 10.1 18.4 4.1

IDH1 mutation 3.6 6.4 6.7 10.4 2.0

CEBPA mutation 15.2 NR 17.9 3.1 20.4

RUNX1 mutation 6.3 15.2 7.3 18.7 18.4

ETV6 mutation NR 3.7 NR 3.1 8.2

GATA2 mutation 6.3 NR 2.8 1.9 2.0

NPM1 mutation 15.2 11 11.2 32.1 16.3

BCOR mutation NR NR NR 7.1 12.2

ASXL1 mutation 16.1 20.7 13.9 13.2 6.1

EZH2 mutation NR 2.1 NR 3.6 8.2

PHF6 mutation 2.7 4.8 NR 3.3 2.0

U2AF1 mutation 2.7 4.3 NR 7.6 10.2

SRSF2 mutation NR 5.9 NR 22.7 6.1

ZRSR2 mutation NR 1.1 NR NR 2.0

STAG2 mutation NR NR NR 5.4 10.2

RAD21 mutation NR NR NR 1.2 2.0

SMC1A mutation NR NR NR NR 2.0

TP53 mutation 8.0 14.4 7.3 8.3 10.2

The underlined figures indicate the most commonmutation found by each study, whereas the bold figures denote the three most common mutations that
each study reported

F, female; M, male, NR, not reported
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promising activity in this high-risk subset of AML, are cur-
rently in clinical development [34, 35]. Apart from the limited
transplant access, the poor OS and RFS rates of our patients
were possible because age > 65 years and unfavorable genetic
mutations (especially the TP53 mutation) were adverse fac-
tors. The reason why the old age in this study confers grave
prognosis could be explained by less availability of HMAs
utilization.

Overall, there are different genetic abnormalities in AML
patients in each race. A comprehensive genetic investigation
of AML and MDS patients could categorize patients’ risks
and prognoses. Moreover, personalized treatment based on
each molecular mutation in individual patients could improve
their treatment responses and long-term survival outcomes.

The main limitation of this study was the low number of
enrolled patients. Consequently, several genetic mutations
could not reach a level of statistical difference for outcome
measures between the wild-type and the mutated gene.
Establishing the exact prevalence and clinical outcome of each
mutation in Thai AML patients would be interesting but
would require the collection and analysis of more cases.

Conclusions

FLT3-ITD was the most common mutation in newly diag-
nosed Thai AML patients. TP53 mutation and advanced age
were independent, poor prognostic factors for patients’ surviv-
al. The genetic landscape of AML patients for each disease
type, each age group, and each nation differ; hence, a compre-
hensive genetic investigation should guide the most suitable
treatment to improve individual patients’ outcomes.
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