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Abstract
Risk-adapted therapy has significantly contributed to improved survival rates in pediatric acute lymphoblastic leukemia
(ALL) and reliable detection of chromosomal aberrations is mandatory for risk group stratification. This study eval-
uated the applicability of panel-based RNA sequencing and array CGH within the diagnostic workflow of the German
study group of the international AIEOP-BFM ALL 2017 trial. In a consecutive cohort of 117 children with B cell
precursor (BCP) ALL, array analysis identified twelve cases with an IKZF1plus profile of gene deletions and one case
of masked hypodiploidy. Genetic markers BCR-ABL1 (n = 1), ETV6-RUNX1 (n = 25), and rearrangements involving
KMT2A (n = 3) or TCF3 (n = 3) were assessed by established conventional techniques such as karyotyping, FISH, and
RT-PCR. Comparison of these results with RNA sequencing analysis revealed overall consistency in n=115/117 cases,
albeit with one undetected AFF1-KMT2A fusion in RNA sequencing and one undetected ETV6-RUNX1 fusion in
conventional analyses. The combined application of RNA sequencing, FISH, and CGH+SNP array reliably detected
all genetic markers necessary for risk stratification and will be used as the diagnostic standard workflow for BCP-ALL
patients enrolled in the AIEOP-BFM ALL 2017 study. Prospectively, consistent collection of genome-wide CGH+SNP
array as well as RNA sequencing data will be a valuable source to elucidate new prognostic lesions beyond
established markers of pediatric ALL. In this respect, RNA sequencing identified various gene fusions in up to half
of the IKZF1plus (n = 6/12) and B-other (n = 19/36) cases but not in cases with hyperdiploid karyotypes (n = 35).
Among these fusions, this study reports several previously undescribed in frame PAX5 fusions, including PAX5-MYO1G and
PAX5-NCOA6.
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Abbreviations
ALL Acute lymphoblastic leukemia
AIEOP-
BFM ALL

International collaborative treatment protocol
for children and adolescents with acute lympho-
blastic leukemia

array CGH Array-based comparative genomic hybridization
B-I B-lineage immunophenotype pro-B-ALL
B-II B-lineage immunophenotype common-ALL
B-III B-lineage immunophenotype pre-B-ALL
BCP-ALL B cell precursor acute lymphoblastic leukemia
BM Bone marrow
B-other Subtype of cases that tested negative for genetic

markers relevant for AIEOP-BFM ALL 2017
CDS Coding sequence
FISH Fluorescence in situ hybridization
IKZF1plus Profile of gene deletions relevant for risk strati-

fication within AIEOP-BFM ALL 2017
ISCN International System for Human Cytogenetic

Nomenclature
MRD Minimal residual disease
RNA-seq RNA sequencing
RT-PCR Reverse transcriptase polymerase chain reaction

Introduction

Acute lymphoblastic leukemia (ALL) is the most frequent
childhood malignancy with an assumed worldwide annual
incidence of more than 50,000 cases [1, 2]. Fortunately, many
clinical trials recently demonstrated 5-year survival rates
above 90% in pediatric ALL, whereas only a few decades
ago, survival rates were below 20% [1, 3]. The great improve-
ment in prognosis is essentially a result of iterative cycles of
long-term clinical trials. These trials helped to identify biolog-
ic subtypes of ALL, to assess their distinct response to treat-
ment and risk of relapse, and to develop individual risk-
adapted therapies [4].

Risk stratification within the recently completed
AIEOP-BFM ALL 2009 trial, an international collabora-
tive treatment protocol for children and adolescents with
acu t e l ymphob l a s t i c l eukemi a , was ba s ed on
immunophenotype, specific chromosomal aberrations,
and response to treatment assessed by minimal residual
disease (MRD). The two chief chromosomal aberrations
relevant to risk stratification in AIEOP-BFM ALL 2009
were the AFF1-KMT2A gene fusion and a hypodiploid
karyotype. The fusion BCR-ABL1 represented an exclu-
sion criterion and those cases were treated within the
EsPhALL study [5]. Cases showing none of these genetic
markers were treated based on their response to treatment
and MRD has proven to be an effective measure to iden-
tify patients with a high risk of relapse [6]. However, it is
known that other genetic aberrations, some of them

recurrent, exist in the MRD high-risk group and great
efforts are being made to identify and characterize these
aberrations, as this knowledge will be key to improve risk
stratification, to introduce targeted treatment, and hopeful-
ly to increase long-term survival rates [7]. Therefore, the
diagnostic workflow of the current AIEOP-BFM ALL
2017 study investigates for an extended set of stratifica-
tion relevant gene fusions (i.e., ETV6-RUNX1, AFF1-
KMT2A, and TCF3-HLF) as well as the IKZF1plus subtype
[8, 9]. It is noteworthy that IKZF1plus is not defined by a
single genetic aberration, but by deletions in six different
genetic loci (i.e., deletion of IKZF1 complemented by at
least one additional deletion in CDKN2A, CDKN2B,
PAX5, or CRLF2-P2RY8, and no deletion in ERG) [8].
The IKZF1plus profile of gene deletions points at the ne-
cessity that future routine diagnostic workflows, which
are currently often limited to specific genes of interest
using fluorescence in situ hybridization (FISH) and poly-
merase chain reaction (PCR) analyses, will have to assess
a wider range of targets in order to detect novel and yet
undefined profiles relevant to risk stratification.

We here report on our results from implementing analysis
of the leukemia transcriptome using panel-based RNA se-
quencing and genome-wide copy-number analysis using array
CGH into the diagnostic workflow of the German study group
of the international AIEOP-BFM ALL 2017 trial. In addition
to assessing detection of IKZF1plus in array CGH, the major
aim of this study was to compare the RNA-seq-based detec-
tion of above mentioned gene fusions with well-established
techniques such as karyotyping, FISH, and PCR analyses. We
also discuss expanded use of RNA-seq data beyond stratifica-
tion relevant gene fusions, which in some cases identified
potentially targetable lesions. Prospectively, the consistent
collection of genome-wide CGH+SNP array as well as
RNA-seq data within the AIEOP-BFM ALL 2017 trial is a
valuable resource for elucidation of new prognostic markers
of pediatric ALL.

Methods

Patients and samples

This study was performed on a consecutive cohort of patients
with pediatric ALL sent to our genetic reference laboratory for
initial cytogenetic and molecular genetic diagnostics. All pa-
tients were treated in German centers and were enrolled in the
AIEOP-BFM ALL 2009 trial (EudraCT no. 2007-004270-
43). Written informed consent was obtained from the legal
representatives (and the patients, if applicable). The study co-
hort consisted of n = 117 patients (n = 65 male, n = 52 female)
with a median age of 4.8 years. Of these patients, 6 (5.1%)
were classified with an immunophenotype of pro-B-ALL (B-
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I), 72 (61.5%) with a common-ALL (B-II), and 39 (33.3%)
with a pre-B-ALL (B-III).

Bone marrow (BM) aspirate was obtained at the time of
initial diagnosis. BM from heparinized tubes was used for
cytogenetic analyses (karyotyping and FISH). RNAwas pref-
erably isolated from EDTA BM, or if necessary from heparin
BM, on a Chemagic 360 instrument as per the manufacturer’s
instructions (PerkinElmer, Baesweiler, Germany). RNA integ-
rity (RIN value) was measured by Bioanalyzer 2100 (Agilent
Technologies, Waldbronn, Germany). Isolation of DNA from
EDTA BM was performed using the QIAamp DNA Blood
Midi Kit (Qiagen, Hilden, Germany).

Genetic markers relevant for risk stratification

This study assisted to optimize the diagnostic standard
workflow of the German study group of the AIEOP-BFM
ALL 2017 trial. Using the methods listed below, the following
genetic markers relevant for risk stratification were evaluated:
gene fusions (ETV6-RUNX1, AFF1-KMT2A, and TCF3-
HLF), hypodiploidy (< 45 chr.), and IKZF1plus. BCR-ABL1
is an exclusion criterion for the AIEOP-BFM ALL trial, as
these cases are treated within the EsPhALL study instead.

Karyotyping and FISH analysis

For all patients, short-term cultures (24–48 h) were set up from
BM aspirates. Chromosome preparation, fluorescence R-
banding, and FISH were performed as previously described
[10]. Karyotypes were described according to the
International System for Human Cytogenetic Nomenclature
(ISCN, 2016). In addition to classical banding analysis, the
diagnostic standard protocol included FISH analyses for BCR-
ABL1 and ETV6-RUNX1 fusions as well as for translocations
affecting the genes KMT2A and TCF3 (FISH probes: Vysis
LSI BCR/ABL Dual Color, Abbott, Wiesbaden, Germany;
Vysis LSI ETV6(TEL)/RUNX1(AML1) ES Dual Color,
Abbott; Vysis LSI MLL(KMT2A) Dual Color, Abbott;
SureFISH 19p13.3 TCF3 DF, Agilent) [10].

Reverse transcriptase PCR

Reverse transcriptase PCR (RT-PCR) was performed in par-
allel to cytogenetic analyses whenever EDTA-material was
available (74/117 cases) for the qualitative detection of fusion
transcripts of BCR-ABL1, ETV6-RUNX1, and AFF1-KMT2A
as published elsewhere [11, 12]. In cases where only heparin-
ized material was available, no RT-PCRwas performed due to
possible inhibitory effects of heparin on amplification. cDNA
quality was verified by quantification of the ABL1 gene.

Panel-based RNA sequencing and data analysis

RNA-seq was performed using the TruSight RNAPan-Cancer
Panel (Illumina, San Diego, CA, USA) according to the man-
ufacturer’s instruction. The panel targets 1385 cancer genes
(see online Tab.S1) and detects fusions between genes
targeted by the panel but also fusions of targeted genes with
non-target genes. Prior to this study, the RNA-seqmethod was
successfully validated on commercially available reference
material (SeraSeq® Myeloid Fusion RNA Mix, Hiss
Diagnostics GmbH, Freiburg, Germany), external reference
samples with defined fusions provided by the group of
Giovanni Cazzaniga (University of Milano-Bicocca,
Fondazione MBBM,Monza, Italy), and genetically character-
ized cell lines and samples from our laboratory (see Tab.S2 for
tested fusions). Gene-pseudogene “fusions” and recurrent
technical artifacts were defined during this validation process
and excluded from later data analysis. Each RNA-seq run
contained a pooled cDNA library of eight patient samples
and was executed on an Illumina MiSeq machine using
MiSeq® Reagent Kit v3 (150 cycles) with a PE MiSeq®
Flow Cell. The anticipated minimum number of reads per
sample was 3 million.

Data analysis was performed using the Illumina BaseSpace
apps TopHat Alignment (version 1.0.0, read mapping on hg19
reference genome by TopHat2 [13], fusion calling by TopHat-
Fusion [14]) and RNA-seq Alignment (version 1.1.0, read
mapping on hg19 reference genome by STAR [15], fusion
calling by Manta [16]) using standard settings (https://
basespace.illumina.com/apps). Fusion transcripts with a low
number of split-reads (< 10) were excluded as likely false-
positives, unless the fusion was verified with a second meth-
od. The turn-around time from RNA isolation to detection of
fusion transcripts using this workflow is 4 days.

Validation of single gene fusions detected in RNA-seq was
carried out using the HemaVision®-28N multiplex RT-PCR
Kit if applicable and according to the manufacturer’s instruc-
tions (DNA Diagnostic, Risskov, Denmark).

Array CGH

Array-based comparative genomic hybridization (array CGH)
was performed using a 400 k SurePrint G3 Custom CGH
Human Genome Microarray (e-Array design 84704, Agilent
Technologies, Waldbronn, Germany) according to the manu-
facturer’s protocol by hybridizing 500 ng of patient DNA
isolated from EDTA material against sex-matched human ref-
erence DNA (Megapool Reference DNA, Kreatech,
Amsterdam, The Netherlands). Regions of genomic copy
number change were analyzed and interpreted with Agilent
Genomic Workbench 7.0 software under the following analy-
sis setting: aberration detection algorithm ADM-2, threshold
6.0, aberration filter of at least four aberrant probes (resulting
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in an average genome-wide resolution of ~ 30 kb), and aver-
age log2 ratios of + 0.3 for gains and − 0.3 for losses.

The original description of the IKZF1plus gene deletion
profile by Stanulla et al. has been based on MLPA analyses
targeting IKZF1, CDKN2A, CDKN2B, PAX5, and CRLF2-
P2RY8, as well as multiplex PCR for the detection of ERG
deletions. Prior to this study, reproducibility of IKZF1plus pro-
files in our high-resolution array CGH was verified for select-
ed cases (data not shown).

Cases indicative of masked hypodiploidy (i.e., presence of
multiple tetrasomies) were analyzed on CGH+SNP array (e-
Array design 85320, Agilent Technologies) using sex-
matched reference DNA (Human Reference DNA, Agilent
Technologies).

Results

Panel-based RNA-seq results are consistent
with fusions detected by cytogenetic and RT-PCR
analyses

Within the cohort of 117 consecutive patients with pediatric
BCP-ALL, the following genetic markers relevant for
inclusion/exclusion and risk stratification of patients were ob-
served: BCR-ABL1 fusion (n = 1; exclusion criterion and re-
ferral to EsPhALL trial), ETV6-RUNX1 fusion (n = 26),
AFF1-KMT2A fusion (n = 2), hypodiploidy (n = 1), and
IKZF1plus (n = 12). Other observed genetic markers not rele-
vant for risk stratification within the AIEOP-BFM ALL 2017
trial were as follows: TCF3 rearrangement (n = 3; TCF3-
PBX1 fusions), KMT2A rearrangement (n = 1; KMT2A-
MLLT1 fusion; aberration is only relevant for stratification in
cases < 1 year of age), and hyperdiploid karyotype with more
than 50 chromosomes (n = 35). The remaining n = 36 cases
were classified as B-other due to absence of the above-
mentioned genetic markers (Table 1).

Fusion detection by RNA-seq was highly consistent with
results obtained from cytogenetic and RT-PCR analyses for
115 out of 117 analyzed cases. The two discordant cases were
case 29, which was misclassified by RNA-seq, and case 26,
which was misclassified in conventional analyses (see online
Tab.S3 for a complete overview on all cases and results). In
detail, case 29 presented in FISH analysis with a split of the
KMT2A locus and subsequent analyses using FISH on inter-
phase and metaphase nuclei as well as RT-PCR using the
HemaVision-28N kit were able to identify this fusion to be
derived from a small insertion of the 5′KMT2A-Locus into
chromosome 4 (ins(4;11)). However, this cryptic AFF1-
KMT2A fusion was not reported by either of the two
Illumina BaseSpace apps, despite its existence in the raw
RNA-seq reads. The dependency on accurate fusion calls by
alignment algorithms was also indicated by other cases in this

study. Case 15 tested positive for ETV6-RUNX1 fusion in
FISH and RT-PCR analyses, whereas only the RNA-seq
Alignment app and not the TopHat Alignment app detected
this fusion. In contrast, all nine cases with P2RY8-CRLF2
fusions were detected by the TopHat Alignment app only
(cases 55–63).

On the other side, conventional analyses also generated one
false negative result in this study. FISH and regular RT-PCR
indicated no ETV6-RUNX1 fusion for case 26, whereas RNA-
seq gave a positive result. Subsequently, the fusion of ETV6-
RUNX1 could be confirmed using the HemaVision-28N mul-
tiplex RT-PCR Kit. In detail, analysis of the RNA sequence
revealed a fusion of ETV6 exon 5 to RUNX1 exon 3, which
should have been detectable by routine RT-PCR primers and
FISH analyses. Furthermore, case 16 showed an ETV6-
RUNX1 fusion in RNA-Seq and FISH resulting from a variant
breakpoint in ETV6 exon 4, which could not be detected via
routine RT-PCR due to a loss of the primer binding site.

All other fusions addressed by karyogram, FISH, or RT-
PCR were either confirmed (i.e., BCR-ABL1, PBX1-TCF3) or
specified in more detail by RNA-seq, as was the case for the
identification of MLLT1 as the fusion partner of KMT2A
(11q23.3-19p13.3; case 30).

Array CGH identifies IKZF1plus cases in B-other
and hyperdiploid subtypes of BCP-ALL

All cases negative for a risk stratifying marker in cytogenetic
and RT-PCR analyses were analyzed by array CGH for pres-
ence of the IKZF1plus deletion profile. Under these conditions,
a total of 84 cases qualified for array CGH (two of these cases
had insufficient DNA from time point of diagnosis). The
IKZF1plus deletion profile was observed in twelve cases.
With a median age of 8.7 compared with 4.8 years, the
IKZF1plus cases were older than the overall cohort (Table 1).
In all cases, the mandatory deletion of IKZF1 was accompa-
nied by chromosome 9 deletions, whereas no interstitial dele-
tions between P2RY8 and CRLF2 were observed (Table 2).
The gene IKZF1 was affected by small intragenic deletions,
except for cases 33, 35, and 43. Various deletions could be
observed on chromosome 9, ranging from small focal dele-
tions up to losses of the entire chromosomal arm. At the con-
clusion of induction therapy, nine cases had a positive MRD
result and would therefore qualify for the high-risk treatment
group of the AIEOP-BFM ALL 2017 trial (Table 2).

RNA-seq detects gene fusions in the IKZF1plus

and B-other subtypes but not in hyperdiploid BCP-ALL

As expected, RNA-seq also identified fusions between genes
not covered by the diagnostic standard protocol of the AIEOP-
BFM ALL 2017 trial. No fusions were detected in the large
group of hyperdiploid cases, while fusion transcripts were
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detected at a high frequency in up to half of the cases in
subtypes IKZF1plus (n = 6/12 cases) and B-other (n = 17/36
cases, Table 1). Of these 23 cases, only 13 presented an aber-
rant karyotype in banding analysis (online Tab.S3).

Cases with an aberrant karyotype displayed the following
fusions: ETV6-NTRK3 (12p13.2-15q25.3), PAX5-NCOA6
(9p13.2-20q11.22), TERF2-JAK2 (16q22.1-9p24.1),
HOOK3-FGFR1 (8p11.21-8p11.23), MEF2D-BCL9 (1q22-
1q21.2), PAX5-DACH1 (9p13.2-13q21.33), PAX5-ETV6
(9p13.2-12p13.2), PAX5-LINC01251 (9p13.2-9p13.3),
ZNF618-NUTM1 (9q32-15q14), and P2RY8-CRLF2 (n = 5
cases, Xp22.33 and Yp11.2). Notably, all six cases with a
structurally aberrant chromosome 9p showed a gene fusion
involving the genes JAK2 (n = 1) or PAX5 (n = 5). Fusion
transcripts found in patients with a completely normal karyo-
type and no other markers were EBF1-PDGFRB (5q33.3-
5q32, case 32), PAX5-MYO1G (9p13.2-7p13, case 35), and
P2RY8-CRLF2 (cases 59 and 62). Fusions of ETV6-IKZF1
(12p13.2-7p12.2) and P2RY8-CRLF2were found in two cases
with normal karyotypes at a reduced level of validity (due to
poor morphology and limited number of metaphases; cases 33
and 57). No metaphases were available for case 47 (fusions
ETV6-IKZF1 and IKZF1-DLG2 (7p12.2-11q14.1)), case 48
(EP300-ZNF384 (22q13.2-12p13.31) fusion), and cases 56
and 60 (both P2RY8-CRLF2 fusion). Presence of all fusions,
except for TERF2-JAK2, IKZF1-DLG2, and HOOK3-
FGFR1, could be indirectly confirmed by detection of an ar-
ray CGH aberration in at least one of the two fusion genes

(i.e., intronic breakpoint corresponding to the RNA-seq span-
ning read, Table 3). Further validation of RNA-seq fusions,
including TERF2-JAK2 and HOOK3-FGFR1, was achieved
by FISH results (i.e., split signal involving the corresponding
gene loci), and in most cases in banding analysis (i.e., identi-
fication of respective chromosome translocations, or at least of
respective aberrant chromosomes, online Tab.S3).

Discussion

This study aimed to evaluate the applicability of panel-based
RNA-seq and array CGH for detecting relevant gene fusions
as well as chromosomal deletions for risk stratification of pe-
diatric BCP-ALL patients. This knowledge is intended to sup-
port optimization of the diagnostic workflow of the German
study group of the international AIEOP-BFM ALL 2017 trial
by reducing the number of necessary diagnostic tests, while
assuring robustness of aberration detection. As discussed later,
the here presented results conclusively show that panel-based
RNA-seq and CGH+SNP array are powerful tools for the
detection of fusion genes and genome-wide copy number ab-
errations. However, these techniques still need to be supported
by FISH analysis in order to guarantee reliable detection of
relevant fusions for all cases. The second and more broadly
defined aim of this study was to examine the detection of
genetic lesions beyond established markers, as recent publica-
tions have demonstrated that patients of the B-other subtype

Table 1 Characteristics of the cohort of 117 consecutive cases with
pediatric BCP-ALL. Patients were enrolled to the AIEOP-BFM ALL
2009 trial at different participating clinics throughout Germany. The sex
and age distribution of the total cohort was within the expected range of
pediatric BCP-ALL [17, 18]. Genetic markers relevant for inclusion/
exclusion of patients and risk stratification within the AIEOP-BFM
ALL 2017 trial are listed in the upper part of the table. Array CGH
identified the IKZF1plus gene deletion profile in twelve cases (10%) and

CGH+SNP array identified one case of masked hypodiploidy. Beyond
ETV6-RUNX1, BCR-ABL1, AFF1-KMT2A, and TCF3-PBX1 fusions,
RNA-seq identified additional fusion transcripts in half of IKZF1plus cases
and in about half of B-other cases (details in Table 3). Furthermore, one
case with a KMT2A split signal in FISH analysis could be specified as a
KMT2A-MLLT1 fusion by RNA-seq. na, not applicable due to small
number of cases

Genetic subtype Number of cases Ratio male/female Median age years (min–max)

Relevant for risk stratification BCR-ABL1 1 (1%) na na

ETV6-RUNX1 26 (22%) 1.36 4.0 (1.6–17.9)

AFF1-KMT2A 2 (2%) na na

Hypodiploidy 1 (1%) na na

IKZF1plus 12 (10%) 2.00 8.7 (2.5–17.0)

IKZF1plus with fusion in RNA-seq 6 (5%) 2.00 8.6 (2.5–17.0)

IKZF1plus without fusion in RNA-seq 6 (5%) 2.00 8.7 (3.6–15.2)

Not relevant for risk stratification TCF3 rearrangement 3 (3%) na na

KMT2A rearrangement 1 (1%) na na

B-other 36 (31%) 1.00 6.2 (1.2–17.4)

B-other with fusion in RNA-seq 17 (15%) 0.70 4.2 (2.2–15.0)

B-other without fusion in RNA-seq 19 (16%) 1.38 9.5 (1.2–17.4)

Hyperdiploidy (> 50 chr.) 35 (30%) 1.19 4.2 (2.1–13.8)

Total 117 1.25 4.8 (0.3–17.9)
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frequently harbor fusion transcripts of possible therapeutic
relevance [19–21]. Prospectively, successful integration of
genome-wide CGH+SNP array and RNA-seq targeting al-
most 1385 transcripts into the AIEOP-BFM ALL 2017 diag-
nostic workflow could help to generate the data essential for
revealing new genetic markers of pediatric ALL in the future.

The IKZF1plus subtype itself is a good example for a new risk
marker, which has been identified due to simultaneous consider-
ation of multiple genetic loci. Notably, without analysis for
IKZF1plus, ten cases of this study would have been assigned as
B-other and two cases as hyperdiploid ALL, with no further
genetic risk stratification in both groups. One needs to be aware
that occasional IKZF1plus profiles might be present in cases not
tested by array CGH in our workflow (e.g., ETV6-RUNX1).
Projected onto the whole cohort of 117 BCP-ALLs, we therefore
observed IKZF1plus in at least 10% of the cases, which is higher
than the originally published share of 6% by Stanulla et al. [8].
Use of array CGH instead of MLPA and PCR-based analysis
does not seem to be the reason for this discrepancy, as all dele-
tions relevant for of IKZF1plus (Tab.S4) would be detectable by
MLPA analyses as described by Stanulla et al. Furthermore, the
ERG locus is covered by 37 array CGH probes, of which seven
probes are located in the region assessed by ERG deletion PCR
in Stanulla et al. Despite the satisfactory probe coverage of ERG
in arrayCGH, the higher sensitivity of PCR for deletion detection
needs to be acknowledged, which might influence IKZF1plus

detection. However, the high number of IKZF1plus cases in our
study is more likely to be explained by the small cohort size in
our analysis as our extended array CGH data set on more than
600 cases comprises a lower number of IKZF1plus within the B-
other and hyperdiploid cases (data not shown). In line with
Stanulla et al., the age of onset of IKZF1plus cases was consider-
ably higher than observed in the complete cohort (median age 8.7
vs 4.8 years, Table 1). It is important to mention that in the
AIEOP-BFM ALL 2017 trial, the final risk stratification within
IKZF1plus is dependent on MRD-levels and not all cases with an
IKZF1plus deletion profile receive high-risk treatment.Within our
cohort, nine of the twelve IKZF1plus cases wereMRD positive or
inconclusive on treatment day 33 and therefore would be
assigned to the high-risk treatment group of the AIEOP-BFM
ALL 2017 trial.

In summary, array CGH analysis is a well-established method
in many laboratories and in our study, its implementation in the
diagnostic workflow was successful without difficulty. One im-
portant limitation of the method is the amount of leukemic blasts
in BMaspirate obtained at the time of diagnosis, which should be
at least 20% in order to reliably detect leukemia-associated ge-
netic aberrations. On the other hand, CGH+SNP array proved to
be more sensitive in detecting hyperdiploidy, which is in line
with the previous observation that hyperdiploid leukemic cells
frequently fail to proliferate in culture, thus resulting in an ab-
sence of aneuploidy in analyzed metaphases or deficiency of
metaphases in general (Tab.S3 cases 83, 85, 90, 91, 94, 116)Ta
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[22]. Furthermore, array analysis identified other highly relevant
genetic aberrations beyond IKZF1plus, e.g., masked hypodiploidy
and aberrations in line with fusions observed in RNA-seq anal-
ysis. For these reasons, copy number analysis using CGH+SNP
arrays will be a central diagnostic tool in the AIEOP-BFM ALL
2017 trial to detect the current stratification relevant markers as
well as to generate high-resolution genome-wide data for the
definition of future genetic markers.

Detection of fusion genes using RNA-seq is a comparably
new approach and not yet established in routine diagnostics for
most malignancies. Our data demonstrate consistent results be-
tween RNA-seq and our routine diagnostic methods (karyogram,
FISH, and RT PCR analyses). Considering the stratification rel-
evant aberrations BCR-ABL1 and ETV6-RUNX1 as well as rear-
rangements involving either KMT2A or TCF3, which are rele-
vant for stratification if resulting in an AFF1-KMT2A or TCF3-
HLF fusion, only two discrepant results were observed (cases 26
and 29). For case 26, RNA-seq outperformed the routine FISH
and RT-PCR methods by identifying an ETV6-RUNX1 fusion,
which could later be confirmed with a second RT-PCR kit. The
reason for the failure of the routine methods to detect this fusion
is still unclear. Case 29, with a small insertion ofKMT2A into the
AFF1 gene, was the only example of a clear failure in fusion
detection by RNA-seq. Even though present as multiple, identi-
cal reads at the RNA-seq raw data level, both applied alignment
algorithms did not report the AFF1-KMT2A fusion, as they re-
quire the presence of at least three non-identical split reads for
fusion calling. In our study, these two discrepant cases are the
only two examples for false negative results. However, further
influences exist, which can cause relevant fusions to remain un-
detected. These include a low percentage of leukemic blasts, loss
of blasts during cell culture, cryptic or variant translocations, poor
RNA quality, and notably the sensitivity of bioinformatics algo-
rithms. Importantly, not all methods (karyogram, FISH, RT-PCR,
and RNA-seq) are equally affected by these influences and a
combination of methods would be able to rectify their respective
weaknesses in most cases. Therefore, the diagnostic workflow of
the German study group of AIEOP-BFM ALL 2017 trial will
use FISH and panel-based RNA-seq as standard techniques for
the detection of fusion genes. Karyotyping and RT-PCRwill still
be available but restricted to inconclusive cases only.

As a technical prerequisite, both alignment tools tested in this
study will be applied in future RNA-seq analyses, as some fu-
sions, like P2RY8-CRLF2, were detected by one of the algo-
rithms only. Furthermore, the minimum number of sequencing
reads per sample will be set to 3 million reads, even though our
current data indicate that some fusion transcripts, like ETV6-
RUNX1, are detectable at coverages below 2 million reads.
However, a higher number of reads per sample will also facilitate
detection of lowly expressed fusion genes as well as detection of
fusions in samples with low blast counts. We detected no corre-
lation between RNA-seq coverage and RIN value or ABL1 copy
numbers in RT-PCR analysis (data not shown). Thus, variance in

RNA-seq coverage in our study might rather be a result of dif-
ferences in library preparation and quantification, which can pos-
sibly be addressed by standardization and automatization of
RNA-seq protocols. Another important technical aspect of our
study is that RNA-seqwas conducted onRNA isolated fromBM
in EDTA tubes sent to our laboratory within 24 h. Our results
indicate that use of RNA stabilizing solutions, at least for the
fusion genes of interest, seems expendable.

It needs to be acknowledged that this workflow, despite panel-
based RNA-seq and genome-wide array CGH, will not detect all
aberrations present in the here defined B-other group. For exam-
ple, fusions affecting the IGH locus as well as translocations
resulting in promoter or enhancer rearrangements (e.g., translo-
cations of the MYC or MECOM locus) cannot be detected and
these aberrations are being followed up on by FISH analysis on a
research basis for selected cases. On the same note and in line
with previous reports, our RNA-seq analysis detected additional
fusion transcripts only in the B-other subtype, including cases
32–37, which all would have been deemed B-other until recently
if not stratified as IKZF1plus in our study [20, 21]. Interestingly,
the previously described “targetable” kinase fusions EBF1-
PDGFRB, ETV6-NTRK3, and TERF2-JAK2 were all observed
within the IKZF1plus subtype [19, 23, 24]. Other detected fusions
may provide prognostic information (P2RY8-CRLF2, MEF2D-
BCL9) [25–27]. Many fusion transcripts have already been de-
scribed in pediatric ALL (e.g.,HOOK3-FGFR1, PAX5-DACH1,
EP300-ZNF384, PAX5-ETV6, or ZNF618-NUTM1), even
though their potential therapeutic or prognostic impact remains
to be addressed in more detail [28–33]. To the best of our knowl-
edge, some fusions identified in this study have not been de-
scribed in the literature yet. A more detailed follow-up on the
relevance of these fusions will be necessary, as our data on ori-
entation and on in frame fusions of the coding sequences (CDS)
gives only a first perception on potential functionality. Based on
this limited data, PAX5-MYO1G, PAX5-NCOA6, and possibly
PAX5-LINC01251 seem to be promising new fusions, whose
influence on the course of the disease warrants further consider-
ation [34, 35]. Just recently, the clinical implication of chimeric in
frame PAX5 fusions has been highlighted, as well as the poten-
tially initiating, subtype-defining character of PAX5 alterations in
B-ALL [33]. In this respect, particularly the fusions with
MYO1G andNCOA6, first identified in this study, appear to leave
the paired box DNA-binding domain of PAX5 operational.

In conclusion, this study demonstrated that panel-based
RNA-seq, supplemented by FISH analysis, and CGH+SNP
arrays are a reliable combination of methods to detect the
genetic markers BCR-ABL1, ETV6-RUNX1, hypodiploidy,
IKZF1plus as well as rearrangements of KMT2A and TCF3
necessary for risk stratification in pediatric BCP-ALL.
Foremost, acquisition of genome-wide copy number and
panel-wide fusion data within the standard diagnostic
workflow is expected to support identification of new genetic
markers relevant for treatment in the future.
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