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Macrophage frequency in the bone marrow correlates
with morphologic subtype of myeloproliferative neoplasm
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Abstract
Bone marrow (BM) fibrosis in myeloproliferative neoplasms (MPNs) is associated with a poor prognosis. The development of
myelofibrosis and differentiation of mesenchymal stromal cells to profibrotic myofibroblasts depends on macrophages. Here, we
compared macrophage frequencies in BM biopsies of MPN patients and controls (patients with non-neoplastic processes),
including primary myelofibrosis (PMF, n = 18), essential thrombocythemia (ET, n = 14), polycythemia vera (PV, n = 12),
and Philadelphia chromosome–positive chronic myeloid leukemia (CML, n = 9). In PMF, CD68-positive macrophages were
greatly increased compared to CML (p = 0.017) and control BM (p < 0.001). Similar findings were observed by CD163 staining
(PMF vs. CML: p = 0.017; PMF vs. control: p < 0.001). Moreover, CD68-positive macrophages were increased in PV compared
with ET (p = 0.009) and reactive cases (p < 0.001). PMF had higher frequencies of macrophages than PV (CD68: p < 0.001;
CD163: p < 0.001) and ET (CD68: p < 0.001; CD163: p < 0.001). CD163 and CD68 were often co-expressed in macrophages
with stellate morphology in Philadelphia chromosome–negative MPN, resulting in a sponge-like reticular network that may be a
key regulator of unbalanced hematopoiesis in the BM space and may explain differences in cellularity and clinical course.
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Introduction

Classical myeloproliferative neoplasms (MPNs) are a heter-
ogenous group of diseases arising from the bone marrow
(BM), comprising Philadelphia chromosome (Ph)–positive
chronic myeloid leukemia (CML) and the three Ph-negative
(Ph− ) MPN polycy themia ve ra (PV) , e s sen t i a l
thrombocythemia (ET), and primary myelofibrosis (PMF).
While the Philadelphia-chromosomal BCR-ABL1 transloca-
tion is driving predominantly myeloid hyperplasia in CML,
Ph− MPNs are driven by JAK-STAT signaling which is up-
regulated by different mutations (JAK2V617F, CALR, or
MPLW515) and is a key event in the disease course [1, 2].
Enhanced JAK-STAT signaling leads to the release of proin-
flammatory and profibrotic cytokines [3] and chronic inflam-
mation is considered as a major promoter of Ph−MPNs [4, 5].
Differences in heterozygosity of Jak2 mutations in Ph−MPNs
explain only in part the predominance of hyperplasia in the
erythroid lineage (PV), myeloid plus megakaryocytic (PMF),
and megakaryocytic (ET) lineage, suggesting the existence of
other disease-modifying factors.

Myelofibrosis inMPNsmay result from increased cytokine
production leading to activation of mesenchymal stromal cells
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(MSC) [6]. MSCs respond to higher levels of profibrotic cy-
tokines by differentiation into myofibroblasts. The most im-
portant producers of profibrotic cytokines are megakaryocytes
and macrophages [7].

Macrophages in the BM ofMPN patients have been shown
to be attractive novel cellular therapeutic targets, as they were
shown to induce proliferation of myofibroblasts via vitamin D
receptor signaling [8]. Interestingly, monocytosis confers a
poor prognosis in PMF [9, 10] and monocyte-derived
fibrocytes can be successfully inhibited in vivo by administra-
tion of the fibrocyte inhibitor serum amyloid P (SAP;
pentraxin-2) [11].

Macrophages are increased in BM biopsies of PMF pa-
tients [12, 13]. Importantly, treatment with the Jak1/2 inhibitor
ruxolitinib results in morphologic remission, eventually a de-
crease of fiber density as well as a decrease in M2-type mac-
rophages and mast cells in the BM in approximately half of
PMF patients [13, 14].

Anti-inflammatoryM2macrophages express the scavenger
receptor CD163, which is upregulated by inflammatory cyto-
kines such as IL-6 and IL-10 [15]. CD163 serves as a surro-
gateM2marker by immunohistochemistry (IHC). However, it
is unclear whether CD163 is a M2-specific marker of macro-
phages in the BM.

While macrophages have been shown to be increased in
PMF [12], a direct comparison of macrophage frequency be-
tween the variousMPN subtypes has not been performed. The

goal of this study was to analyze the frequency and morphol-
ogy of M2 macrophages in trephine biopsies of patients with
Ph+ and Ph− MPNs preceding treatment.

Methods and materials

Patient cohort

BM biopsies from 61 patients were collected from 2003 to
2020 according to ethic board approval no. 235, University
of Bonn. Each patient was diagnosed with ET, PV, PMF, and
CML according to the WHO criteria [16] or underwent BM
biopsy for other reasons without showing pathological fea-
tures in the biopsy (see Table 1 for a detailed description of
the patient cohort). Bone marrow biopsies with an MPN di-
agnosis at initial presentation were identified from the digital
archive of the University of Bonn Hospital. Accelerated, blast
phase, or pre-treated MPN cases were excluded from analysis.
Only chronic phase CML cases were selected.

Immunohistochemistry and scoring

Standard morphology was assessed using H&E-stained slides.
For immunohistochemistry (IHC) staining, standard paraffin
sections (2–3 μm) were dried at 65 °C. Slides were then
placed into retrieval solution (pH 6.0, Medac PMB-1-250).

Table 1 Clinico-pathologic parameters and diagnoses, patient cohort.
Bone marrow (BM) biopsies at initial diagnosis of patients with primary
myelof ibrosis (PMF), polycythemia vera (PV), essent ia l
thrombocythemia (ET) and chronic myeloid leukemia (CML) including

44 cases of Ph− MPN and 9 cases of Ph+ MPN (CML). Diagnosis and
myelofibrosis grade (MF) are according to the current WHO criteria [16].
Percentages are in parentheses

Diagnosis PMF PV ET CML Control Total

Number of cases, N (%) 18 (30) 12 (20) 14 (23) 9 (15) 8 (13) 61 (100)

Median age (range) 63 (40–82) 59.5 (17–77) 64.5 (21–81) 58 (31–78) 59 (22–81) 61 (17–82)

Gender (%)

Male 11 (61) 6 (50) 6 (43) 5 (46) 5 (63) 33 (54)

Female 7 (39) 6 (50) 8 (57) 4 (44) 3 (37) 28 (46)

MF grade (%)

0 1 (6) 5 (42) 13 (93) 1(11) 7 (88) 27 (44)

1 10 (56) 5 (42) 1 (7) 8 (89) 1 (13) 25 (41)

2 2 (11) 2 (17) 0 (0) 0 (0) 0 (0) 4 (7)

3 5 (28) 0 (0) 0 (0) 0 (0) 0 (0) 5 (8)

Mutation (%)

BCR-ABL1 0 (0) 0 (0) 0 (0) 9(100) 0 (0) 4 (15)

JAK2V617F 15 (83) 11 (92) 12 (86) 0 (0) 0 (0) 19 (73)

CALR 2 (11) 1 (8) 2 (14) 0 (0) 0 (0) 2 (8)

MPLW515 1 (6) 0 (0) 0 (0) 0 (0) 0 (0) 1 (4)

Mean hemoglobin [g/dl] (range) 12.2 (7.7–15.8) 16.2 (14.2–19.5) 14.0 (11.6–16.3) 10.8 (7.3–14.2) 11.6 (9.0–14.1) 13.0 (7.3–19.5)

Mean platelets/nl (range) 692.9 (95–2023) 477.3 (236–1107) 862.2 (600–1465) 232 (27–374) 108 (82–618) 566.1 (27–2023)

Mean WBC/nl (range) 14.3 (2.1–36.2) 15.6 (4.9–32.5) 10 (4.1–20.0) 146.5 (47.22–368) 9.8 (3.52–14.2) 33.0 (2.1–368)
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Afterwards, sections were washed with washing buffer
(Medac B1-30A), then with distilled water. Endogenous per-
oxidase was blocked using H2O2. IHC was performed with
primary antibodies against CD163 (clone MRQ-26, Medac,
1:1000) and CD68 (clone PGM1, Agilent, 1:100) and devel-
oped using a DAB IHC detection system on a semi-automatic
immunohistochemistry stainer (Autostainer 480S; Medac,
Germany). Photomicrographs were taken with a BX51 micro-
scope (Olympus, Germany) and a Zeiss AxioCamMRc5 cam-
era using the Axiovision software (Carl Zeiss, Germany).

To quantify the number of CD68- and CD163-positive
cells in IHC sections, the slides were scanned using the
Mirax scanning system (3D Histecj. Hungary). CD68- or
CD163-positive cells per all nucleated cells within all inter-
pretable bone marrow spaces excluding hemorrhaged, bony,
or crushed areas on a tissue section were analyzed using
QuPath [17], an open-source software for pathologic image
analysis. Due to the differences in bone marrow structure and
depending on the fibrosis grade and frequency of vacuoles, we
chose to enumerate IHC-positive cells per all nucleated cells
detected by hematoxylin staining as a marker for macrophage
frequency. QuPath was used for detection of CD68- and
CD163-immunopositive cells with hematoxylin for nuclear
detection. Cell detection for images was performed with the
following default settings: requested pixel size was set to 0.5
μm; for the nucleus, the background radius was set to 8 μm;
the median filter radius was set to 0μm; the intensity threshold
was set to 0.2 for the cell: DAB OD mean scoring compart-
ment. The total number of positive cells varied between 0 and
43% for CD68 and between 0 and 62% for CD163 in each
image depending on cell frequency and marker expression.
Results were verified using a semiquantitative scoring system
(+, ++, +++) by two independent investigators (D.M., I.G.)
showing similar results as the automatic counting using
QuPath (data not shown).

Confocal multiplex microscopy

Immunofluorescence multiplex staining was performed with
Opal 7-Color manual IHC kit (AKOYA Biosciences:
NEL811001KT). Formalin-fixed paraffin-embedded (FFPE)
tissue blocks from bone samples were cut in 2-μm-thick sec-
tions. Slides were deparaffinized and antigen retrieval was
performed in citrate buffer (EnVision FLEX target retrieval
solution low pH, from Agilent: K8005) and the pT-Link
(Agilent). After fixation in 4% formalin for 10 min, slides
were washed and blocking was performed with H2O2
(DAKO real peroxidase blocking solution, Agilent: S2023)
followed by 30-min incubation with antibody diluent
(DAKO real antibody diluent, Agilent: S2022). The slides
were then incubated with the first primary antibody CD68
(Agilent: M0876, dilution 1:2000) for 1 h in a humidified
chamber at room temperature followed by detection with

FLEX HRP (EnVision FLEX HRP, Agilent: SM802) and
Opal 690 TSA Plus (AKOYA Biosciences, dilution 1:50),
after which the slide was placed in citrate buffer (pH 6.0)
and heated using microwave treatment (MWT). The slides
were then incubated with the second primary antibody
CD163 (Cellmarque: 163M-17, dilution 1:50) for 1 h in a
humidified chamber at room temperature, followed by detec-
tion using the FLEX HRP and Opal 650 TSA Plus (AKOYA
Biosciences, dilution 1:50), followed by incubation in citrate
buffer (pH 6.0) with MWT. Counterstaining of cell nuclei was
performed using Spectral DAPI (AKOYA Biosciences) and
the sections were embedded with mounting medium
(Vectashield Hard Set, Vector Laboratories: H-1400). For
analysis, whole multiplex stained bone sections were automat-
ically scanned with the Vectra 3.0 Automated Quantitative
Pathology Imaging System (AKOYA Biosciences) (see Fig.
4 for results). Quantification of CD68 single-, CD163 single-,
and CD68/CD163 double-positive cells was performed using
CellProfiler [18].

Statistical analysis

Statistical analysis was performed with the IBM SPSS
(Chicago, IL) software package for Windows (version 25.0)
and Microsoft Office Excel 365.

The Kruskal-Wallis test was used to compare the distribu-
tion of CD68- and CD163-positive cell frequency. Pair-wise
comparison of diagnoses with respect to CD68 and CD163
frequencies was performed using Mann-Whitney U tests.
Multiple testing correction for all comparisons was performed
using a false discovery rate (FDR) (Benjamini-Hochberg pro-
cedure). Spearman rank and chi-square testing were used for
pair-wise assessment of correlation between myelofibrosis
(MF) grade, Hb, WBC, platelet count, and macrophage fre-
quencies. Again, the multiple testing error for all comparisons
was addressed by the Benjamini-Hochberg procedure. The
FDR value is reported next to the p values in the “Results”
part and figure legends.

Results

Histological, clinical, and molecular characteristics of a pa-
tient cohort composed of a total of 44 cases of Ph− MPN
(PMF (18), PV (12), ET (14)) and nine cases of Ph+ MPN
(CML (9)) as well as eight reactive control BM have been
summarized in Table 1.

While in control BM and CML patients, macrophages were
sparse and distributed evenly within the BM space, macro-
phages were increased significantly in PMF > PV > ET
(Figs. 1 and 2).

Significantly higher CD68 frequencies were found in PMF
BM (mean CD68-positive cells: 27% per all nuclear cells
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within bone marrow spaces) compared to CML (mean 2%
CD68-positive cells) (p = 0.017, FDR = 0.028), ET (mean
6%CD68-positive cells) (p < 0.001, FDR = 0.008), PV (mean
13% CD68-positive cells) (p < 0.001, FDR = 0.015), and
reactive BM (mean 5% CD68-positive cells) (p < 0.001,
FDR = 0.003) (Figs. 2 and 3). Significant differences in
CD163-positive macrophage frequencies were found between
PMF (mean 28% CD163-positive cells) and CML (mean 1%
CD163-positive cells) (p = 0.017, FDR = 0.025), PMF and ET
(mean 7% CD163-positive cells) (p < 0.001, FDR = 0.005),
PMF and PV (mean 8% CD163-positive cells) (p < 0.001,
FDR = 0.013), and PMF compared with reactive BM (mean
2%CD163-positive cells) (p < 0.001, FDR = 0.010) (Fig. 2b).

In addition, CD68 frequencies were higher in PV than in re-
active (p < 0.001, FDR = 0.018) and higher in PV than in ET
(p = 0.009, FDR = 0.023) (Fig. 2a).

Overall, a correlation of CD68 andCD163 expressions by IHC
on serial sections was observed within the entire cohort (Fig. 3).

Interestingly, in 13 out of 61 BM biopsies, CD163-positive
cell frequencies were higher than CD68-positive macrophage
frequencies in corresponding IHCs. We therefore determined
whether CD68 and CD163 were co-expressed on identical
cells using multiplex multispectral imaging confocal micros-
copy for selected cases. Indeed, bothmolecules were frequent-
ly co-expressed in cells with macrophage morphology, most
prominently in PMF and PV (Fig. 4). Some macrophages

Fig. 1 Macrophage frequency and distribution in MPN and reactive bone
marrow biopsies. Representative photomicrographs showing CD68-
expressing macrophages by IHC (upper) and CD163 staining (lower).
Percentages of CD68-positive cells determined by automatic cell
counting in the upper row cases from left to right: PMF (30%), ET
(2%), PV (18%), CML (2%), and control (2%). Percentages of CD163-

positive cells in the lower row paired samples from left to right: PMF
(38%), ET (0%), PV (23%), CML (2%), and control (2%). Evenly dis-
persed CD68- and CD163-expressing macrophages, with stellate mor-
phology, are increased in Ph− MPN (especially in PMF and PV) and
show a more ovaloid morphology in CML (× 400 magnification)

Fig. 2 Correlation of macrophage
frequency with type of MPN.
Scatter plot, CD68 (A) and
CD163 (B) frequencies in biop-
sies of MPN patients (PMF, PV,
ET, CML) and reactive BM con-
trols. CML and reactive BM con-
tain few macrophages, while
PMF biopsies contain higher fre-
quencies of CD68- and CD163-
positive macrophages (% per nu-
cleated cells). PV was associated
with a significant higher macro-
phage frequency than CML or
ET. Brackets indicate significant
differences between diagnostic
subtypes (p < 0.05)
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were only positive by confocal microscopy with anti-CD163
or anti-CD68 (Fig. 4). Quantitative cell analysis using
CellProfiler on selected cases showed the following percent-
ages of CD68 and CD163 double-positive and single-positive
macrophages per all nucleated cells: PMF: 60%, 62%, 53%;
PV: 42%, 80%, 40%; ET: 56%, 70%, 52%; CML: 18%, 26%,
16% (percentage of CD68 single-positive, CD163 single-
positive and double-positive cells respectively).

No correlation between CD68- or CD163-positive macro-
phage frequency and grade of myelofibrosis (MF) of all MPN
cases combined or selected per diagnostic subtype was
observed (Fig. 5).

However, when early PMF or ET (MF 0–1) were selective-
ly analyzed, a significant difference of CD68- (p < 0.001) as
well as CD163-positive cell frequencies (p < 0.001) could be
demonstrated (PMF: mean 29% CD68-positive cells and

Fig. 3 Correlation of CD68-positive and CD163-expressing macrophage frequency. Macrophage frequencies determined by CD68 and CD163 IHC
staining (immunopositive cells per all nucleated cells, QuPath analysis)

Fig. 4 Immunofluorescence co-staining of CD68 and CD163 in MPN
biopsies. Multispectral microscopy reveals frequent co-localization of
CD68- (green) and CD163 (red)-positive macrophages, nuclei

highlighted in DAPI (blue), representative images (× 200) (white arrow:
CD68/CD163 double-positive macrophages)
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mean 27% CD163-positive cells vs. ET: mean 7% CD68-
positive cells and mean 8% CD163-positive cells/nucleated
cells). However, in this subgroup, the majority of PMF cases
showed mild diffuse myelofibrosis, whereas ET cases were
mostly MF 0 (10 out of 11 PMF cases had MF grade 1 and
13 out of 14 ET cases had MF grade 0).

Discussion

The above results underline the importance of macrophages in
MPN-associated alterations of the immune tumor microenvi-
ronment (TME) and regulation of cell lineage turn over.
Macrophages have intimate spatial contact and functional re-
lationship with developing hematopoietic cells [19, 20].

We show that macrophage abundance differs in Ph+ MPN
(CML) and Ph−MPN: PMF, PV, and ET with PMF have the
highest frequency in BM biopsies, followed by PV and ET.

Previous work on macrophage frequency in MPN has
shown that macrophages are far more frequently observed in
BM biopsies than in BM aspirates [21, 22]. Based on our
observations in situ as well as others, macrophages are inti-
mately connected with the non-cellular and cellular BM stro-
ma. In Ph− MPN, CD68- and CD163-positive macrophages
demonstrated an irregular stellate shape with slender
cytoplasmatic processes (Figs. 1 and 4) which may explain
why these cells are difficult to aspirate, rendering functional
analysis technically challenging. In contrast, in CML, macro-
phages had a more ovaloid appearance.

While macrophages in the BM are quite abundant (Figs. 1
and 4), it is currently unclear which fraction of these CD68-
and CD163-positive macrophages is truly residing in a long-
term quiescent state and which fraction is generated through
differentiation from monocytes.

Our findings of differences in macrophage frequencies in
various types of MPN extend previous results showing that
macrophage andmast cell frequencies in BM biopsies normal-
ize after Jak1/2 inhibition in a significant proportion of PMF
patients accompanied by decreased grades of fibrosis [12, 13].
In the study of Kvasnicka et al., macrophages were reported to
correlate with the degree of myelofibrosis in PMF, although a
detailed presentation of the data was not provided [13].

While our cohort suffices to demonstrate differences of
macrophage frequencies between subtypes ofMPN (Fig. 3),
this cohort is too small to analyze correlations of macro-
phage content and peripheral blood counts. Prospective
clinical cohorts will need to determine a correlative or pre-
dictive value of CD163 or CD68 as a parameter accompa-
nying or predicting myelofibrosis. Interestingly, macro-
phages are more abundant in PMF with none to mild mye-
lofibrosis (MF grade 0–1) than in ET (MF grade 0–1) open-
ing up the possibility for improved diagnostic separation of
these entities in early myelofibrotic stages. Additional case
cohorts are needed to confirm this data and in order to ex-
clude fiber grade as a confounding variable in this subgroup
analysis.

Macrophages in the BM are not only involved in hemato-
poietic stem cell homeostasis via regulation of Coxsackie and
adenovirus receptor (CAR)–positive fibroblasts [23] but also
in myeloid cell turnover, in particular in the elimination of
short-lived granulocytes [24, 25]. Furthermore, macrophages
regulate erythropoiesis within erythropoietic islands via turn-
over of expelled nuclei and secretion of erythropoietin [26].
Thus, one possible explanation for the increased frequency of
macrophages in PMF > PV > ET may be the high turnover of
individual cell lineages in these diseases with PMF being the
disease with the most pronounced increase in granulopoiesis
in the bone marrow.

Fig. 5 Myelofibrosis (MF) grade
and macrophage frequency.
Scatter plot comparing MF grade
and macrophage frequency using
CD68 (A) and CD163 (B) auto-
matic cell counts (% positive cells
by IHC per nucleated cells,
QuPath analysis) in BM tre-
phines. MF grade was determined
using a four-tiered scale [16]: MF
grade with no increase in reticulin
fibers (grade 0), loose increase of
reticulin (1), more diffuse and
dense increase in reticulin and
beginning collagen fibers (2), and
dense reticulin and collagen fi-
brosis (3)

102 Ann Hematol (2021) 100:97–104



Since molecular aberrations such as JAK2V617F, CALR,
or MPLmutations are shared between Ph−MPN, it is current-
ly unclear whether the high frequency of macrophages is a
consequence or a cause of the phenotype (hyperplasia of se-
lected cell types). The Jak2 mutation has been detected in
monocytes [27]; thus, at this point, BM macrophages could
be part of the malignant clone. Interestingly, M2macrophages
are centrally involved in fibrosis through secretion of
profibrotic cytokines in PMF as well as in tissue regeneration
and scar formation [28].

The upregulation of MAF (v-maf avian musculoaponeurotic
fibrosarcoma oncogene homolog) in PMF CD34+ hematopoi-
etic progenitor cells (HPCs) results in enhanced monocyte/
macrophage and megakaryocyte differentiation as well as in-
creased production of proinflammatory/profibrotic cytokines
and growth factors (CCL2, IL8, MMP9, LGALS3, SPP1),
leading to MSC proliferation and collagen production [29].
Given the proinflammatory nature of macrophages in PMF
and our own findings, we suspect that CD163 is not a good
marker of M2 polarization in PMF (Fig. 3). Furthermore, given
that CD163+ macrophages are often more frequent than
CD68+ macrophages (Figs. 1 and 4), it is unlikely that
CD163 is a M2-specific marker provided that CD68 is a pan-
macrophage marker in the BM.

Further in vitro and in vivo studies are needed to better
characterize the function of tissue-resident macrophages in
MPN with stellate morphology, keeping in mind that these
cells are difficult to aspirate.

Macrophages in the BM of MPN patients have recently
gained increased clinical attention, as they have been shown
to be attractive novel cellular therapeutic targets, particularly
as they play a significant role in inducing proliferating
myofibroblasts via vitamin D receptor signaling [8].

Our findings support efforts to investigate macrophages as
cellular targets in therapeutic trials of MPN patients further.
Preclinical and clinical studies would be helpful to address
whether targeting the monocyte/macrophage system, in addi-
tion to inhibition of JAK1/2, in first-line or advanced patients
is of future therapeutic benefit.
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